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1 Introduction

The Saudi Association for Mathematical Sciences (SAMS) hosts a biennial international confer-
ence aimed at advancing research in mathematics and its diverse applications within the Kingdom of
Saudi Arabia. This event serves as a vital platform to showcase current research, foster collaboration,
and promote the exchange of knowledge between local and international scholars. It is designed to
provide opportunities for a wide range of researchers, from early-career academics to seasoned experts,
to present their work, explore cutting-edge mathematical methodologies, and engage with globally
recognized scientists across multiple disciplines.

Over the years, SAMS has successfully organized more than eleven such conferences, each highly
praised for its scientific merit and outstanding organizational standards. These conferences have
significantly contributed to the development of the mathematical sciences community in the region.

As part of its continued commitment to scientific excellence, SAMS is pleased to organize the 6th

International Conference on Mathematical Sciences and Applications (6thCMSA2025), which
will be held at King Saud University in Riyadh from April 15 to 17, 2025. This conference aims to
further strengthen international cooperation and enrich the academic environment for mathematics in
Saudi Arabia and beyond.

1.1 Objectives for 6th CMSA 2025

� Present and discuss recent significant findings in pure and applied mathematics.

� Promote Knowledge Sharing by fostering the exchange of cutting-edge research, innovative
methodologies, and novel applications in mathematical sciences among researchers, practitioners,
and educators from around the world.

� Encourage Interdisciplinary Collaboration by facilitating collaborations between mathematicians
and professionals from diverse fields such as engineering, physics, computer science, actuarial
science, finance, and biology to solve complex real-world problems.

� Highlight the latest trends, advancements, and future directions in various branches of mathe-
matical sciences, including applied mathematics, theoretical mathematics, and computational
mathematics.

� Provide a platform for young researchers and graduate students to present their work, receive
constructive feedback, and network with established experts in the field.

� Explore the role of mathematical sciences in addressing global challenges such as climate change,
healthcare, and sustainable development, and promote the development of mathematical models
and solutions to these issues.

� Build and strengthen professional networks among attendees, fostering long-term relationships
that can lead to future research collaborations, joint projects, and academic exchanges.

� Promote partnerships between academia and industry to ensure that mathematical research is
aligned with industry needs and can be effectively translated into practical applications.

� Provide a platform for the dissemination of high-quality research findings through keynote
speeches, panel discussions, paper presentations, and poster sessions.
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1.2 Steering Committee

� Prof. Dr. Bandar Almohsen, King Saud University (Chair)

� Dr. Reem Alhefthi, King Saud University

� Prof. Dr. Obaid Algahtani, King Saud University

� Prof. Dr. Mhamed Eddahbi, King Saud University

� Mr. Ahmed Ameri, Riyadh Education Administration.

1.3 Organizing Committee

� Dr. Reem Alhefthi, King Saud University (Chair)

� Prof. Dr. Mansoor Alshehri, King Saud University

� Prof. Dr. Nabil Ourimi, King Saud University

� Prof. Dr. Mhamed Eddahbi, King Saud University

� Dr. Wedad Albalawi, Princess Nourah bint Abdulrahman University

� Dr. Zehor Aljehani, Jeddah Education Administration

� Dr. Abdulrahman Alzahrani, King Saud University

� Ms. Amjaad Mousa Alfaifi, King Saud University

1.4 Scientific Committee

� Prof. Dr. Mhamed Eddahbi, King Saud University (Chair)

� Dr. Fawzi Al-Thukair, King Saud University

� Prof. Dr. Souhail Chebbi, King Saud University

� Dr. Hocine Guediri, King Saud University

� Dr. Malik Talbi, King Saud University

� Prof. Dr. Diogo Gomes, King Abdullah University of Science and Technology

� Prof. Dr. Jinchao Xu, King Abdullah University of Science and Technology

� Prof. Dr. Ahmad M. Alghamdi, Umm Al-Qura University

� Dr. Brahim Mezerdi, King Fahd University of Petroleum and Minerals

� Dr. Najla Altwaijry, King Saud University

� Prof. Dr. Fairouz Tchier, King Saud University

� Dr. Liana Topan, King Saud University
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1.5 Media Committee

� Dr. Reem Alhefthi, King Saud University (Chair)

� Prof. Dr. Mohammed AbaOud, Imam Mohammad Ibn Saud Islamic University (IMSIU)

� Dr. Khalid Alsharif, King Saud University

� Dr. Maha Alammari, King Saud University

� Ms. Wlaa Hussein Aljroudi

� Ms. Munirah Alshalan, King Saud University

2 Abstracts of Keynote Speakers

2.1 Youssef Ouknine: Optimal Stopping Under Model Uncertainty in a
General Setting

Youssef Ouknine∗

Mohammed VI Polytechnic University, Africa Business School, Ben Guerir,
and Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390,
Marrakesh, Morocco.
Joint work with Ihsan Arharas1, Siham Bouhadou2, Astrid Hilbert1

Abstract

We consider the optimal stopping time problem under model uncertainty

R(v) = ess sup
P∈P

ess sup
τ∈Sv

EP[Y (τ)|Fv],

for every stopping time v, set in the framework of families of random variables indexed by stop-
ping times. This setting is more general than the classical setup of stochastic processes, and
particularly allows for general payoff processes that are not necessarily right-continuous. Under
weaker integrability, and regularity assumptions on the reward family Y = (Y (v), v ∈ S), we show
the existence of an optimal stopping time. We then proceed to find sufficient conditions for the
existence of an optimal model. For this purpose, we present a universal optional decomposition
for the generalized Snell envelope family associated with Y . This decomposition is then employed
to prove the existence of an optimal probability model and study its properties3.

* Lead presenter

Result 1: Existence of optimal stopping times

Let v ∈ S and λ1, λ2 ∈ (0, 1) such that λ1 ≤ λ2, then clearly Uλ1(v) ≤ Uλ2(v) a.s. Accordingly, the
map α → Uα(v) is non-decreasing on (0, 1), and so we define the stopping time

U∗(v) := lim
λ↑1

Uα(v) a.s. (2.1.1)

The stopping time U∗(v) appears to be a good nominee for optimal stopping time for R(v). We
state the main existence result of an optimal stopping time in the following theorem.

1Department of Mathematics, Linnaeus University, Vejdesplats 7, SE-351 95 Vaxjo, Sweden
2Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakesh, Morocco
3This work has been accepted and is forthcoming in Probability, Uncertainty and Quantitative Risk.
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Theorem 2.1.1 Under additional assumptions on the reward family, we have: For every v ∈ S, the
stopping time U∗(v) (defined by (2.1.1)) is an optimal stopping time for R(v), that is,

R(v) = ess sup
P∈P

EP[Y (U∗(v))|Fv]. (2.1.2)

Additionally, U∗(v) = U(v) := ess inf{τ ∈ Sv, R(τ) = Y (τ) a.s.} a.s.

Result 2: Existence of optimal probability models

We now consider the question of under which conditions on the family P there exists an optimal
probability model for our problem. The objective is to characterize an optimal probability model using
a “universal” optional decomposition for our Snell envelope family R = (R(v), v ∈ S) in the sense that
it holds simultaneously for all P ∈ P . This is our Theorem 2.1.2 below.

Theorem 2.1.2 Under suitable conditions on the family P and integrability condition, there exists a
probability measure P∗ ∈ P such that, for every v ∈ S,

EP∗
[
Y (U∗(v))

∣∣∣Fv

]
= R(v) = ess sup

P∈P
EP
[
Y (U∗(v))

∣∣∣Fv

]
a.s. (2.1.3)

Moreover, any model P ∈ P is then optimal.

References

[1] Kobylanski, M. and Quenez, M.-C. (2012). Optimal stopping time problem in a general framework,
Electr. J. Prob. 17(72), 1–28.

[2] Krätschmer, V., Ladkau, M., Laeven, R.J.A., Schoenmakers, J.G.M. and Stadje, M. (2018).
Optimal stopping under uncertainty in drift and jump intensity. Mathematics of Operations
Research 43, 1177-1209.

[3] Riedel, F. (2009). Optimal stopping with multiple priors, Econometrica, 77, 857-908.

[4] Treviño-Aguilar, E. (2012). Optimal stopping under model uncertainty and the regularity of lower
Snell envelopes, Quantitative Finance, 12:6, 865-871.

[5] Zamfirescu, I.-M. (2003). Optimal Stopping under Model Uncertainty, Ph.D. thesis, Columbia
University.
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2.2 Christian G. Boehmer: Dynamical systems in cosmology

Christian G. Boehmer
Department of Mathematics, University College London,
Gower Street, London WC1E 6BT, United Kingdom.

Abstract

The talk begins with a general overview of dynamical systems, a well-known field of applied
mathematics with a wide range of applications ranging from epidemiology to cosmology. These
techniques can be used for studying the time evolution of infectious diseases or for studying the
time evolution of the Universe. First, I give an overview of the various techniques that exist
to study dynamical system, starting with linear stability theory. This is followed by Lyapunov
stability. Finally, the talk introduces Kosambi-Cartan-Chern (KCC) or Jacobi stability theory,
an approach that is based on a geometrical construction. All techniques are then applied to a
dynamical system motivated by cosmology. In passing, it will become clear that cosmological
dynamical systems offer a rich mathematical structure with many intriguing models.

Result 1 We introduce a novel, model-independent approach to studying cosmological dynamical
systems in modified gravity theories with second-order field equations. By using standard cosmological
matter variables and a dynamical variable tied to the Hubble function, we construct a framework
applicable to any second-order theory. The dimensionality of the dynamical system is determined by
the number of matter sources, enabling a general analysis of two-fluid cosmologies.

Result 2 We explore models derived from variational principles, especially Brown’s fluid approach,
introducing new coupling terms, including boundary term couplings not previously studied in this
context. This leads to surprisingly complicated models, showing a much richer structure than seen in
other models of similar type.

References

[1] C. G. Boehmer and A. d’Alfonso del Sordo: Cosmological fluids with boundary term couplings,
General Relativity and Gravitation, 56 (2024) 75.

[2] C. G. Boehmer, E. Jensko and R. Lazkoz: Cosmological dynamical systems in modified gravity,
European Physical Journal, C82 (2022) 500.

[3] S. Bahamonde, C. G. Boehmer, S. Carloni, E. J. Copeland, W. Fang and N. Tamanini: Dynamical
systems applied to cosmology: dark energy and modified gravity, Physics Reports, 775-777 (2018)
1-122.

[4] C. G. Boehmer, T. Harko and S. V. Sabau: Jacobi stability analysis of dynamical systems –
applications in gravitation and cosmology, Advances in Theoretical and Mathematical Physics, 16
(2012) 1145-1196.
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2.3 Daniel Lesnic: Inverse modelling of biological tissues

Daniel Lesnic (joint work with M. Alosaimi)
University of Leeds, Department of Applied Mathematics, Leeds LS2 9JT, United Kingdom D.Lesnic@leeds.ac.uk.

Abstract

Knowledge of the properties of biological tissues is essential in monitoring abnormalities that
may be forming and have a major impact on organs malfunctioning. Therefore, these disorders
must be detected and treated early to save lives and improve the general health. Several ther-
apeutic interventions guided by medical imaging are available at present to successfully detect,
characterise and treat abnormalities within biological tissues by understanding that cancer can
be interpreted as a tissue anomaly [6]. For instance, in hyperthermia, tumours are destroyed by
increasing their temperature to about 42◦ − 46◦C, while keeping the neighbouring healthy tissues
undamaged [2]. Therefore, understanding the heat transfer in biological tissues and, in particular,
the determination of tissue’s properties and the blood perfusion rate are important yet difficult
tasks. When mathematically modelling such applications, care should be taken to include the
underlying processes that are taking place such as heat conduction, convection, blood perfusion
and heat generation due to metabolism.

Steady-state models for the elliptic modified Helmholtz equation (obtained by dropping out the
terms involving time-derivatives in eqn.(1) below), such as those encountered in diffusive optical
tomography [1], require an infinite amount of measurements (the knowledge of the Dirichlet-to-
Neumann map) to be performed in theory, or a very large amount in practice, to determine the
potential - in the biological context being represented by the blood perfusion coefficient. In such a
situation, improved practically-feasible models based on evolutionary (parabolic or hyperbolic
equations) equations provide the extra time-dimension that encodes more information about
the unknown blood/tissue properties, as well as about an unknown static or moving anomaly,
defect or flaw concealed in the body under investigation. One formulation that takes into account
the transient mechanisms of heat transfer in biological tissues is based on the Pennes’ parabolic
reaction-diffusion equation (obtained by taking τ = 0 in eqn.(1) below), which was proposed to
model the temperature evolution during cancer hyperthermia treatment [7], the thermal radiation
from cellular phones [8] and the ablation of afflicted tissues [3], among others. However, although
still widely used, the Pennes parabolic model of heat transfer implies infinite speed of thermal
propagation. This characteristic contradicts the physical reality that biological bodies, along with
a number of other common materials, exhibit a relatively long thermal relaxation (or lag) time
τ (typically between 15 to 30 seconds), [5]. This contradiction is resolved by the thermal-wave
model of bio-heat transfer given by the Maxwell-Cattaneo hyperbolic equation [4], which in a
bounded domain D over a time duration T > 0 reads as

C(τutt + ut) + Cbτ(wu)t = ∇ · (κ∇u)− Cbw(u− ua)

+Qm +Qe + τ∂t(Qm +Qe) in D × (0, T ), (2.3.1)

where C and Cb are the heat capacities of the tissue and blood, respectively, κ is the thermal
conductivity of the tissue, u is the tissue temperature, w is the blood perfusion rate, ua is the
(arterial) blood temperature, and Qm and Qe are the heat generations due to metabolism and
external heating, respectively. Associated to eqn.(1) there are the initial conditions

u(·, 0) = u0, ut(·, 0) = 0 in D, (2.3.2)

and a boundary condition of Robin convective type

(κ∇u) · ν = σ(u∞ − u) on ∂D × (0, T ) (2.3.3)
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is appropriate, where ν is the outward unit normal to the boundary ∂D, u∞ is the ambient
temperature and σ is the heat transfer coefficient. The physical inverse problem of interest in
this study is to determine the blood perfusion rate w in the model (1)-(3) from extra (noisy)
measurements of the temperature u on a portion Γ of the boundary ∂D, namely,

u = f, on Γ× [0, T ]. (2.3.4)
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2.4 Hervé Gaussier: The Poincaré metric and some generalizations in
hyperbolic geometry

Hervé Gaussier
Institut Fourier, Université Grenoble Alpes / CNRS, France

Abstract

The fifth postulate of Euclid is one of the most renowned axioms in the history of mathematics.
It asserts that through a point not on a given line, there is exactly one line parallel to the given
line in a plane. Alongside Euclid’s other postulates, it forms the foundation of Euclidean geometry,
which dominated mathematical thought for centuries.

However, the fifth postulate stands out among Euclid’s axioms. Unlike the first four, which
are straightforward and self-evident, the fifth postulate is less intuitive, as it predicts the infinite
behavior of physical objects observed locally. Over time, mathematicians questioned whether it
was truly necessary or if it could be derived from the other postulates. Efforts to prove the fifth
postulate from the others led to the discovery of non-Euclidean geometries, including hyperbolic
geometry.

Hyperbolic geometry emerged in the 19th century as an alternative to Euclidean geometry.
In this framework, the fifth postulate is replaced with a new statement: through a point not on
a given line, there are infinitely many lines parallel to the given line. This change results in a
geometry with constant negative curvature, fundamentally different from the flat space of Euclidean
geometry. The discovery of hyperbolic geometry by mathematicians such as Carl Friedrich Gauss,
János Bolyai, Nikolai Lobachevsky and H. Poincaré opened new ways in mathematical research,
showing that consistent geometries could exist without satisfying Euclid’s fifth postulate. This
challenged the long-held belief that Euclidean geometry was the sole description of space.

In physics, the concept of a curved space-time is essential for understanding phenomena
such as the bending of starlight around massive objects and the expansion of the universe. The
mathematical framework of hyperbolic geometry and its generalizations provide the tools necessary
to describe these effects, which are not possible within the flat space of Euclidean geometry.

The Poincaré metric, introduced by Henri Poincaré for the upper half-plane and the unit disk
in the complex plane, is one of the first examples of a metric with constant negative curvature.
It is a cornerstone in the study of complex and Riemannian manifolds, serving as a canonical
model in the Uniformization Theorem: the universal cover of every Riemann surface is conformally
equivalent to either the projective line, the complex line, or the unit disk.

Extended to higher-dimensional complex manifolds and Riemannian manifolds, the Poincaré
metric has paved the way for the study of hyperbolic spaces, still governed by the principles of
the Uniformization Theorem.

In complex manifolds, classical invariant metrics provide insights into the geometric and analytic
properties of these manifolds. The Kobayashi metric, defined using holomorphic mappings, offers a
measure of hyperbolicity and encodes the geometric and analytic properties of complex manifolds.
In the case of compact complex manifolds, famous conjectures address the hyperbolicity of
sufficiently high-degree hypersurfaces in complex projective space or of their complements (the
Kobayashi conjecture), as well as the locus of entire holomorphic maps in projective varieties of
general type (the Green-Griffiths-Lang conjecture), see [4] by S. Kobayashi for an overview on the
subject. Invariant metrics on non-compact manifolds are also of significant interest and have been
the subject of intensive study; see, for example, the remarkable recent result by D. Wu and S.-T.
Yau [5].

After introducing the Poincaré model and reviewing some key results in hyperbolic geometry,
we will investigate how the Kobayashi metric can be defined within the framework of Riemannian
manifolds (see [3], [1]). We will then explore potential connections with classical properties of
Riemannian geometry (see [2]) and propose new questions arising in this context.
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2.5 Mohammed Seaid: On time-stepping methods for computational fluid
dynamics: Application to Newtonian and non-Newtonian flows

Mohammed Seaid
Department of Engineering, University of Durham, South Road, Durham DH1 3LE, UK.

Abstract

We present recent advances on fractional-step methods for the numerical solution of unsteady
incompressible Navier–Stokes equations for both Newtonian and non-Newtonian fluids. The
proposed class of methods is based on a viscosity-splitting approach, and it consists of four
uncoupled steps where the convection and diffusion terms of flow solutions are uncoupled while a
viscosity term is kept in the correction step at all times. This fractional-step method maintains
the same boundary conditions imposed in the original problem for the corrected velocity solution,
and it eliminates all inconsistencies related to boundary conditions for the treatment of the
pressure solution. In addition, the method is unconditionally stable, and it allows the temperature
to be transported by a non-divergence-free velocity field. Two pressure-correction strategies
including the scalar auxiliary variable approach are proposed to enhance the accuracy of the
method. A rigorous stability analysis is also carried out in this study for the considered strategies.
In the case of thermal non-Newtonian fluids, we introduce a methodology to handle the subtle
temperature convection term in the error analysis and establish full second-order error estimates
for the velocity and the temperature solutions and first-order estimates for the pressure solution in
their appropriate norms. Several numerical examples are presented to demonstrate the theoretical
results and examine the performance of the proposed method for solving unsteady incompressible
Navier–Stokes equations in non-Newtonian fluids. The computational results obtained for the
considered examples confirm the convergence, accuracy, and applicability of the proposed time
fractional-step method for unsteady incompressible Navier–Stokes equations in non-Newtonian
fluids.

Special attention is given in this study on computational fluid dynamics for those fluids
with transitory regimes changing from standard Newtonian to complex non-Newtonian fluids.
These generalized Newtonian fluids are challenging to solve using the standard projection or
fractional-step methods which split the diffusion term from the incompressibility constraint during
the time integration process. Most of this class numerical methods already suffer from some
inconsistencies, even in the Newtonian case, due to unphysical pressure boundary conditions
which deteriorate the quality of approximations especially when open boundary conditions are
prescribed in the problem under study. The current work proposes an improved viscosity-splitting
approach for solving the generalized Newtonian fluids in which the viscosity follows a nonlinear
generic rheological law. This method consists of decoupling the convective effects from the
incompressibility while keeping a diffusion term in the last step allowing to enforce consistent
boundary conditions. We provide a full algorithmic description of the method accounting for both
Dirichlet and Neumann boundary conditions. To evaluate the computational performance of the
proposed viscosity-splitting algorithm, we present numerical results for a series of problems from
Ocean circulation and from molten salt reactors. Most of the results presented in this contribution
have been subject of recent publications including [1–5] among others.
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2.6 Alexander Schied: Exploring Roughness in Stochastic Processes:
From Weierstrass Bridges to Volatility Estimation

Xiyue Han1 , Alexander Schied1,∗ , and Zhenyuan Zhang2

1Department of Statistics and Actuarial Science, University of Waterloo, Canada
2Department of Mathematics Stanford University, USA

Abstract

Motivated by the recent success of rough volatility models, we introduce the notion of a rough-
ness exponent to quantify the roughness of trajectories. It can be computed in a straightforward
manner for many stochastic processes and fractal functions and also inspired the introduction
of a new class of stochastic processes, the so-called Weierstrass bridges. After taking a look
at Weierstrass bridges and their sample path properties, we discuss the relations between the
roughness exponent and other roughness measures, such as the Hurst index, weighted quadratic
variation, and Besov regularity. We show furthermore that the roughness exponent can be
statistically estimated in a model-free manner from direct observations of a trajectory but also
from discrete observations of an antiderivative—a situation that corresponds to estimating the
roughness of volatility from observations of the realized variance. As a consequence, we obtain
strong consistency theorems in the context of several rough volatility models.
* Lead presenter

The Hurst parameter was originally defined by as a measure of the autocorrelation of a time series. But
it is well known that it can also determine a degree of ‘roughness’ of the trajectories of certain stochastic
processes, such as fractional Brownian motion. However, Gneiting and Schlather [1] constructed a class
of stationary Gaussian processes for which the Hurst parameter and its roughness decouple completely,
if roughness is quantified in terms of fractal dimension. It is therefore necessary to distinguish between
the classical, autocorrelation-based Hurst parameter and a suitable index for the roughness of a
trajectory. In this talk, we study such a roughness index, which is based on the pth variation of a
continuous real-valued function. More precisely, motivated by pathwise stochastic calculus, we say that
continuous real-valued function x admits the roughness exponent R if the pth variation of x converges
to zero for p > 1/R and to infinity for p < 1/R. Intuitively, the smaller R, the rougher the trajectory
x will look. For instance, if x is continuously differentiable, then it has R = 1, if x is a typical sample
path of a continuous semimartingale such as Brownian motion, then R = 1/2, and if x is a typical
sample path of fractional Brownian motion, then R is equal to its classical Hurst parameter. If x is a
classical Weierstrass function, which, for α ∈ (0, 1) and b ∈ {2, 3, . . . }, is defined as

x(t) =
∞∑
n=0

αn cos(2πbnt), t ∈ [0, 1], (2.6.1)

then R = − logb α. This fact provided the motivation for introducing a new class of stochastic processes,
which provide a synthesis between fractional Gaussian processes and fractal geometry. These processes
are obtained by replacing the cosine function in (2.6.1) by the trajectories of a fractional Brownian
bridge BH with Hurst parameter H. More precisely, the fractional Wiener–Weierstrass bridge with
parameters α ∈ (0, 1), b ∈ {2, 3, . . . }, and H ∈ (0, 1) is defined as the stochastic process

Y (t) :=
∞∑
n=0

αnBH({bnt}), 0 ≤ t ≤ 1,

where {x} is the fractional part of x ≥ 0. Although Y remains a Gaussian process, it displays a number
of intriguing sample path properties, which will be discussed during this talk, based on [4, 5].
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Returning to the general setting, where x is any continuous function on [0, 1], we provide a mild
condition on the Faber–Schauder coefficients of x under which the roughness exponent exists and is
given as the limit of the classical Gladyshev estimates. This result can be viewed as a strong consistency
result for the Gladyshev estimators in an entirely model-free setting, because no assumption whatsoever
is made on the possible dynamics of the trajectory x. Nonetheless, our proof is probabilistic and relies
on a martingale hidden in the Faber–Schauder expansion of x. We show that the condition of our
main result is satisfied for the typical sample paths of fractional Brownian motion with drift, and we
provide almost-sure convergence rates for the corresponding Gladyshev estimates. We also discuss
the connections between the roughness exponent and the related concepts of Besov regularity and
weighted quadratic variation. Since the Gladyshev estimators are not scale-invariant, we construct
several scale-invariant estimators. This part of the talk is based on [2].

Based on [3], we then consider the problem of estimating the roughness of the volatility process in
a stochastic volatility model that arises as a nonlinear function of fractional Brownian motion with
drift. To this end, we introduce a new estimator that measures the so-called roughness exponent of a
continuous trajectory, based on discrete observations of its antiderivative. The estimator has a very
simple form and can be computed with great efficiency on large data sets. It is not derived from
distributional assumptions but from strictly pathwise considerations. We provide conditions on the
underlying trajectory under which our estimator converges in a strictly pathwise sense. Then we verify
that these conditions are satisfied by almost every sample path of fractional Brownian motion (with
drift). As a consequence, we obtain strong consistency theorems in the context of a large class of rough
volatility models, such as the rough fractional volatility model and the rough Bergomi model. We
also demonstrate that our estimator is robust with respect to proxy errors between the integrated and
realized variance, and that it can be applied to estimate the roughness exponent directly from the price
trajectory. Numerical simulations show that our estimation procedure performs well after passing to a
scale-invariant modification of our estimator.
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2.7 Manuel Morales: Building an university-based knowledge transfer
network for the financial sector: The case of Fin-ML

Manuel Morales
University of Montreal, Canada

Abstract

In 2017, the Fin-ML Network was created within the Université de Montréal with the goal of
training the next generation of applied mathematicians and statisticians working at the intersection
of data-science, machine learning, quantitative finance and business intelligence. In the past
five years, it has become a knowledge transfer center fostering collaboration between industry
and academia around data-centric value creation for businesses in the financial sector. This
collaboration is now international as we have started partnering with the innovation ecosystem in
two Mexican states. This talk will narrate this success story while showcasing some of the applied
projects our researchers have been working on.

* Lead presenter

In 2017, the Fin-ML Network was established at the Université de Montréal with a mission to train
the next generation of professionals adept in applied mathematics, statistics, data science, machine
learning, quantitative finance, and business intelligence. Over the past eight years, Fin-ML has evolved
into a pivotal knowledge transfer center, fostering robust collaborations between academia and industry
to drive data-centric value creation in the financial sector.

Genesis and Objectives of Fin-ML
The inception of Fin-ML was driven by the recognition of a significant skills gap in the financial

industry, particularly in the application of advanced machine learning techniques to complex financial
problems. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)
through the Collaborative Research and Training Experience (CREATE) Program, Fin-ML set out
to bridge this gap by offering a multidisciplinary training program. This initiative brought together
six Canadian institutions: Université de Montréal, HEC Montréal, Concordia University, University
of Waterloo, Queen’s University, and University of Calgary. The program’s core objective is to equip
students with the expertise required to meet the modeling and implementation needs of Canada’s
quantitative finance sector, thereby enhancing its global competitiveness.

Academic-Industry Synergy
Central to Fin-ML’s success is its emphasis on fostering symbiotic relationships between academic

researchers and industry practitioners. By collaborating with major financial institutions–including
the Autorité des marchés financiers, Bourse de Montréal, BNP Paribas, CIBC Asset Management,
Desjardins, National Bank of Canada, and RBC–Fin-ML ensures that its training programs are aligned
with real-world industry needs. This alignment is further strengthened through partnerships with
the Institute for Data Valorization (IVADO), facilitating the translation of cutting-edge research into
practical applications.

International Expansion and Collaborative Ventures
Recognizing the universal applicability of its model, Fin-ML has extended its collaborative framework

beyond Canadian borders. In recent years, the network has initiated partnerships with the innovation
ecosystems in two Mexican states. These collaborations aim to address shared challenges in the
financial sectors of both countries, particularly in areas such as financial fraud prevention and anti-
money laundering efforts. By leveraging collective intelligence and knowledge-sharing platforms, Fin-ML
and its Mexican partners strive to enhance the robustness of financial systems against illicit activities.

Showcase of Applied Research Projects
Fin-ML’s collaborative efforts have yielded numerous applied research projects that exemplify the

network’s impact:
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� Machine Learning Use Cases in Finance: In partnership with IVADO and Université de Montréal,
Fin-ML developed a comprehensive course titled ”Machine Learning Use Cases in Finance.” This
course equips industry professionals and academics with practical knowledge on applying machine
learning models to financial contexts, covering topics such as graph neural networks for financial
markets and reinforcement learning for portfolio optimization.

� Financial Fraud Detection Initiatives: Collaborating with Mexican financial institutions, Fin-
ML has contributed to projects focused on enhancing fraud detection capabilities. By sharing
information about fraudsters’ methods and attacks, these initiatives create robust collaboration
networks that strengthen the financial sector’s resilience against fraudulent activities.

� AI-Driven Anti-Money Laundering Systems: Fin-ML has been involved in the development of AI
systems designed to combat financial crime. These systems utilize advanced machine learning
algorithms to detect suspicious activities with greater accuracy, thereby reducing false positives
and improving the efficiency of compliance operations.

Conclusion
The Fin-ML Network stands as a testament to the transformative potential of academia-industry

partnerships. By bridging the gap between theoretical research and practical application, Fin-ML
not only addresses the evolving needs of the financial sector but also cultivates a new generation of
professionals equipped to navigate and shape the future of finance.
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3 Abstracts of Invited Speakers

3.1 Ahmad Alghamdi: Dynamical Systems and Algebra

Ahmad Mohammed Ahmad Alghamdi
Mathematics Department, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia. Email:
amghamdi@uqu.edu.sa.

Abstract

Dynamical system theory has its own AMS classification. That is 37-xx. But it is linked to
many other areas of mathematics. The aim of the talk is to introduce our understanding of the
relationship between the two concepts of dynamical system and algebra. In particular with the
concept of group action. We shall discuss and explain some points such as semigroups and groups
action as a dynamical systems. Then Dynamical systems and some disciplines in mathematics
id discussed. We present some recent results with are devoted to ring terminology on algebraic
structures on smooth vector fields.

This is a survey and a representable article of the relationship between dynamical systems [4] and
algebra [2]. In particular we shall discuss and explain the following points:

� Semi-groups and dynamical systems: A semigroup (G, ⋆) is a non-empty set G and a binary
operation ⋆ on which we can add two elements of G together and where the associativity law
x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z holds for all choices x, y, z ∈ G. This means that the action is defined and
indexed by a collection of maps on certain X such that Tt : X → X for which we assume that
Tt ◦ Ts = Tts. Does such certain X receive or carry any mathematical structure? That is very
important to intimate new theory in this direction. A group (G, ⋆) is a non-empty set G and a
binary operation ⋆ on which we can add two elements of G together and where the associativity
law x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z holds for all choices x, y, z ∈ G and there is an identity element in G
(natural element) and each element has an inverse in G with respect to this binary operation. So
each group action is a dynamical system. We mean by that G acts on the non-empty set X if for
each g ∈ G and each x ∈ X there corresponds a unique element xg in X such that, for all x ∈ X
and g1, g2 ∈ G we have: (xg1)g2 = x(g1g2) and x1G = x. Group Action is very important subject
in mathematics. Let us mention some applications and topics in this regards:

1. Group acts on a non-empty set G-sets and permutation groups: Permutation representation.

2. Group G acts on a module or a vector space G-module (Linear representation theory)

3. Group acts on a ring: G-ring (Ring Theory)

4. Group acts of a topological space: Topological group.

5. Group acts on an algebra: G-algebra theory

6. Group acts on group (nilpotent, solvable and poly-cyclic groups)

7. Group acts on its subgroups: (series of subgroups)

8. Group acts on itself (Conjugacy classes and conjugation action)

� Dynamical systems and some disciplines in mathematics: Here we shall mention without
further details the relationships with some core subject of mathematics with dynamical system:

1. Relation with algebra: As we mention above, group theorists investigates and look at
the action of the group in itself. In fact, the action of the group on vector spaces define a
very important field in mathematics called representation theory.
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2. Relation with measure theory: In ergodic theory, they study a map measure space.

3. Relation with analysis: the study of partial differential equations, functional analysis,
complex analysis and potential theory.

4. Relation with topology: Such as Poincare Conjecture and the so called Ricci Flow.

5. Relation with geometry: Some people try to classify geometrises by using its Symmetry
groups. This approach is called Kleins Erlanger Program.

6. Relation with probability theory: Sequences of independent random variables can be
obtained using dynamical systems

7. Relation with logic and complexity : Every computation by the so called Turing
Machines can be realized as a dynamical system.

8. Relation with number theory: Diophantine Approximations can be seen as problems in
dynamical systems.

9. Relation with category theory: A category of mathematical objects has a semigroup of
homomorphisms acting on it; such as sets have usual maps, topological spaces have continuous
maps, measurable spaces have measurable maps, groups, rings, fields and algebras have
homomorphisms. One can view these categories as a dynamical system.

Some results on algebraic structures on smooth vector fields with my PhD student
Amenah A Alkenani [1]:

Let n and m be two non-negative integers. A C∞-ring is a non-empty set C together with
operations Cf : Cn −→ C for all smooth functions f : Rn −→ R. Here, the function f is an element of
C∞(Rn) with the following conditions:

1. If πi : Rn −→ R is the projection given by πi(x1, · · · , xn) = xi for all (x1, · · · , xn) ∈ Rn, then
Cπi(c1, · · · , cn) = ci for all (c1, · · · , cn) ∈ Cn.

2. If f is an element of C∞(Rn) and gi is an element of C∞(Rm) where gi : Rm −→ R with
h(x1, · · · , xm) = f( g1(x1, · · · , xm), · · · , gn(x1, · · · , xm) ) is an element of C∞(Rm) where i =
1, · · · , n, then

Ch(c1, · · · , cm) = Cf ( Cg1(c1, · · · , cm), · · · , Cgn(c1, · · · , cm) )

for all c1, · · · , cm ∈ C.

The most important example of C∞-ring is C∞(L), where L is a smooth manifold and

C∞(L) =: {f : L −→ R | f is a smooth function}.

Recall that the smooth vector field can be defined as: X on L is a linear map X : C∞(L) −→ C∞(L)
such that X is a derivation. That is X(fg) = fX(g) +X(f)g for all f, g ∈ C∞(L). In fact, we can
define the operations of vector fields addition and scalar multiplication.

The link between analysis and algebra in this setting and in our work is the following results:

1. Theorem: Let L be a connected smooth manifold with real algebra structure of smooth functions.
Then there is an isomorphism between the module of smooth vector fields L∞(TL) and the
finitely projective C∞(L)-modules. Here, L∞(TL) is a module consisting of certain derivations.

2. Theorem: Let M = L∞(TL) be the C∞(L)-module. If L is a manifold of positive dimension,
then M is not semi-simple module.
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3. Corollary: The socle of the C∞(L)-module L∞(TL) is a proper submodule.

4. Corollary: The Jacobson radical of the C∞(L)-module L∞(TL) is not the zero submodule.

5. Corollary: The C∞(L)-module L∞(TL) has a non-trivial proper essential submodule.

The proof of the above results depend on construction of some category with preserve both ring
structure and smoothness structure. In particular, we focus on the ring of smooth functions and its
modules see [1] and [3].

Let me mention in this summery the following topic which is also can be regarded somewhat
a relationship between algebra and dynamical system: There is a paper which was written by G.
R. Robinson with Marco Thiel with the title ” Recurrences determine dynamics ”. It was in AIP
Publishing 2009. From the abstract of that paper, we mention: They show in that paper that under
suitable assumptions, Poincaré recurrences of a dynamical system determine its topology in phase
space. Therefore, dynamical systems with the same recurrences are dynamically equivalent. The main
theorem to get such result states that: the recurrence matrix determines the topology of closed sets.
The theorem states that if a set of points M is mapped onto another set N, such that two points in N
are closer than some prescribed fixed distance if and only if the corresponding points in M are closer
than some, in general different, prescribed fixed distance, then both sets are homeomorphic. We are
trying to understand more in this direction.
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3.2 Abdelkarim Boua: Right homoderivations in rings and near-rings

Abdelkarim Boua
Department of Mathematics, Polydisciplinary Faculty, LSI, Taza, Sidi Mohammed Ben Abdellah
University, Fez, Morocco

Abstract

In this article, we studied the commutativity of rings and near-rings with a new type of
mappings, which we called right homoderivations. Our findings led to significant and valuable
results that contribute to advancing research in this area.

An additive mapping d : N −→ N satisfying d(xy) = d(x)y + d(y)x for all for all x, y ∈ N , They
obtained intriguing results regarding the commutativity of a 3-prime near-ring N involving right
derivations that satisfy certain algebraic identities [5]. Similar to the tactic taken by El Sofiand
Boua regarding homoderivation, the idea of this article is to combine both homomorphism and right
derivation into one concept which is called ”right homomorphism” on a rings and near-rings.

Definition: Let h be an additive mapping from a ring R into itself.

1- h is called a right homoderivation on R, if h(xy) = h(x)h(y) + h(x)y + xh(y) for all x, y ∈ R.

2- h is called a Jordan right homoderivation, if h(x2) = h(x)h(x) + 2h(x)x for all x ∈ R.

Result 1 Let N be a 2-torsion free 3-prime zero-symmetric near-ring and I be a nonzero Lie right
ideal. If N admits a non-zero right homoderivation h such that h(I) ⊆ Z(N ), then N is abelian.
Idea of the proof: If {0} ≠ h(I) ⊆ Z(N ), then there exists i ∈ I such that h(i) ∈ Z(N )setminus {0}.
Since h(i) + h(i) = h(i+ i) ∈ Z(N ), (N ,+) is abelian and the 2-torsion freeness of N . Now suppose
that h(i) = 0 for all i ∈ I. Replacing i by [n, i], where n ∈ N , and using the last equation, we get

h(n)i = ih(n) for all i ∈ I, n ∈ N . (3.2.1)

Substituting h(n)t for n in (3.2.1) and applying (3.2.1), we give

h2(n)ti = ih2(n)t for all i ∈ I, n, t ∈ N . (3.2.2)

Putting tm instead of t in (3.2.2) and using (3.2.2), we have

h2(n)tmi = ih2(n)tm

= h2(n)tim for all i ∈ I,m, n, t ∈ N .

The last expression implies that h2(n)N [i,m] = {0} for all i ∈ I, n,m ∈ N . By the 3-primeness of N ,
we arrive at

h2(N ) = {0} or I ⊆ Z(N ).

If h2(N ) = {0}, then we get h = 0; a contradiction. So, I ⊆ Z(N ), and N is abelian.
Result 2 If R is commutative and Char(R) ̸= 2, then every Jordan right homoderivation is a right

homoderivation.
Idea of the proof:Let h be a Jordan right homoderivation on R, then h(x2) = h(x)h(x)+h(x)x+h(x)x
for all x ∈ R. Replace x with x+ y in the last relation to get h((x+ y)2) = h(x+ y)h(x+ y) + h(x+
y)(x+ y) + h(x+ y)(x+ y) for all x ∈ R. Hence, h(x2) + h(y2) + 2h(xy) = h(x)h(x) + h(x)x+ h(x)x+
h(y)h(y) + h(y)y + h(y)y + 2(h(x)h(y) + h(x)y + h(y)x), Since R is commutative and 2-torsion free,
then h(xy) = h(x)h(y) + h(x)y + h(y)x, so h is a right homoderivation.
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3.3 Abderrahmane Raji: Commutativity of 3-prime near-rings with cer-
tain special maps

Abderrahmane Raji
LMACS Laboratory, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni
Mellal, Morocco.

Abstract

Numerous research in rings and near-rings theory have demonstrated that certain prime rings
and 3-prime near-rings must be commutative under certain conditions. In this context, the
commutativity of 3-prime near-rings with derivation was initiated by Bell and Mason in [4]. Over
the last two decades, a lot of work has been done on this subject. Recently, in [1], Ashraf and
Siddeeque deőned the following notations: An additive mapping d : N → N is called a ∗-derivation
if there exists an involution ∗ : N → N such that d(xy) = d(x)y∗ + xd(y), for all x, y ∈ N . An
additive mapping F : N → N is called a left ∗-multiplier if F (xy) = F (x)y∗ hold for all x, y ∈ N .
Motivated by these concepts, we introduce the concepts of ∗-generalized derivation in near-rings
as follows: An additive mapping F : N → N is called a ∗-generalized derivation if there exist a
∗-derivation d of N such that F (xy) = F (x)y∗ + xd(y) for all x, y ∈ N .

In the present paper, we investigate some properties involving that of ∗-generalized derivation
of a ∗-prime near-ring N which forcesN to be a commutative ring. Some properties of generalized
semiderivations and multiplicative derivations have also been given in the context of 3- prime
near-rings. Consequently, some well known results have been generalized. Furthermore, we will
give examples to demonstrate that the restrictions imposed on the hypothesis of various results
cannot be marginalized.
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3.4 Abdellatif Laradji: The nucleus of a block of a p-solvable group

Abdellatif Laradji
King Saud University, College of Science, Department of Mathematics, P.O. Box 2455, Riyadh 11451,
Saudi Arabia.

Abstract

Let G be a finite p-solvable group. For a given p-block B of G, we define a canonical pair
(K,A), referred to as a nucleus for B, where K is a subgroup of G and A is a block of K of
maximal defect, defined uniquely by B up to G-conjugacy. The irreducible characters (ordinary or
modular) associated with B are closely related to those associated with A. Also, not surprisingly,
(K,A) is just (G,B) in case B is of maximal defect. Given a normal subgroup N of G and a block
b of N, we show that there exist a nucleus (N̂ , b̂) for b and a subgroup Ĝ of G containing N̂ as
a normal subgroup such that the blocks of G covering b behave quite analogously to those of Ĝ
covering b̂.
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3.5 Abdul Wahab: Multipolar Source Reconstruction Using Sparse Far-
Field Data

Abdul Wahab1,∗, Shujaat Khan2, Yukun Guo3 and Xianchao Wang3

1Department of Mathematics, Sultan Qaboos University, Oman.
2Department of Computer Engineering, King Fahd University of Petroleum and Minerals, Saudi Arabia.
3School of Mathematics, Harbin Institute of Technology, China.

Abstract

We present an algorithm to reconstruct multipolar electromagnetic sources from sparse multi-
frequency far-field signatures of the electromagnetic waves generated by geometrically sparse
unknown sources. We use a two-stage strategy. First, we enrich the sparse data, and then we use a
Fourier algorithm to reconstruct the sources from the enriched data. We link the data enrichment
problem to the recovery of the missing spectrum of a signal having a finite rate of innovations.
The missing spectrum problem is subsequently converted to a constraint optimization problem for
matrix completion subject to a low-rankness constraint.
* Lead presenter

The recovery of multipolar acoustic or electromagnetic sources from their far-field signatures is
important for many scientific and engineering applications, particularly in the fields of biomedical
imaging [1,2], non-destructive testing [3], and telecommunication [4]. For example, these inverse source
problems are employed in electromagnetic media to manufacture conformal antennas [4]. Inverse source
problems have also been used for expressing neuron responses in intracranial recordings and electroen-
cephalography (EEG) [1,2]. The use of inverse source problems also appears in magnetoencephalography
(MEG) [5].

To solve these inverse source problems, an array of algorithms has been proposed. These methods
necessitate the acquisition of dense multi-frequency data at the Nyquist sampling rate. Unfortunately,
most real-world inverse source problems and imaging setups offer only limited multi-frequency discrete
observations of the radiated waves. This limitation hinders the use of most of these mathematical
algorithms. On the other hand, the null space of the inverse source-to-data operator is strongly affected
by the availability of only sub-sampled grid measurements of the far-field signature. This causes
noticeable artifacts in the reconstructed images. Therefore, either more information about the source
is required or the application of regularization techniques is needed.

We present a novel two-stage approach for multipolar source reconstruction from sub-sampled
sparse data, taking advantage of the physical domain sparsity of the sources. The data is recovered at
the Nyquist sampling rate by first enriching the subsampled data. After that, a standard inversion
algorithm is used to reconstruct the sources. The data recovery problem is linked to a spectrum recovery
problem for the signal with the finite rate of innovations (FIR) [6]. Next, a structured Hankel matrix
completion optimization problem with a low-rankness constraint is related to the data recovery and
missing spectrum problems. An annihilating filter-based low-rank Hankel matrix completion approach
(ALOHA) [7, 8] is then used to deal with the constraint optimization problem. Lastly, the sources are
reconstructed from the enriched data using a Fourier technique in the second stage.

According to numerical data, the suggested approach betters the traditional regularization-based
inversion techniques in terms of computational cost, peak-signal-to-noise ratio (PSNR), and structural
similarity index measure (SSIM).
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3.6 Hocine Guediri: Analytic structure in the maximal ideal space of
some function algebra

Hocine Guediri
Department of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia. Email:
hguediri@ksu.edu.sa

Abstract

We investigate the existence of an analytic structure in the maximal ideal space of the Banach
algebra of bounded analytic functions over the half-plane. We outline connections with Carleson
corona theorem, and characterize analytic disks in the fibers. We explore the impact of the
pseudohyperbolic distance on analytic properties of the maximal ideal space, especially on the
characterization of their Gleason parts and on the construction of Hoffman type maps. Moreover,
we discuss applications to Toeplitz operators with symbols that are continuous on this maximal
ideal space.

3.6.1 Main results

In the setting of the Bergman space of the upper half-plane C+, we are currently interested in
investigating various properties of Toeplitz operators with symbols that are either continuous, harmonic,
vertical, or angular. In this connection, we have been led to consider Toeplitz operators with symbols
that are continuous on the maximal ideal space M of the Banach algebra H∞(C+) of bounded analytic
functions on C+. This will enable us to explore Banach algebra techniques in the light of the leading
work of S. Axler, P. Gorkin, R. Mortini, D. Suárez, R. Douglas, G. McDonald, C. Sundberg, D. Zheng,
K. Stroethoff, Ž. Čučković, and many others. The paper of I.J. Schark [7] and the deep work of
K. Hoffman [4] represent the cornerstone in this direction. The book of J. Garnett [2] provide a
systematic exposition of these results and further developments, while the papers of T. Gamelin [1] and
S. Krantz [5] gave some extra momentum to the theme. The celebrated corona problem has been always
one of the crucial questions in the theory of bounded analytic functions and in operator theory. In this
connection, we refer to the book of J. Garnett [2] for a good exposition of its famous solution due to L.
Carleson. For its applications in operator theory, see for instance G. McDonald and C. Sundberg [6]
and K. Stroethoff [8]. In order to achieve our goal, first we have to shed some light on the analytic
structure of the maximal ideal space M of the algebra of bounded analytic functions on C+ and on its
associated class of symbols, as well as on its connection with Carleson corona theorem. Further, we
study Gleason parts and construct Hoffman type maps, and discuss applications to Toeplitz operators.
skip
We regard C+ as an open subset of the extended complex plane C∞, and let Ĉ+ := C+ ∪ {∞} denote

its one-point compactification, and ∂∞C+ := ∂Ĉ+ = Ĉ+ \C+. Let H∞ (C+) be the algebra of bounded
analytic functions on C+. Denote by M the family of all non-zero multiplicative linear functionals
{m : H∞ (C+) −→ C}. This collection M endowed with the Gelfand topology constitutes the maximal
ideal space of H∞ (C+). Identifying the uniform algebra H∞ (C+) with its Gelfand transform, we can
think of H∞ (C+) as a subalgebra of C (M), the algebra of continuous complex-valued functions on

M. Let ρ be the mapping of M into Ĉ+ defined by ρ : M ∋ m −→ ρ(m) = λ ∈ Ĉ+, where λ is

the unique point of Ĉ+ such that m(f) = f(λ), f ∈ H∞(C+), and f is analytic near λ. For those
λ ∈ ∂∞C+, there are points m ∈ M such that ρ(m) = λ. The fiber of λ in M is defined to be the set
Mλ = ρ−1({λ}) = {m ∈ M, ρ(m) = λ}. We can identify C+ with ρ−1(C+), and we can thus write
C+ = {m ∈ M, Im (ρ(m)) > 0} . All fibers Mλ are non-empty and mutually homeomorphic, and can

be viewed as large compact spaces lying above points of Ĉ+. If Ω is a domain of the Riemann sphere which
supports nonconstant bounded analytic functions and each point in ∂Ω is essential for H∞(Ω), then, the
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set C := M\Ω is called the corona, and we say that the corona theorem is true if the corona C := M\Ω
is empty. Carleson’s Corona theorem is valid for simply connected domains [2], thus in particular, the
corona theorem is true for the upper half-plane C+. Now, denote by Ξ+ := {ξ, Im(ξ) > 0}, then we
construct a non-constant map L : Ξ+ −→ M satisfying L(C+) ⊂ M0, the fiber of M over z = 0, and
f ◦L(ξ) is analytic on Ξ+, ∀f ∈ H∞(C+). Further, we introduce the following pseudohyperbolic distance
on M: ϑ(m1,m2) = sup

{
|f(m2)| : f ∈ B1 (H

∞(C+)) , and f(m1) = 0
}
. The restriction of ϑ to C+

coincides with its usual Möbius invariant pseudohyperbolic distance ϑC+(z, w) =
∣∣ z−w
z−w

∣∣ , for z, w ∈ C+,
which gives rise to the equivalence relation m1 ∼ m2 if and only if ϑ(m1,m2) < 1, yielding Gleason
parts G(m) = {m‵ ∈ M : ϑ(m,m‵) < 1}. They satisfy: G(m) ̸= ∅, as m ∈ G(m), for all m ∈ M, for
any w ∈ C+, we have G(w) = C+, and two Gleason parts G(m) and G(m‵) are either identical or
disjoint, also observe that Gleason parts form a partition of M.
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3.7 Malik Talbi: Difference sets, Symmetric designs and the love problem

Malik Talbi
King Saud University, College of Science, Department of Mathematics, P.O. Box 2455, Riyadh 11451,
Saudi Arabia

Abstract

A symmetric (v, k, λ)−design is an incidence structure consisting on v points and v blocks,
such that any point is contained in k blocks, any two points are contained in λ common blocks,
any block contains k points and any two blocks intersect in λ points. It is known that the last
two conditions are superfluous and can be deduced from the first two ones. Symmetric designs are
closely connected to groups with difference sets. Any difference set defines a symmetric design and
the reciprocal is true under certain conditions. In graph theory, doubly regular tournaments and
the love problem for regular digraphs define symmetric designs. The aim of this talk, is to present
a topic where combinatorics, group theory, incidence geometry and number theory interact. We
will discuss what happens if in the definition of symmetric designs we keep the second condition
and drop the other three ones.

In this talk, we will present a topic where combinatorics, group theory, incidence geometry and
number theory interact. We will start by introducing difference sets for finite groups. Then, we will
talk about symmetric designs which appear very naturally. After this, we will connect them to the love
problem for digraphs. Finally, we will discuss regularity conditions in the definition to present our results.

Definition 1: A difference set D in a finite group G is a proper nonempty subset of G such that
any non-identity element of G can be written in exactly λ ways as d1d

−1
2 , where d1 and d2 are in D.

As examples, {1, 2, 4} is a difference set in Z7 with λ = 1. {1, 3, 4, 5, 9} is a difference set in Z11

with λ = 2. In fact, there are infinitely many examples of groups with difference sets, even for λ = 1.

Definition 2: A symmetric (v, k, λ)−design is an incidence structure (P ,B), where P is a set of v
points, B is a set of v subsets of P called blocks, such that

1. any point is element of k blocks;

2. any two points are elements of λ common blocks;

3. any block contains k points;

4. any two blocks intersect in λ points.

Any group G with difference set D defines a symmetric design as follows: The points are the
elements of G, the blocks are the subsets gD, where g ∈ G. A group structure is something ”very
regular” and so, their corresponding symmetric designs are ”very regular”. One needs to add more
conditions on a symmetric design to make it corresponding to a group with difference set.

It is well known that axioms 3 and 4 in the definition of symmetric designs are superfluous and can
be deduced from axioms 1 and 2. A question arises naturally: What happens if we keep the second
axiom and drop the three others? This leads us to talk about a third structure studied in graph theory.

Definition 3: We say that a directed graph G has the λ−love property, if any two different vertices
of G dominate exactly λ common vertices.
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This definition corresponds to axiom 2 in the definition of symmetric designs, where blocks are the
sets of vertices dominated by a vertex. Conversely, except for some special cases, to any incidence
structure satisfying axiom 2, we can associate a directed graph with the λ−love property.

The love problem was first studied for tournaments, known as ”Doubly regular tournaments”. These
are very connected to skew-symmetric Hadamard matrices. Then, the study of the love property was
generalized to digraphs.

For the case λ = 1, we obtained the following results:

Result 1: Let (P ,B) be an incidence structure that satisfies axiom 2 of Definition 2 with λ = 1. If
none of the blocks is the whole set P , then axiom 4 is satisfied and there exists a bijection ϕ : P → B
such that for all p ∈ P , p /∈ ϕ(p).

This result allows us to associate a directed graph that has the love property with such an incidence
structure, where the set of vertices is P and the arcs are p⃗q with p ∈ ϕ(q).

Result 2: Let (P ,B) be an incidence structure that satisfies axiom 2 of Definition 2 with λ = 1. If
all blocks have cardinality less than v − 1, then (P ,B) is a symmetric design.

Result 3: A complete characterization of the incidence structure is given when there is a block
with v − 1 points.
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3.8 Mario Lefebvre: First-passage problems for jump-diffusion processes

Mario Lefebvre
Department of Mathematics and Industrial Engineering Polytechnique Montréal, Canada

Abstract

Let {X(t), t ≥ 0} be a diffusion process with jumps according to a Poisson process, and
let τ(x) be the first time that the process, starting from X(0) = x, leaves the interval (a, b).
Various problems for which the continuous part of the process is a Wiener, Ornstein-Uhlenbeck or
Bessel process are considered. The jumps are distributed uniformly and are x-dependent. Exact
and explicit expressions are obtained by solving integro-differential equations, subject to the
appropriate boundary conditions.

We consider the stochastic process {X(t), t ≥ 0} defined by

X(t) = X(0) +

∫ t

0

f [X(s)]ds+

∫ t

0

{v[X(s)]}1/2 dB(s) +

N(t)∑
i=0

Yi,

where f(·) is a real function, v(·) > 0, {B(t), t ≥ 0} is a standard Brownian motion, {N(t), t ≥ 0} is
a Poisson process with rate λ (which is independent of {B(t), t ≥ 0}) and Y1, Y2, . . . are independent
and identically distributed random variables. Moreover, we assume that f(·) and v(·) are such that
{X(t), t ≥ 0} is a jump-diffusion process.

We define the first-passage time

τ(x) = inf{t > 0 : X(t) ≤ a or X(t) ≥ b | X(0) = x ∈ (a, b)}.

Let
M(x;α) := E

[
e−ατ(x)

]
,

where α > 0. We can show that the function M satisfies the integro-differential equation [writing
M(x;α) as M(x)]

1

2
v(x)M ′′(x) + f(x)M ′(x) + λ

{∫ ∞

−∞
M(x+ y)fY (y)dy −M(x)

}
= αM(x), (3.8.1)

where Y is distributed as the Yi’s. The boundary conditions are M(x) = 1 if x ≤ a and M(x) = 1 if
x ≥ b.

Similarly, to obtain the functions m(x) := E[τ(x)] and p(x) := P [X(τ(x)) ≤ a], we need to solve
the following equations:

1

2
v(x)m′′(x) + f(x)m′(x) + λ

{∫ ∞

−∞
m(x+ y)fY (y)dy −m(x)

}
= −1, (3.8.2)

subject to m(x) = 0 if x ≤ a or x ≥ b, and

1

2
v(x)p′′(x) + f(x)p′(x) + λ

{∫ ∞

−∞
p(x+ y)fY (y)dy − p(x)

}
= 0, (3.8.3)

subject to p(x) = 1 if x ≤ a and p(x) = 0 if x ≥ b.

The above equations are solved explicitly in particular cases when the random variable Y has a
uniform distribution on the interval (−2x, 0), for x > 0, and on the interval (0,−2x), for x < 0. The
integro-differential equations (IDEs) are first transformed into third-order linear ordinary differential
equations (ODEs). Then, the solutions to these ODEs are substituted into the IDEs to determine the
constants in the solutions.
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3.9 Samir Ben Hariz: Change-point for random design regression deriva-
tive with non-stationary errors.

Samir Ben Hariz,
Laboratoire Manceau de Mathématiques. Université du Maine. Av. Olivier Messiaen. 72085 Le Mans,
France.

Abstract

We consider the regression model

Yi = g(Xi) + σ(Xi)εi, i = 0, 1, 2..., n,

where the regression function derivative has a jump point at an unknown position θ. We propose
a non-parametric Kernel-based estimator of the jump location θ. We prove a rate of convergence
of the estimator, for a wide class of errors. This includes short-range dependent errors as well as
long-range dependent and even non-stationary errors.

Key words: Change-point; Kink estimation; Non-parametric regression.

3.9.1 Introduction and main result

Change point problems are an important and active research topic in Statistics and Econometrics. It is
important since structural breaks induce changes in the underlying model and therefore violates the
assumptions and the conclusions are misleading. For example, in pharmacology, we are interested in
the minimum effective dose. Typically the regression function g(x) is the response at dose-level x, and
hence we are looking for the threshold of the first raising of g from its baseline value. In economy, Y is
an economic variable of interest, X is a covariate and g is the link function. Researchers often assume
stability of the model governing Y. However markets are periodically subject to large shocks that can
cause abrupt breaks in the model ( change in policy, severe crisis, etc...). Hence, whenever there is
a break, it is important to detect and locate such singularities. We also need a robust method and
almost model-free to locate structural breaks. This is the main task of the the current work.

Assume that we observe n pairs of couples of variables (Xi, Yi) following the model:

Yi = g(Xi) + σ(Xi)εi i = 0, 1, 2, ..., n (3.9.1)

We assume that the function is continuous with a jump in the first derivative at θ and we seek for
a robust method to estimate the change point position.

Let K be a one-sided kernel with a compact support [0, 1]. We define K∗ (u) = K(u)a(u− b), where

b =
∫ 1

0
vK (v) dv and a−1 =

∫ 1

0
K (v) (v − b)vdv. For t ∈ T = {t = k/n, k integer, 0 ≤ k/n ≤ 1} we

define the kernel transform of Y as

TY (t, h) =
1

nh2

n∑
i=1

(
K∗
(
Xi − t

h

)
+K∗

(
t−Xi

h

))
Yi,

and we estimate θ by

θ̂ = θ̂n = argmax {|TY (t, h)| , h < t < 1− h, t ∈ T} . (3.9.2)

The kernel transform could be written as a sum a mean part denoted m(t) and a random part denoted
Z(t). The absolute value of the mean part achieves his maximum at t = θ and the random part will
converges uniformly to zero. These two facts allow us to prove the following :

Theorem 3.9.1 Let (Xi, Yi) be a sequence given by (3.9.1). Under very general conditions including
SRD and LRD, non-stationnary errors, we have

lim
n→+∞

P
(∣∣∣θ̂n − θ

∣∣∣ > h
)
= 0. (3.9.3)
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3.9.2 Monte Carlo Experiments

We investigate finite sample properties of our method and we compare it to the Cheng and Raimondo’s
one [2]. We consider the model (3.9.1) the design variables are i.i.d uniform on [0, 1]. The errors are
generated from an I(d) sequence: εi = (1−L)−dξi, where ξi is an i.i.d. sequence with N(0, σ2) law and
L is the backshift operator. The sequence (εi) is correlated with a covariance structure of the form
Cov (εi, εj) ∼ (1 + |i− j|)−ρ, where ρ = 0.3, 0.7 and ∞. The smaller is the value of ρ, the stronger is
the dependence.

We run Nsim = 10000 simulations. For each sample, we estimate θ for different values of the
window h. Then, we evaluate the mean absolute error. MAE(n, h). We do the same with the Cheng
and Raimondo’s method.

From this small study, we can make the following comments. The two approaches behave quite
similarly. It is surprising to notice that the estimator is almost insensitive to the dependence of the
errors. This is in deep contrast with the fixed design regression where the rate is slower when the
error’s dependence is stronger.

References

[1] Samir Ben Hariz. J. Wylie. Q. Zhang. ”Optimal rate of convergence for nonparametric change-point
estimators for nonstationary sequences.” Ann. Statist. 35 (4) 1802 - 1826.

[2] Cheng M. Y.; Raimondo M. Kernel Methods for Optimal Change-Points Estimation in Derivatives.
Journal of Computational and Graphical Statistics, (2008), no. 17,56-75.

[3] Loader, C. R. Change point estimation using nonparametric regression. Ann. Statist. 24 (1996), no.
4, 1667–1678.

37



3.10 Mogtaba Mohammed: Homogenization of a nonlinear stochastic
model for reactive flows with a noise boundary

Mogtaba Mohammed
Department of Mathematics, College of Science Majmaah University Al-Majmaah 11952, Saudi Arabia.

Abstract

In this talk, we examine the nonlinear stochastic convection and diffusion of a solute within a
porous medium, accounting for a linear chemical reaction of adsorption and desorption occurring
on the pore surfaces. The mathematical model consists of two coupled nonlinear stochastic
convection-diffusion equations: one governing the bulk of the saturated fluid flowing through the
porous medium, and the other describing the pore surface at the interface with the solid part
of the medium. The two equations are coupled via a linear reaction term that represents the
exchange of mass between the bulk concentration and the surface concentration. By employing
the method of two-scale convergence with drift and utilizing probabilistic compactness, we derive
the homogenized problem within a moving domain.

* Mogtaba Mohammed

Model’s description:
Concentration of the solute in the Fluid Phase. In the fluid phase Dϵ, the concentration cϵf of
the solute evolves according to a nonlinear stochastic convection-diffusion equation:

dcϵf +
1

ϵ
vϵf · ∇cϵfdt− div(κϵf∇cϵf )dt = βf (c

ϵ
f ,∇cϵf )dt+ αf (c

ϵ
f )dW1 in Dϵ × (0, T ). (3.10.1)

Concentration of the adsorbed solutes on the surface. On the surface ∂Dϵ, the concentration
cϵs of the solute evolves according to a nonlinear stochastic convection-diffusion-reaction equation:

dcϵs +
1

ϵ
vϵs · ∇sc

ϵ
sdt− divs(κ

ϵ
s∇cϵs)dt =

η

ϵ2

(
cϵf −

cϵs
λ

)
dt+ αs(c

ϵ
s)dW2 on ∂Dϵ × (0, T ). (3.10.2)

We apply the following Neumann boundary condition for the solute concentration cϵf

−
κϵf
ϵ
∇cϵf · n =

η

ϵ2
(
cϵf − cϵs/λ

)
on ∂Dϵ × (0, T ). (3.10.3)

The initial concentrations

cϵf (x, 0) = c0f (x) in D
ϵ, cϵs(x, 0) = c0s(x) on ∂D

ϵ, (3.10.4)

where

� cϵf (x, t) and c
ϵ
s(x, t) are the solute concentration in the the fluid and the skeleton’s surface phases,

� vϵf (x) and vϵs(x) are given vector functions representing the velocity fields of the fluid in the fluid
and the skeleton’s surface phases,

� κϵf(x) and κϵs(x) are the diffusion coefficient in the fluid concentrations in the fluid and the
skeleton’s surface phases,

� βf(t, c
ϵ
f ,∇cϵf) is a nonlinear function that represent an external force depends on the solute

concentration in the fluid phase and its diffusion,
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� η/ϵ2
(
cϵf − cϵs/λ

)
is a reaction term coupling the concentrations on the fluid and on the skeleton’s

surface phases, where η ∈ (0, 1) is the rate of the adsorption in the fluid and λ ∈ (0, 1) is the
constant of adsorption equilibrium.

� αf (t, c
ϵ
f ) and αs(t, c

ϵ
s): These functions represent the strength and nature of the random forces in

the fluid and the skeleton’s surface phases. They allow the random fluctuations to depend on the
local concentrations of the solute in both phases, meaning that areas of high solute concentration
could experience more intense or different random forcing than areas with lower concentrations.

� W1(t) and W2(t) are independent standard Wiener processes associated with the fluid and the
skeleton’s surface phases, respectively.

Main result Homogenization results for this model. i.e., studying the asymptotic behavior of the
model when ϵ goes to zero.

Idea of the proof:

� We will start by obtaining bounds estimates of various norms of the solutions of our original
problems in appropriate probabilistic evolution spaces.

� We have to prove the tightness of probability measures generated by the perturbed problems.

� We will use the Prokhorov and Skorokhod’s probabilistic compactness results to reduce the original
problem into a new perturbed problem; in which the noise will depends on the perturbation
parameter.

� The passage to the limits is more challenging because of the existence of the convection term, the
dependence of the noise on the perturbation parameter, and the nonlinearity of the noise.
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3.11 Rafik Aguech: Gaussian fluctuations of the elephant random walk
with gradually increasing memory

Rafik Aguech (raguech@ksu.edu.sa)

College of Science, King Saud university.

6th Conference on Mathematical Science and Applications.

The elephant random walk (ERW) is a discrete-time random walk introduced by Schütz and Trimper
(2004) in order to investigate how long-range memory affects the behavior of the random walk. Its
particularity is that the next step of the walker depends on its whole past through a parameter p ∈ [0, 1].
In this work, we investigate the validity of the central limit theorem of the ERW when the walker has
only a gradually increasing memory. Our contribution provides a positive answer to a conjecture raised
in a recent work by Gut and Stadtmüller (2022 Stat. Probab. Lett. 189 109598).
Joint work with Mohamed El Machkouri, University of Rouen Normandie, France.
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3.12 Mohamed El Machkouri: On a class of unbalanced step-reinforced
random walks

R. Aguech1, S. Ben Hariz2, M. El Machkouri3,∗, and Y. Faouzi4
1 Department of Statistics and Operations Research,
King Saud University, Riyadh, Saudi Arabia.
2 Department of Mathematics, Le Mans University, France.
3,4 EMINES - School of Industrial Management, UM6P - University Mohammed VI Polytechnic,
Benguerir, Morocco.

Abstract

A step-reinforced random walk is a discrete-time stochastic process with long-range dependence.
At each step, with a fixed probability α ∈ [0, 1], the so-called positively step-reinforced random
walk repeats one of its previous steps, chosen randomly and uniformly from its entire history.
Alternatively, with probability 1− α, it makes an independent move. For the so-called negatively
step-reinforced random walk, the process is similar, but any repeated step is taken with its
direction reversed. These random walks have been introduced respectively by Simon [8] and
Bertoin [4] and are sometimes referred to the self-confident step-reinforced random walk and the
counterbalanced step-reinforced random walk respectively. In this work, we introduce a new class
of unbalanced step-reinforced random walks for which we prove the strong law of large numbers
and the central limit theorem. In particular, our work provides a unified treatment of the famous
elephant random walk introduced by Schütz and Trimper [7] and the positively and negatively
step-reinforced random walks.

* Lead presenter

The most famous example of step-reinforced random walk is the so-called elephant random walk
(ERW) on Z introduced by Schütz and Trimper [7]. Its name is motivated by the well-known idea
that elephants have excellent memories and are able to remember at any time all the places they have
visited. At time n = 0, the elephant is at position Z0 = 0. At time n = 1, the elephant moves toward
1 (i.e. “one step to the right”) with probability s and toward −1 (i.e. “one step to the left”) with
probability 1− s where s ∈ [0, 1] is a fixed parameter. Thus, the position of the elephant at time n = 1
is given by Z1 where Z1 is a Rademacher random variable satisfying P(Z1 = 1) = 1− P(Z1 = −1) = s.
Let n ⩾ 1 be a fixed integer and Un be an integer chosen uniformly at random from the set {1, 2, . . . , n}.
Then, the (n+ 1)th step Zn+1 of the elephant is defined by

Zn+1 =

{
ZUn with probability p,

−ZUn with probability 1− p.

where p ∈ [0, 1] is the memory parameter of the ERW model. Thus, for n ≥ 2, the position of the
elephant at time n is

∑n
i=1 Zi. The description of the asymptotic behavior of the ERW has motivated

a great deal of work in recent years. In particular, it has been shown (see [7]) that the dynamics of the
ERW is a function of the value of the memory parameter p. More precisely, the ERW exhibits three
different regimes called diffusive, critical and superdiffusive depending on whether p < 3/4, p = 3/4
or p > 3/4 respectively. It is not possible to give an exhaustive list of the results obtained to date
on the ERW. However, one can recall that by establishing an elegant connection of the ERW model
with Pólya-type urns, Baur and Bertoin [1] obtained an invariance principle (functional central limit
theorem) and Bercu [2] proposed a powerful approach based on martingale theory allowing to establish
many limit theorems for the ERW. A step-reinforced random walk is an extension of the ERW by
allowing the law of its first step Z1 to be no longer the Rademacher law. More precisely, let (ξn)n⩾1 be
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a sequence of i.i.d. real random variables and α ∈ [0, 1], a positively step-reinforced sequence (Yn)n⩾1 is
defined in the following way: Y1 = ξ1 a.s. and for any integer n ⩾ 2, with probability α, the nth step
Yn equals one of the previous steps Y1, Y2,...,Yn−1 chosen uniformly and with probability 1− α, Yn is
defined as an independent step ξn. Similarly, the sequence (Yn)n⩾1 is called a negatively step-reinforced
sequence if Y1 = ξ1 and for any integer n ⩾ 2, with probability α, the nth step Yn equals the opposite
of one of the previous steps Y1, Y2,...,Yn−1 chosen uniformly and Yn equals an independent step ξn with
probability 1− α. The concept of positively random walks goes back to a basic linear reinforcement
algorithm which was introduced a long time ago by H. A. Simon [8] to explain the occurrence of
certain heavy tailed distributions in a variety of empirical data. However, the negatively step-reinforced
random walk was introduced recently by Bertoin [4] for which he investigated the law of large numbers
and the central limit theorem (see also Hu and Zhang [6] and Hu [5]). In this work, we introduce a
new class of step-reinforced random walks in order to provide an unified analysis of the ERW and the
positively and negatively step-reinforced random walks. More precisely, if (p, α) ∈ [0, 1]2 is fixed then
the unbalanced step-reinforced random walk (Xn)n⩾1 with parameter (p, α) is defined by X1 = ξ1 and
for any integer n ⩾ 1,

Xn+1 =


XUn with probability pα
−XUn with probability (1− p)α
ξn+1 with probability 1− α

(3.12.1)

where (Un)n⩾1 is a sequence of i.i.d. random variables uniformly distributed on {1, ..., n}. One can
notice that (Xn)n⩾1 reduces to a positively or negatively step-reinforced random walk as soon as p = 1
or p = 0 respectively. Moreover, if α = 1 and P(ξ1 = 1) = 1 − P(ξ1 = −1) = s with s ∈ [0, 1] then
(Xn)n⩾1 reduces to the ERW introduced in Schütz and Trimper [7]. In the sequel, Tn :=

∑n
k=1Xk

denotes the position of the unbalanced step-reinforced walker at time n ⩾ 1. Our first result is the
following strong law of large numbers.

Result 1. If E[|ξ1|] < +∞ then Tn
n

a.s.−−−−→
n→+∞

(1−α)µ1
1−a .

If ξ1 is square-integrable then the central limit theorem holds.

Result 2. Assume that E[ξ21 ] < +∞ and denote σ2 = µ2 − (1−α)2µ21
(1−a)2 with a = (2p− 1)α and µℓ = E[ξℓ1]

for any ℓ ∈ {1, 2}.

i) If −1 ⩽ a < 1/2 then
√
n
(
Tn
n
− µ1(1−α)

1−a

)
Law−−−−→

n→+∞
N
(
0, σ2

1−2a

)
.

ii) If a = 1/2 then
√
n√

logn

(
Tn
n
− 2µ1(1− α)

) Law−−−−→
n→+∞

N (0, µ2 − 4µ2
1(1− α)2) .

iii) If 1/2 < a < 1 then
√
n2a−1

(
n1−a

(
Tn
n
− µ1(1−α)

1−a

)
− L

)
Law−−−−→

n→+∞
N
(
0, σ2

2a−1

)
where L is a non-

gaussian square-integrable random variable.

Ideas of the proofs: truncation techniques and martingale limit theory.
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3.13 Wissem Jedidi: Advances in Generalized Stieltjes Transforms and
Their Implications for Infinite Divisibility

Wissem Jedidi
Department of STAT & OR, College of Science, Kind Saud University, Saudi Arabia.

Abstract

The investigation of infinitely divisible distributions occupies a central position in the prob-
abilistic analysis of limit theorems for stochastic processes. These distributions, distinguished
by their decomposability into an infinite convolution of independent and identically distributed
random variables, constitute a cornerstone of modern probability theory. This work focuses on the
class of ID laws supported on the non-negative real half-line R+, examined through the lens of
their Lévy–Khintchine representation in terms of Bernstein functions. By systematically studying
the functional transformations of these Bernstein functions, we elucidate their implications for the
associated probability measures, thereby establishing connections to both probabilistic modeling
and analytical techniques in mathematical statistics. A principal contribution lies in the detailed
examination of three hierarchically nested subclasses of Bernstein functions, indexed by a shape
parameter, which arise naturally in the context of generalized Stieltjes transforms. This analysis
yields novel insights into the deep structural relationships between analytic function theory and
the theory of infinite divisibility.
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3.14 Mofdi El-Amrani: Enhancing modelling of fish population dynamics
in the Mediterranean Sea using stochastic PDEs

Mofdi El-Amrani1,∗ Nafea Lachhab1 Nabil El Moçayd2 and Mohammed Seaid3

1Laboratory of Mathematics and Applications, FSTT, Abdelmalek Essaadi University, Tangier, Morocco
2College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Benguerir,
Morocco
3Department of Engineering, University of Durham, South Road, Durham DH1 3LE, UK.

Abstract

In this study, we investigate the implementation of a class of stochastic partial differential
equations for the mathematical modelling and numerical simulation of fish population dynamics.
The considered model consists of a system of stochastic differential equations for transport and
dispersion of fish population based on an empirical equations for habitat index. The hydrodynam-
ics is also accounted for in this study by solving a barotropic ocean model with friction terms,
bathymetric forces, Coriolis and wind stresses. As a numerical solver, we propose a high-order
stochastic Runge-Kutta scheme coupled with a multilevel adaptive semi-Lagrangian finite element
method that combines various techniques, including the modified method of characteristics, finite
element discretization, coupled projection scheme based on a rotational pressure correction algo-
rithm, and an adaptive L2-projection. The method is fast, highly accurate and can be used for
both slowly and rapidly hydrodynamics simulations. The approach also employs the gradient of
the concentration as an error indicator for enrichment adaptations and increasing the number
of quadrature points where needed without refining the mesh. The method is shown to provide
accurate and efficient simulations for fish population dynamics subject to different scenarios. The
proposed approach distinguishes itself from the well-established adaptive finite element methods
for incompressible viscous flows by retaining the same structure and dimension of linear systems
during the adaptation process. Numerical results are shown for several test examples including
a problem of fish population dynamics in the Mediterranean Sea. The results demonstrate the
robustness of the stochastic partial differential equations compared to the standard Monte-Carlo
simulations. The results presented in this study suggest that the use of high-order stochastic
Runge-Kutta methods may also save a considerable amount of the necessary computational cost
for all the considered cases.

* Lead presenter
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3.15 Mourad Ben Slimane: On anisotropic and directional regularity

Mourad Ben Slimane
King Saud University, College of Science, Department of Mathematics, P.O. Box 2455, Riyadh 11451,
Saudi Arabia

Abstract

Many mathematical objects, as well as many multivariate signals and images need to distinguish
local directional behaviors. We obtain criteria of directional and anisotropic regularities by decay
conditions on anisotropic wavelet coefficients.

The classical pointwise Hölder regularity of a multi-variate function is uniform in all directions.
However many classes of functions are images exhibiting singularities in many directions (sattelite
images of clouds, X-ray of bones, medical images, see [1]).

Usual isotropic wavelets do not deal with directional regularity efficiently.
Using some results of Jaffard and Triebel, we obtain criteria of directional and anisotropic regularities

by decay conditions on Triebel anisotropic wavelet coefficients.
Result 1 Using some results of Jaffard and Triebel [2,3], we obtain criteria of anisotropic regularity

by decay conditions on Triebel anisotropic wavelet coefficients.
Idea of the proof: The proof is based on the regularity and cancellation of anisotropic wavelets.
Result 2 We characterize pointwise directional regularity by highly oriented multi-scaled wavelet

coefficients
Idea of the proof: The proof is based on the link between directional and multi-anisotropic

regularities.
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3.16 Nasser-eddine Tatar: Control of structures under large amplitudes

Nasser-eddine Tatar
King Fahd University of Petroleum and Minerals, Department of Mathematics, Dhahran, Saudi Arabia.
Email: tatarn@kfupm.edu.sa

Abstract
The long-time behavior of a one-dimensional viscoelastic porous-elastic system with large

amplitude is considered in the present paper. We prove an exponential decay result under the weak
dissipation produced by the viscoelasticity in the first equation and the other one acting in the
second equation. The major difficulty encountered in the analysis stems from the non-applicability
of the energy method at least in the usual way. This is due to the large deformation.

We consider the model ρutt −
[(

1 + 1√
1+|ux|2

)
ux

]
x

+
∫ t
0
g(t− s)

[(
1 + 1√

1+|ux|2

)
ux

]
x

ds− bϕx = 0,

Jϕtt − δϕxx + bux + ξϕ+ τϕt = 0,
(3.16.1)

with the boundary conditions

ϕ(0, t) = ϕ(1, t) = u(0, t) = u(1, t) = 0, (3.16.2)

and the initial data {
u(x, 0) = u0(x), ut(x, 0) = u1(x),
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

(3.16.3)

where x ∈ [0, 1] and t ∈ R+. Here, u is the displacement of the solid elastic material and ϕ is the
volume fraction. The system describes materials where the mass at each point is obtained by the
product of the mass density of the material matrix by the volume fraction. The importance of such
materials comes from the applications in different fields in petroleum industry, material science, soil
mechanics, foundation engineering, powder technology, biology and others. For more details, we refer
to ( [1], [2], [3], [4]) and the references therein.

In contrast to the commonly used models, structures subjected to large amplitude, have not been
well-studied. In this case, the spacial derivative ux is of significant value. Therefore, the standard
simplification

1 + (ux)
2 ≈ 1

is no longer reasonable.
Motivated by the above results, we aim in this work to extend the existing works to the case of

large amplitude of ux.

E (t) =
ρ

2
||ut||22 +

J

2
||ϕt||22 +

δ

2
||ϕx||22 +

1

2

(
1−

∫ t

0

g(s)ds

)
||ux||22 (3.16.4)

+
ξ

2
||ϕ||22 + ||uxt||22 +

1

2
(g ◦ ux) (t) +

∫ 1

0

(
bϕux +

√
1 + |ux|2 − 1

)
dx

Result (Exponential Decay) Let (u, ϕ) be a solution of system (3.16.1)− (4.2.2). Assume further
that the assumptions ξl > b2 and g (0) > 0, 1 −

∫∞
0
g(s)ds =: l > 0 are fulfilled. Then, there is a

g∗ > 0 such that the solution energy (3.16.4) satisfies, for two positive constants k1, k2,

E(t) ≤ k1e
−k2t, ∀t ≥ 0,

provided that g ≤ g∗(determined in the proof).
Idea of the proof: We shall introduce some appropriately chosen Lyapunov functionals in the context

of the multiplier technique combined with some properties of positive definite functions.
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3.17 Mohammed Guediri: Characterizing Extrinsic Spheres in Rieman-
nian and Lorentzian Einstein Manifolds

Mohammed Guediri
King Saud University, College of Science, Department of Mathematics, P.O. Box 2455, Riyadh 11451,
Saudi Arabia

Abstract

In this talk, we explore rigidity results for compact Riemannian and spacelike hypersurfaces in
Einstein Riemannian and Lorentzian manifolds, respectively. The main result asserts that for a
compact Riemannian (or spacelike) hypersurface (M, g) in an Einstein Riemannian (or Lorentzian)
manifold (M, g) which admits a conformal vector field ξ (assumed to be timelike in the Lorentzian
case), the hypersurface (M, g) is an extrinsic sphere in (M, g) if and only if the integral of the
Ricci curvature of the hypersurface, taken in the direction of the tangential component ξ⊤ of the
restriction ξ of ξ to M , satisfies a certain lower bound. As an application of this main result, we
investigate compact spacelike hypersurfaces in generalized Robertson-Walker (GRW) spacetimes.
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3.18 Reny George: On some dislocated generalized metric spaces and
applications

Turki Bin Hussein Bin Sultan Alduwaihi1 , Sultan bin Abdullah bin Abdulaziz Al-Solah2,
Abdullah bin Saud bin Ibrahim Swailem 3 and Reny George4,∗
1,2,3,4Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin
Abdulaziz University, Alkharj, Saudi Arabia

Abstract

In this paper we introduce the concepts of some dislocated generalized metric spaces such as
dislocated quais αv-controlled metric space, dislocated quasi θv-extended b-metric space which
are generalisations of bv(s)-metric space, extended b-metric space and controlled metric space
and other spaces existing in literature. We further investigate some possible applications of these
spaces in fixed point theory. Our claims are supported by proper numerical examples.

* Lead presenter

In our first result we introduce αv-controlled metric space and θv-extended metric space from which
we deduce several concepts of generalized metric spaces which are either new in literature or are
generalizations of some existing concepts.

Definition 3.18.1 Let X be a nonempty set and dα : X × X → R. For all x, y,∈ X and distinct
u1, · · · , uv ∈ X − {x, y}, consider the following axioms:

(bα−1) dα(x, y) ≥ 0 and dα(x, y) = 0 implies x = y,

(bα−2) dα(x, x) = 0,

(bα−3) dα(x, y) = dα(y, x),

(bα−4) dα(x, y) ≤ α(x, u1)dα(x, u1)+α(u1, u2)dα(u1, u2)+· · ·+α(uv−1, uv)dα(uv−1, uv)+α(uv, y)dα(uv, y)],
for some α : X ×X → [1,∞),

(bα−5) dα(x, y) ≤ θ(x, y[)dα(x, u1)+dα(u1, u2)+· · ·+dα(uv−1, uv)+dα(uv, y)], for some θ : X×X → [1,∞)

If dα satisfy (bα−1), (bα−2), (bα−3) and (bα−4) then we say that dα is an αv-controlled metric on X and
(X, dα, α) is αv-controlled metric space.
If dα satisfy (bα−1), (bα−2), (bα−3) and (bα−5) then we say that dα is a θv-extended metric on X and
(X, dα, θ) is a θv-extended metric space. If dα satisfy (bα−1), (bα−3) and (bα−4) then we say that dα
is a dislocated αv-controlled metric on X and (X, dα, α) is a dislocated αv-controlled metric space.
If dα satisfy (bα−1), (bα−3) and (bα−5) then we say that dα is a dislocated θv-extended metric on X and
(X, dα, θ) is a dislocated θv-extended metric space. If dα satisfy (bα−1), (bα−2) and (bα−4) then
we say that dα is a quasi αv-controlled metric on X and (X, dα, α) is a quasi αv-controlled metric
space. If dα satisfy (bα−1), (bα−2) and (bα−5) then we say that dα is a quasi θv-extended metric on X
and (X, dα, θ) is a quasi θv-extended metric space. If dα satisfy (bα−1) and (bα−4) then we say that
dα is a dislocated quasi αv-controlled metric on X and (X, dα, α) is a dislocated quasi αv-controlled
metric space. If dα satisfy (bα−1) and (bα−5) then we say that dα is a dislocated quasi θv-extended
metric on X and (X, dα, θ) is a dislocated quasi θv-extended metric space.

Some deductions

Remark 3.18.1 � For v = 1, dislocated αv-controlled metric space is a dislocated controlled metric
space which is a generalization of controlled metric space given in [2].
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� For v = 1, dislocated θv-extended metric space is a dislocated extended metric space which is a
generalization of extended metric space given in [3].

� For v = 1, quasi αv-controlled metric space is a quasi controlled metric space which is a general-
ization of controlled metric space given in [2].

� For v = 1, quasi θv-extended metric space is a quasi extended metric space which is a generalization
of extended metric space given in [3].

� For v = 1, dislocated quasi αv-controlled metric space is a dislocated quasi controlled metric space
which is a generalization of controlled metric space given in [2].

� For v = 1, dislocated quasi θv-extended metric space is a dislocated quasi extended metric space
which is a generalization of extended metric space given in [3].

Some remarks

Remark 3.18.2 By taking α(x, y) = s for all x, y ∈ X and some s ≥ 1, αv-controlled metric space
reduces to bv(s) metric space given in [1]. Thus every bv(s) metric space is an αv-controlled metric
space with α(x, y) = s for all x, y ∈ X and some s ≥ 1. But the converse is not necessarily true.
By taking θ(x, y) = s for all x, y ∈ X and some s ≥ 1, θv-extended metric space reduces to bv(s) metric
space given in [1]. Thus every bv(s) metric space is a θv-extended metric space with α(x, y) = s for all
x, y ∈ X and some s ≥ 1. But the converse is not necessarily true.

αv-controlled metric space and θv-extended metric space are independent of each other.
For v = 1, αv-controlled metric space is a controlled metric space given in [2].
For v = 1, θv-extended metric space is an extended metric space given in [3].
For v = 2, αv-controlled metric space is a controlled rectangular metric space given in [4].

In our second result we prove some fixed point theorems in αv-controlled metric space and θv-extended
metric space which generalizes many known results in literature.
Let (X, dα, α) is αv-controlled metric space and T : X → X. We then say that T is a (G,dα)-implicit
type mapping if there exists G ∈ Wα such that for x, y ∈ X,

G(α(x, y)dα(Tx, Ty), dα(x, y), dα(x, Tx), dα(y, Ty), dα(x, Ty)) ≤ 0.

Theorem 3.18.1 Let (X, dα, α) be a right (or left) dα-complete αv-controlled metric space and T : X →
X be a continuous (G,dα)-implicit type mapping. Then T has a unique fixed point.

Note: We provide an analytical proof for the above theorem and deduce various known results in fixed
point theory as corollary to the above theorem. We also provide proper example in support of our
theorem and further investigate its applications in other mathematical problems arising in engineering
and science.

References

[1] Zoran Mitrovic and Stojan Radenovic: The Banach and Reich contractions in bv(s)- metric
spaces,Journal of Fixed Point Theory and Applications, 19 (2017), 3087-3095.

[2] Nabil Mlaiki, Hassen Aydi,Nizar souayah and Thabet Abdeljawad: Controlled metric type spaces
and the related contraction principles, Mathematics, 6, 194 (2018)

[3] T. Kamran, M. Samreen and O.U Ain, A generalisation of b-metric space and some fixed point
theorems, Mathematics, 5, 19 (2017)

51



3.19 Said Mesloub: On a Fractional Nonlinear Singular Quasistatic prob-
lem

Said Mesloub, Eman Alhazzani
Mathematics Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451,
Saudi Arabia.

Abstract

This work deals with the well posedness of a one point initial boundary value problem for
a nonlinear fractional singular integro-differential equation, which arises from one-dimensional
quasi-static contact problems in nonlinear thermo-elasticity. Our proofs are mainly based on a
fixed point theorem and some a priori bounds. The solvability of the problem is proved when the
given data are related to a weighted Sobolev space. An additional result allows us to study the
regularity of the solution of the posed problem is obtained.

3.19.1 Statement of the Problem

In the rectangle QT = (0, 1)× [0, T ], where 0 < T <∞, we consider the fractional nonlinear singular
second order integro-differential equation

∂σt θ −
∂2θ

∂x2
− 1

x

∂θ

∂x
+ θ = max

 x∫
0

ηθ(η, t)dη, 0

+ β(x, t), (3.19.1)

where ∂σt θ indicates the right Caputo fractional derivative of order σ, 0 < σ ≤ 1 given by

∂σt θ =
1

Γ(1− σ)

t∫
0

θτ (τ)

(t− τ)σ
dτ, ∀t ∈ [0, T ].

The equation (3.19.1) is supplemented by the initial condition

θ(x, 0) = Z(x), x ∈ (0, 1), (3.19.2)

and the one point boundary condition

θx(1, t) = 0, t ∈ [0, T ], (3.19.3)

where Z(x) ∈ W 1
ρ,2((0, 1), and β ∈ L2(0, T ;L2(0, 1)

3.19.2 Uniqueness of solution

Theorem 3.19.1 Let Z ∈ W 1
ρ,2((0, 1), and β ∈ L2(0, T ;L2

ρ(0, 1). Then the posed problem (3.19.1)-
(3.19.3) has at most one solution in L2(0, T ;Hσ

ρ ((0, 1), if it exists.

3.19.3 Solvability and existence of nontrivial solution

Theorem 3.19.2 Let Z ∈ W 1
ρ,2((0, 1)), and β ∈ L2(0, T ;L2

ρ(0, 1)) be given and satisfy

∥Z∥2W 1
ρ,2((0,1))

+ ∥β∥2L2(0,T ;L2
ρ(0,1))

≤ C2, (3.19.4)

for C2 > 0 small enough and that
∂Z(1)

∂x
= 0. (3.19.5)

Then problem (3.19.1)-(3.19.3) admits a unique solution θ ∈ L2(0, T ;Hσ
ρ ((0, 1)).
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3.19.4 A priori bound and regularity of the solution

Theorem 3.19.3 Let L2(0, T ;H2,σ
γ (0, 1)), be a solution of problem(3.19.1)-(3.19.3), then the following

a priori estimate is true

∥θ∥2L2(0,T ;H2,σ
γ (0,1)) ≤ D

(
∥Z∥2W 1

2,γ((0,1))
+ ∥β∥2L2(0,T ;L2

ρ(0,1))

)
, (3.19.6)

where

D = max

{
2,

T 1−σ

(1− σ)Γ(1− σ)

}
. (3.19.7)
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3.20 Messaoud Bounkhel: Mathematical Modeling of the motion of
nanoparticles in straight Tube

Messaoud Bounkhel
King Saud University, College of Science, Department of Mathematics, P.O. Box 2455, Riyadh 11451,
Saudi Arabia.

Abstract

Nanotechnology is a rapidly evolving field with profound implications for science and technology,
leading to significant research investments worldwide. While most studies in this domain pri-
marily address chemical, physical, and biological phenomena or their intersections, mathematical
modeling remains an underexplored yet highly valuable approach. By leveraging mathematical
models, researchers can significantly reduce the time required for experimental validation, thereby
optimizing research efficiency and minimizing costs.

In this work, we focus on the mathematical modeling of nanoparticle motion within a viscous
fluid confined in a straight tube. Our goal is to illustrate how Nonsmooth Analysis and Multivalued
Differential Equations can serve as powerful tools for modeling and simulating complex real-world
phenomena. The presentation is divided into two main sections. The first part introduces funda-
mental theoretical concepts and key results in Nonsmooth Analysis and Multivalued Differential
Equations, providing the necessary groundwork for their application. The second part explores
their practical implementation, where we integrate the proposed theoretical framework with a
differential system to model nanoparticle dynamics effectively.

Furthermore, we present a numerical simulation that visually demonstrates the behavior
of nanoparticles in straight tubes, highlighting the accuracy and efficiency of our approach.
These simulations offer valuable insights into the movement patterns of nanoparticles in confined
environments, which can be crucial for various applications, including biomedical engineering,
drug delivery systems, and microfluidics. By bridging the gap between abstract mathematical
theory and applied nanotechnology, this work underscores the potential of mathematical modeling
as a transformative tool in advancing research in this field.
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3.21 Fairouz Tchier: Relational Demonic Fuzzy Refinement and some
applications

Fairouz Tchier,
Mathematics department King Saud University Riyadh, Saudi Arabia ftchier@ksu.edu.sa.

Abstract

We use relational algebra to define a refinement fuzzy ordering called (demonic fuzzy refinement)
and also the associated fuzzy operators which are fuzzy demonic join, fuzzy demonic meet and
fuzzy demonic composition. Our definitions and properties are illustrated by some examples using
mathematica software (fuzzy logic ). We applied our results to irrigation, traffic lights and to
diabetics diagnosis.

Fuzzy set theory appeared in 1965 [8]. Since then, it has received increasing attention by the
scientific community and applied in almost all the general disciplines known in the world [3]. Fuzzy set
theory provides a strict mathematical framework ( there is nothing fuzzy about fuzzy set theory) in
which vague conceptual phenomena can be precisely and rigorously studied. It can also be considered
as a modeling language well suited for situations in which fuzzy relations, criteria, and phenomena
exist. It will mean different things, depending on the application area and the way it is measured. In
the meantime, numerous authors have contributed to this theory. In 1984 as many as 4000 publications
may already exist. The first publications in fuzzy set theory by Zadeh [8] and Goguen [1, 2] show the
intention of the authors to generalize the classical notion of a set. Zadeh [8] writes:”The notion of
a fuzzy set provides a convenient point of departure for the construction of a conceptual framework
which parallels in many respects the framework used in the case of ordinary sets, but is more general
than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in
the fields of mathematics and computer science (pattern classification and information processing).
Fuzzy logic is a superset of conventional logic that has been extended to handle the concept of partial
truth-truth values between ”completely true” and ”completely false”. As its name suggests, it is the
logic underlying modes of reasoning which are approximate rather than exact. The importance of
fuzzy theory derives from the fact that most modes of human reasoning and especially common sense
reasoning are approximate in nature.
The calculus of relations has been an important component of the development of logic and algebra
since the middle of the nineteenth century [4,5] The main advantages of the relational formalization
are uniformity and modularity. Actually, once problems in these fields are formalized in terms of
relational calculus, these problems can be considered by using formulae of relations, that is, we need
only calculus of relations in order to solve the problems. In the context of software development,
one important approach is that of developing programs from specifications by stepwise refinement,
see, e.g. [6, 7]. One point of view is that a specification is a relation constraining the input-output
(respectively, argument-result) behaviour of programs.

Result 1 We used previous results in fuzzy theory and in relational algebra to define demonic
fuzzy operators and apply them to real-world problems. We used theoretical and software engineering
concepts (Mathematica and Phyton) to do illustrate our results

Idea of the proof: The demonic calculus of relations views any relation R from a set A to another
set B as specifying those programs that terminate for all a ∈ A wherever R associates any values from
B with a, and then the program may only return values b for which (a, b) ∈ R. Consequently, a relation
R refines another relation S if R specifies a larger domain of termination and fewer possibilities for
return values. The demonic calculus of relations has the advantage that the demonic operations are
defined on top of the conventional relation algebraic operations, and can easily and usefully be mixed
with the latter, allowing the application of numerous algebraic properties.
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3.22 Alfonso Montes: Hyperbolic Fourier series

Alfonso Montes-Rodŕıguez
Montes-Rodŕıguez: Department of Mathematical Analysis University of Sevilla, Sevilla, Spain, amontes@us.es.

Abstract

A pair (Γ,Λ), where Γ ⊂ R2 is a locally rectifiable curve and Λ ⊂ R2 is a Heisenberg uniqueness
pair if an absolutely continuous finite complex-valued Borel measure supported on Γ whose Fourier
transform vanishes on Λ necessarily is the zero measure. Here, absolute continuity is with respect
to arc length measure. If Γ is the hyperbola x1x2 = M2/(4π2), where M > 0 is the mass, and Λ is
the lattice-cross (αZ×{0})∪ ({0}× βZ), where α, β are positive reals, then (Γ,Λ) is a Heisenberg
uniqueness pair if and only if αβM2 ≤ 4π2. The Fourier transform of a measure supported on a
hyperbola solves the one-dimensional Klein-Gordon equation, so the theorem supplies discrete
uniqueness sets for a class of solutions to this equation. By rescaling, we may assume that the mass
equals M = 2π, and then the above-mentioned theorem is equivalent to the following assertion:
the functions

eiπαmt, e−iπβn/t, m, n ∈ Z,

span a weak-star dense subspace of L∞(R) if and only if 0 < αβ ≤ 1. The proof involved ideas
from Ergodic Theory. To be more specific, in the critical regime αβ = 1, the crucial fact was
that the Gauss-type map t 7→ −1/t modulo 2Z on [−1, 1] has an ergodic absolutely continuous
invariant measure with infinite total mass.

As for the holomorphic counterpart, it can be shown that the functions

eiπαmt, e−iπβn/t, m, n ∈ Z+ ∪ {0},

span a weak-star dense subspace of H∞
+ (R) if and only if 0 < αβ ≤ 1. Here, H∞

+ (R) is the
subspace of L∞(R) which consists of those functions whose Poisson extensions to the upper
half-plane are holomorphic. In the critical regime αβ = 1, the proof relies on the nonexistence of
a certain invariant distribution in the predual of real H∞ for the above mentioned Gauss-type
map on the interval [1, 1], which is a new result of dynamical flavor. To attain it, we need a subtle
analysis of the iterates of the even Gauss operator

(Pf)(x) =
∑

k∈Z\{0}

1

(x+ 2k)2
f

(
−1

x+ 2k

)

We have to handle in detail series of powers of the even Gauss operator, a rather intractable problem
where even the recent advances by Melbourne and Terhesiu do not apply. More specifically, our
approach – which is obtained by combining ideas from Ergodic Theory with ideas from Harmonic
Analysis – involves a splitting of the Hilbert kernel, as induced by the transfer operator. The
careful analysis of this splitting involves handling the Hurwitz zeta function as well as to the
theory of totally positive matrices.

The previous results have been developed with H. Hedenmalm.
Finally, with the aim to delete points of the lattice cross Λ, very recently, with A. Bakan and

H. Hedenmalm we have developed a theory on Hyperbolic Fourier series in which certain classes
of complex functions f defined on R can be represented in terms of hyperbolic series

f(x) =
∑

n∈Z\{0}

ane
iπnt + bne

−iπnt

where an and bn are complex numbers.
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3.23 Nabil Ourimi: Compactness theorems for sequences of holomorphic
coverings between domains in almost complex manifolds

Nabil Ourimi
King Saud University, Department of Mathematics, ourimi@ksu.edu.sa.

Abstract

The classical local version of Wong-Rosay theorem states that the unit ball Bn+1 in Cn+1 is
a model for the class of C2-strongly pseudoconvex domains in Cn+1 (or more generally, complex
manifolds of dimension n+ 1) at an accumulation point of an automorphism orbit. This local
version is valid only in almost complex manifolds of real dimension four and fails in general
for higher dimensions; the Siegel half-plane admits an automorphism orbit accumulating at a
strongly pseudoconvex boundary point and whose almost complex structure is non-integrable. Our
purpose here, is to extend this theorem to unbranching proper holomorphic mappings (pseudo-
holomorphic coverings) in almost complex manifolds. We will characterize smooth domains (D,J)
and (D′, J ′) in almost complex manifolds of real dimension 2n+ 2 with a covering orbit {fk(p)},
accumulating at a strongly pseudoconvex boundary point, for some (J, J ′)-holomorphic coverings
fk : (D,J) → (D′, J ′) and p ∈ D. It was shown that such domains are both biholomorphic to
a model domain, if the source domain (D,J) admits a bounded strongly J-plurisubharmonic
exhaustion function. Furthermore, if the target domain (D′, J ′) is strongly pseudoconvex, then
both (D,J) and (D′, J ′) are biholomorphic to the unit ball in Cn+1 with the standard complex
structure. Our results can be considered as compactness theorems for sequences of pseudo-
holomorphic coverings. They generalize a result of [E.B.Lin and B.Wong, Curvature and proper
holomorphic mappings, between bounded domains in Cn; Rocky Mountain Journal of Mathematics],
(1990) and a result of [N. OURIMI, A local version of Wong-Rosay’s theorem for proper holomorphic
mappings, Proc. A.M.S. (2000)] for relatively compact domains in almost complex manifolds.

58



3.24 Wedad Albalawi: New Double Integral Inequalities on Time Scales
via Positive Operators

Wedad Albalawi
Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia Email: wsalbalawi@pnu.edu.sa.

Abstract

This study improves some nonlinear dynamic inequalities in time scale version, using some
positive operators. The study includes several cases on the operators with introducing some
restrictions on the nonnegative rd-continuous functions of the operator. The inequalities in the
new versions can be tools to solve some types of differential equations and prove the uniqueness of
the solution. The results done by time scales analysis and some theorems as Fubini theorem.

Keywords: Time scales, inequality of Hardy and Copson, Fubini’s Theorem, Steklov-operator.

Main results: Throughout this paper, Ω(t1, t2) denote to the operator of Copson-Steklov with
considering the existence for the integral. The functions φl, Λl, ϑl, ϕl in the resultss below are
nonnegative rd-continuous functions, ∆-integrable and the integrals are assumed to be exist.

Result 1. Let a ∈ [0,∞)Tl
, for l = 1, 2. Assume there exist µ , λ ≥ 1 and β = 1

λ+1
such that

φ∆l
l (tl)

φσl (tl)
≤ µ

Φ∆l
l (tl)

Φl(tl)
,

ϑ∆l
l (tl)

ϑσl (tl)
≤ λ

Γ∆l
l (t1, t2)

Γl(t1, t2)
and

ϑσl (tl)

ϑl(tl)
≤ β

φσl (tl)

φl(tl)
,

where ∆l =
∂
∂tl

for every l. Define Φl(tl) =
∫ tl
a
ϕl(sl)∆sl with Φl(∞) = ∞, and φl(a) = 0,

Γ(t1, t2) :=

∫ t1

a

∫ t2

a

2∏
l=1

1

ϑl(sl)

ϕl(sl)

Φl(sl)
Λ(s1, s2)∆s1∆s2,

and the operator

Ω(t1, t2) =
2∏
l=1

ϑl(tl)Γ(t1, t2)

is a positive Copson-Steklov operator. Then∫ ∞

a

∫ ∞

a

2∏
l=1

φσl (tl)
ϕl(tl)

Φρ
l (tl)

(Ωσ(t1.t2))
p∆t1∆t2 ≤

( p

ρ− µ− 1)

)p ∫ ∞

a

∫ ∞

a

2∏
l=1

φσl (tl)
ϕl(tl)

Φρ
l (tl)

Λp(t1, t2)∆t1∆t2,

where p ≥ 1 and ρ > µ+ 1.
Idea of the proof: The proof was done with some restrictions on the nonnegative rd-continuous

functions of the operator in case p ≥ 1 and ρ > µ+ 1. The concepts in time scale version such as time
scales calculus are used to unify and extend many problems from the theories of differential and of
difference equations. In addition, we use some properties of multiple integrals on time scales, some
theorems of Fubini and the inequality of Hölder.

Result 2. Let a ∈ [0,∞)Tl
, for l = 1, 2. Assume there exist λ , µ ≥ 1 and β = 1

1+λ
such that

φ∆l
l (tl)

φσl (tl)
≥ µ

Φ∆l
l (tl)

Φl(tl)
,

ϑ∆l
l (tl)

ϑσl (tl)
≤ λ

Γ∆l
l (t1, t2)

Γl(t1, t2)
, and

ϑσl (tl)

ϑl(tl)
≤ β

φσl (tl)

φl(tl)
,
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where Γ∆l = ∂Γ
∂tl

, for every l. Define

Φl(tl) =

∫ tl

a

ϕl(sl)∆sl, with Φl(∞) = ∞, and φl(a) = 0,

Γ(t1, t2) :=

∫ ∞

t1

∫ ∞

t2

2∏
l=1

1

ϑl(sl)

ϕl(sl)

Φl(sl)
Λ(s1.s2)∆s1∆s2,

and the operator

Ω(t1, t2) =
2∏
l=1

ϑl(tl)Γ(t1, t2) ≥ 0

is a positive Copson-Steklov operator. Then∫ ∞

a

∫ ∞

a

2∏
l=1

φσl (tl)
ϕl(tl)

Φρ
l (tl)

(Ωσ(t1, t2))
p∆t1∆t2 ≤

( p

µ+ 1− ρ

)p ∫ ∞

a

∫ ∞

a

2∏
l=1

φσl (tl)
ϕl(tl)

Φρ
l (tl)

Λp(t1, t2)∆t1∆t2,

where p ≥ 1 and 0 ≤ ρ < µ+ 1.
Result 3. Let Tl be a time scale with a ∈ [0,∞)Tl

, for l = 1, 2. Further, assume there exist
λ , µ ≥ 1 and β = 1

λ−1
such that

φ∆l
l (tl)

φσl (tl)
≥ µ

Φ∆l
l (tl)

Φl(tl)
,
ϑ∆l
l (t)

ϑσl (t)
≥ λ

Γ∆l
l (t1, t2)

Γl(t1, t2)
, and

ϑl(tl)

ϑσl (tl)
≤ β

φl(tl)

φσl (tl)
.

Define

Φl(tl) =

∫ tl

a

ϕl(sl)∆sl, with Φl(∞) = ∞, and φl(a) = 0,

Γ(t1, t2) :=

∫ ∞

t1

∫ ∞

t2

2∏
l=1

ϑl(sl)
ϕl(sl)

Φl(sl)
Λ(s1, s2)∆s1∆s2,

Ω(t1, t2) :=
2∏
l=1

1

ϑl(tl)
Γ(t1, t2) ≥ 0

is a positive Copson-Steklov operator. Then

∫ ∞

a

∫ ∞

a

2∏
l=1

φσl (tl)
ϕl(tl)

Φρ
l (tl)

(Ωσ(t1, t2))
p∆t1∆t2 ≤

( p

µ+ 1− ρ

)p ∫ ∞

a

∫ ∞

a

2∏
l=1

φσl (tl)
ϕl(tl)

Φρ
l (tl)

Λp(t1, t2)∆t1∆t2,

where p ≥ 1 and 0 ≤ ρ < µ+ 1.
Idea of the proof: We follow the same proof of the first result with considering new restriction on

the operator that is consistent with case p ≥ 1 and 0 ≤ ρ < µ+ 1.
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4 Abstracts of Contributed Talks

4.1 AbdulRahman M. Alharbi: General Monotone Operators for First-
Order Separable Mean-Field Games with Mixed Boundary Conditions

AbdulRahman M. Alharbi1,2,∗ and Diogo Gomes2

1 The Islamic University of Al-Madinah
2 King Abdullah University of Science and Technology (KAUST)

Abstract

We establish the existence and (partial) uniqueness of solutions for the variational inequality
arising from a stationary mean-field game (MFG) system posed on bounded domains with
nonstandard boundary conditions. The MFG system consists of a Hamilton–Jacobi equation
coupled with a stationary transport equation via the players’ density. The main contributions of
the paper are defining the correct monotone operator that incorporates the boundary conditions
and addressing the lack of coercivity issue through careful manipulations of the operator’s domain.
We subsequently apply the Browder–Minty theorem to establish the existence of solutions for the
variational inequality associated with the modified operator. Finally, we retract our steps and
prove the existence of solutions to the original MFG system via a limiting process.

∗ Lead presenter

Mean-field game (MFG) models describe the interactions of large populations of rational players
making individual decisions while collectively influencing the system’s dynamics. The model was
introduced in 2006-2007 by the independent works of Lasry and Lions [4–6] and Huang, Caines, and
Malhamé [2,3]. Mathematically, a MFG is a coupled system consisting of a Hamilton–Jacobi (H–J)
equation, which arises from the underlying control problem, and a transport equation, which governs
the evolution of the players’ distribution. While standard Dirichlet boundary conditions are well
studied, these boundary conditions produce an unrealistic phenomenon where virtual players enter
through the exit boundary to satisfy the Dirichlet conditions. To address this issue, we introduce
nonstandard constraints that prescribe the inflow of agents on a part of the boundary, denoted ΓN , and
enforce a relaxed Dirichlet condition on the remaining part of the boundary, denoted ΓD. We further
impose a no-entry condition on ΓD, complemented by contact conditions, which together eliminate the
unrealistic entry phenomenon. More precisely, we introduce the following system.

The Separable MFG System Consider an open, bounded, and connected domain Ω ⊂ Rd with a
C1 boundary, denoted by Γ := ∂Ω. Let ΓD and ΓN be relatively open, smooth (d− 1)–dimensional
manifolds that form a proper partition of Γ (i.e., Γ = ΓD ∪ ΓN and ΓD ∩ΓN = ∅). Let H : Ω×Rd → R
be continuous, g : [0,∞) → R be non-decreasing, and j : ΓN → [0,∞) be non-vanishing. The first
mean-field game (MFG) system is defined by:{

H(x,Du) = g(m) in Ω,

− div(mDpH(x,Du)) = 0 in Ω,
(4.1.1)

subject to the boundary conditions
mDpH(x,Du) · ν = j(x) on ΓN ,

mDpH(x,Du) · ν ≤ 0, u(x) ≤ 0 on ΓD,

umDpH(x,Du) · ν = 0 on ΓD.

(4.1.2)
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Because these boundary conditions are nonstandard, the above MFG system poses additional
challenges, ranging from the functional space of definition to the coercivity of the associated differential
operator.

Let X := Lβ+1(Ω)×W 1,γ(Ω)× Lγ
′
(ΓD), and let X ′ be its topological dual. Let X+ ⊂ X be the

domain that admits nonnegative functions m and h (see below). In this paper, we define a sequence of
penalized differential operators Aϵ : X+ → X ′ that reproduces the MFG system in the limit ϵ→ 0+.
This operator incorporates the ΓD–boundary conditions via an auxiliary variable h encoding outflow at
ΓD.

Aϵ

mu
h

 :=


−H(x,Du) + g(m)

− div
(
mDpH(x,Du)

)
+
(
mDpH(x,Du) · ν χΓ − j χΓN

+ hχΓD

)
Hd−1(

− u+ ϵγ
′
hγ

′−1
)
χΓD

Hd−1

 , (4.1.3)

where χS denotes the characteristic function of a set S and Hd−1(·) is the (d−1)–dimensional Hausdorff
measure. The space X+ has the appropriate regularity and convexity properties for the well-definedness
of the boundary conditions and the application of monotone operator theory. Indeed, the operator Aϵ
exhibits monotonicity and hemicontinuity properties for functions in this domain.

The main results of the presentations establish the existence of solutions to the Separable MFG
System in the weak sense, which is formulated as a variational inequality.

Result 1 Under some appropriate growth and regularity assumptions on the data, there exists a
triplet

(m,u, h) ∈ Lβ+1(Ω)×W 1,γ(Ω)×W 1− 1
γ
,γ′(ΓD)

such that 〈
A0

mu
h

 ,
µ−m

v
k − h

〉 ≥ 0 ∀(µ, v, k) ∈ X+.

Idea of the proof: We establish this by taking the limit of the solutions of the penalized variational
inequalities as ϵ→ 0+. We provide a series of intermediate theorems and lemmas that aid this approach.
In particular, we prove the following existence result for the variational inequality associated with the
penalized operator.

Result 2 Let ϵ > 0. Under some appropriate growth and regularity assumptions on the data, there
exists a triplet (m,u, h) ∈ X+ such that〈

Aϵ

mu
h

 ,

µ−m
v

k − h

〉 ≥ 0.

for all (µ, v, k) ∈ X+.

Idea of the proof: We first prove the well-definedness of the operator A, followed by its monotonicity
and continuity, which are straightforward given our assumptions and the dominated convergence
theorem. To exploit the Minty-Browder theorem, we circumvent the issue of lack of coercivity by
restricting the operator to the a priori known set where solutions reside, then taking the quotient of
the space by the subspace of constant functions. This partially eliminates the issue of lack of coercivity.
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We use this partial resolution to further restrict the domain of the operator into a smaller domain and
properly redefine the operator on the quotient space as a single-valued operator rather than the direct
method of defining it as a set-valued operator. The choice is made optimally to ensure the uniqueness
and existence of solutions. Finally, we establish that the obtained solution for the quotient-space
monotone operator corresponds to a solution for the original perturbed operator. Taking the limit as
ϵ→ 0+ provides the proof of Result 1.

.
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4.2 Aisha Alshaery: Analytical and Numerical Study of Cubic-Quartic
Solitons in Birefringent Fibers Using the New Kudryashov Method
and Improved Adomian Decomposition

Afrah M. Almalki1,∗, A. A. Alshaery1, H. O. Bakodah1

1Department of Mathematics and Statistics, Faculty of Science, University of Jeddah, Jeddah, Saudi
Arabia.

Abstract

This study examines cubic-quartic solitons in birefringent fibers described by the cubic-quartic
nonlinear Schrödinger equation. Employing the new Kudryashov approach, several optical soliton
solutions, such as bright and singular solitons, are obtained. The Improved Adomian Decomposition
Method is utilized for numerical solutions, offering a systematic analysis of stability and accuracy,
corroborated by error tables and graphical illustrations.

* E-mail address: aalmalki1447.stu@uj.edu.sa (Afrah M. Almalki)

This research seeks to examine the dynamics of cubic-quartic solitons in birefringent fibers, empha-
sizing the impacts of chromatic dispersion, self-phase modulation, and birefringence. We utilize the
new Kudryashov approach [1, 2] for the analytical derivation of soliton solutions and the Improved
Adomian Decomposition Method (IADM) [3,4] for numerical simulations of the cubic-quartic nonlinear
Schrödinger equation (CQ-NLSE). The objective is to attain a deeper comprehension of the stability and
propagation properties of solitons in practical environments. Upon making consideration to birefringent
fibers under the Kerr law, the CQ-NLSE is given by

iMt + ip1Mxxx + q1Mxxxx +
(
r1|M |2 + s1|W |2

)
M = 0, (4.2.1)

iWt + ip2Wxxx + q2Wxxxx +
(
r2|W |2 + s2|M |2

)
W = 0, (4.2.2)

with pj and qj (j = 1, 2) as constant coefficients that respectively represent the third-order and fourth-
order dispersions, while the constant rj (j = 1, 2) denotes the respective self-phase modulations, and
the constant sj (j = 1, 2) accounts for the respective cross-phase modulation. To analytically treat
the system represented by Eqs. (4.2.1)-(4.2.2), one starts by assuming a harmonic-type solution that
admits the expression as follows

M(x, t) = Z1(ξ)e
iϕ(x,t), W (x, t) = Z2(ξ)e

iϕ(x,t), (4.2.3)

where i is the imaginary unit. The function Zj(ξ) (j = 1, 2) represents the amplitude function. The
variable ξ is defined as ξ = x− vt, where v is the soliton’s velocity. The phase function ϕ(x, t) is given
by ϕ(x, t) = ωt− kx+ θ0, with ω, k, and θ0 representing the frequency, wave number, and phase term.

Some Results of the Analytical Method : Set-I:
The bright soliton: M(x, t) = H2

4L2 cosh2 (δξ)
ei(ωt−kx+θ0), W (x, t) = χ H2

4L2 cosh2 (δξ)
ei(ωt−kx+θ0).

The singular soliton: M(x, t) = H2

4L2 sinh2 (δξ)
ei(ωt−kx+θ0), W (x, t) = χ H2

4L2 sinh2 (δξ)
ei(ωt−kx+θ0).

Idea of the Analytical Method: The procedures for applying the new Kudryashov approach to derive
specific soliton solutions for the CQ-NLSE are as follows: To begin, we assume that the equation admits
a predicted solution of the following form: Z(ξ) =

∑N
r=0HrF

r(ξ), where Hr (with r = 0, 1, 2, . . . , N) are
free constants that will be determined, subject to the condition HN ≠ 0. The parameter N serves as the
balancing constant. Additionally, the function F (ξ) that appears in the subsequent solution expression
satisfies the following nonlinear ordinary differential equation (NODE): [F ′(ξ)]2 = δ2F 2(ξ) [1− ζ F 2(ξ)] .
Furthermore, this NODE possesses the following exact solution: F (ξ) = 4L

4L2eδξ+ζe−δξ , where δ and ζ are
arbitrary nonzero real constants. This solution can also be expressed using hyperbolic functions as
follows: F (ξ) = 4L

(4L2+ζ) cosh(δξ)+(4L2−ζ) sinh(δξ) .
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Some Results of the Numerical Method

Table 1: Comparison of errors for the IADM and the bright and singular soliton solutions when t = 0.5.

The bright soliton The singular soliton
x Error for M (x, t) Error for W (x, t) Error for M (x, t) Error for W (x, t)

-100 1.4103263940× 10−12 7.0516291300× 10−13 1.41032972100× 10−12 7.0516482490× 10−13

-60 4.20393165000× 10−9 2.10196633500× 10−9 4.20444229000× 10−9 2.10222016700× 10−9

-20 1.04526721100× 10−5 5.80197901300× 10−6 1.50242864500× 10−5 8.11078499400× 10−6

20 3.86725961600× 10−6 8.46982668800× 10−7 7.04627313800× 10−6 2.87214868200× 10−6

60 1.71246389200× 10−9 8.5623143340× 10−10 1.71282922600× 10−9 8.5641461300× 10−10

100 5.7452960080× 10−13 2.8726444010× 10−13 5.7452771880× 10−13 2.8726382990× 10−13

Idea of the Numerical Method: The IADM is a numerical method that is efficient for resolving
nonlinear differential equations, by decomposing the solution into a sequence of functions. It facilitates
an iterative approximation by employing Adomian polynomials to address the nonlinear elements.
Using a recursive relation, the method generates a series of successive approximations that converge to
the precise solution.

(a) (b)

Figure 1: This figure illustrates: (a) a comparison of the IADM solution with the bright exact solution
in Set I for the solution pair M(x, t) and W (x, t) at t=0.5; and (b) a comparison of the IADM solution
with the singular exact solution in Set I for the solution pair M(x, t) and W (x, t) at t=0.5.
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4.3 Azza Algatheem: β plane magnetohydrodynamic in Kolmogorov flows

Azza Algatheem1 Hollis williams2, Velizar Kirkow3,∗

1Department of Mathematics, Faculty of Science, University of Bisha, Bisha 61922, Saudi Arabia
2Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
3Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4QF, United Kingdom.

Abstract

Our work depends on the kind of fluids -called Kolmogorov flow, first studied [2]. Where
Kolmogorov flow has a sinusoidal velocity profile with two-dimensional, unidirectional shear
(u = sinx), x is a cross-stream coordinate). This must be maintained by an external force in
viscous fluids. It is known that this kind of fluid flow is unstable to large-scale jet motions. This
can occur in the presence of the magnetic field and has implications observed in geophysical and
astrophysical systems. It is called ”Zonostrafic instability” which is recently studied in various
settings both numerically and analytically. Many studies suggest that it is responsible for the
structure of the astrophysics systems such as Jupiter and the sun tachocline [3, 4].

Schematic of the classical approximation of the β-plane, where we keep linear variation with latitude.
In an astrophysical body such as Jupiter, the red region represents the zonal flow so that the Cartesian
domain represents a small patch in the Jupiter. The rotation vector is inclined by an angle α with

respect to the y-direction. The red arrows represent the magnetic field orientation and the wavy blue
line represents the fluid flow with sinusoidal velocity field u = (0, sinx). The Coriolis parameter Ω is

orthogonal to the (x, y)-plane.

In this study we consider a 2D Kolmogorov flow with a sinusoidal velocity field u = (0, sinx)
for a magnetic field aligned with possible jet formation. Our system of equations for MHD with
incompressible constant density is based on Navier Stokes equations coupled with Lorntz force.
Our approach involves setting the essential state of the flow and magnetic field, and then linearizing
the system of equations. The Fourier transform uses k as the wave number in the y direction
and ℓ as the Bloch wave number in the x direction. After that, the growth rate of instability was
determined. We aim to determine the effect of the magnetic field on such instabilities by using the
classical linear stability theory as set out in [1], in which the full fluid system is decoupled into a
mean flow and waves of one scale. The linear stability problem is truncated to determining the
eigenvalues of finite matrices numerically, allowing exploration of the instability growth rate p as a
function of the wave number k in the y-direction and a Bloch wave number in the x-direction,with
−1

2 < ℓ < 1
2 . then plan to study non-linear effects. Where the study uses a spectral code of the

Dedalus package. Our nonlinear simulations is linked to some linear results presented from our
comprehensive linear study [5]. In the longer simulation run, the study aims to probe into some
fundamental processes at large-scale structures and generate a possible inverse cascade.

In summary, Linear approximations are developed, valid in the limits k → 0, ℓ → 0 and for
0 < α < π/2, with non zero β ̸= 0, using matrix eigenvalue perturbation theory. Results are
presented relevant to understanding the effects of magnetic fields on flows and their implications
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for the solar system such as Jupiter. This level of abstraction clarifies basic aspects of instability,
such as how perturbations are governed. the governing equations for MHD are derived in a general
setting using an action principle and Fourier derivatives. The way in which these equations behave
as a Fourier series is described. Afterwards, Alfvén waves interacted with Rossby waves to generate
the MHD Rossby waves which have no hydrodynamic companion. In high magnetic field strength,
these waves return to being Alfvén waves. Eventually, Detailed comparisons are given between
theory for small k, ℓ and numerical results.
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4.4 Hadeel Albeladi: Rational Tangle-Oids

Hadeel Albeladi1,∗, Cenap Ozel2 and Sofia Lambropoulou3

1Department of Mathematics, College of Science & Arts, King Abdulaziz University, Rabigh 21911,
Saudi Arabia, E-mail: aealbeladi@kau.edu.sa
2Department of Mathematics, King Abdulaziz University, Jeddah 21589 Saudi Arabia, E-mail:
cozel@kau.edu.sa
3Department of Mathematics,National Technical University, GR-15780 Athens, E-mail: sofia@math.ntua.gr

Abstract

In this paper, we introduce a rational tangle-oid, which is a rational tangle with break strands.
Rational tangle-oids can be useful models to study broken DNA, and we illustrate them by box
invariant.
* Lead presenter

4.4.1 Rational Tangle-oids

In this section, we introduce the concept of rational tangle-oids. We work within the framework of
the welded tangle-oids category, but without the generator X and excluding the relations [WT13] and
[WT13]‘ which correspond to forbidden moves in knotoids. A rational tangle-oid is defined as a subclass
of welded tangle-oids that behaves like a rational tangle but allows for strand breaks. In this paper, we
restrict our attention to the case where exactly two endpoints lie in the interior of the projection disc.

Definition 4.4.1 A rational tangle-oid is a tangle-oid that can be decomposed into a finite sequence of
twists, analogous to a rational tangle, but adapted to account for broken strands. In this paper, we have
just one broken strand.

In rational tangles, applying twists between neighbouring ends can result in a trivial (unknotted)
tangle. However, in rational tangle-oids, this is not always the case–applying similar twists does not
necessarily yield an unknotted tangle-oid.

Definition 4.4.2 We call a rational tangle-oid unknotted if it does not have any positive or negative
crossing.

Definition 4.4.3 Let T be a rational tangle-oids, we can added ( horizontal composition) denoted by
‘+‘ or multiplied (vertical composition) denoted by ‘∗‘, by n half twist.

Theorem 4.4.1 (Existence of Rational Sub-Tangles in a Rational Tangle-oid) Let T be a ra-
tional tangle-oid diagram. Then there exists a rational sub-tangle T ∗ ⊂ T , obtained by cutting along a
simple arc in the projection disc such that: The resulting subdiagram T ∗ has exactly four ends lying on
the boundary of a subdisc.

Proof A rational tangles obtained by applying a finite number of consecutive twists of neighbouring
ends. So by using additive and multiplication operation of rational tangle-oid, we can decompose any
rational tangle-oid such that at least one part is a rational tangle.

Conjecture Let T be a rational tangle-oid, assume that:

� The interior endpoints are connected to strands whose boundary ends are adjacent (i.e., neigh-
bouring positions on the boundary of the disc), and

� Twisting the boundary ends of T (those not involved in the broken strand) simplifies the underlying
rational tangle-oid structure.
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Then the tangle-oid T can be unknotted.

Remark 4.4.1 The rational tangle-oid is not necessarily equivalent under hflip and vflip as the rational
tangle. Here is an example of a rational tangle-oid with a mirror image, horizontal flip and vertical flip

4.4.2 Box Invariant

Lemma 4.4.1 We can decompose any rational tangle-oid into a finite sequence of twists with respect
to the endpoints by using additive and multiplication operations of rational tangle-oid. In this invariant,
we enclose segments of the tangle-oid within boxes, ensuring that each box contains either a broken part
along with the twists connecting to it, or simply a count representing the number of twists without a
broken part. The boxes are then divided into two regions using a diagonal line, either from the top-right
to the bottom-left or from the top-left to the bottom-right. The diagonal division allows us to track how
the strands interact within each box. We adopt the same notation used for rational tangles to count the
twists, both horizontally and vertically, inside each box. Specifically:

� Horizontal twists are counted by following the path of the strands parallel to the horizontal
direction.

� Vertical twists are counted by tracing the strands parallel to the vertical direction.

Each box contains a number representing the count of twists and whether it is positive or negative
crossing, with or without a broken part. By assembling these boxes according to the sequence of
broken parts and twist counts, we construct the overall rational tangle-oid. This structure provides a
clear method for decomposing and analyzing rational tangle-oids, preserving their combinatorial and
topological properties.
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4.5 Mushrifah Al-Malki: Energy Analysis of roughness on the Blasius
boundary layer over a heated plate

Mushrifah A. S. Al-Malki
Department of Mathematics and Statistics College of Science Taif University, P.O. Box 11099, Taif
21944, Saudi Arabia.

Abstract

This paper has been designed to analyse the effects of wave roughness on the stability of the
Blasius boundary layer flow over a rough plate with a temperature-dependent viscosity flow. We
summarised the results of the effects of wave roughness on the boundary layer flow over a heated
plate as follows: our theoretical analysis depended on the no-penetration condition approach
for formulating the steady boundary-layer flow over a rough, heated plate. The effects of wave
roughness show a more steady state of boundary layer flows with decreasing viscosity via setting
ε > 0. Our study has revealed that wave roughness acts to reduce energy production of the
(T-S) waves of a flow over a heated, wave plate. The conclusions arising from this study are
the plate roughness can be useful as an effective passive flow-control mechanism for engineering
flows in the (CVD) reactors over waviness of wall. Our results are consistent with the MWmodel [3].

4.5.1 Formulation

We consider a steady, incompressible, Newtonian fluid flowing with velocity U = (u∗, v∗) over a
semi-infinite flat plate, where u∗ and v∗ are the velocities in the streamwise and plate-normal directions
x∗ and y∗, respectively. Here T ∗ is the temperature of the fluid, and the plate heated to a fixed
temperature T ∗

∞. The system is governed by Navier-Stokes equations. The boundary problem is solved
using numerical methods (bv4c) subject to the modified wall boundary conditions which are expressed
as: f(0) = R1f

′(0), f ′(0) = R2f
′′(0), and f ′(η → ∞) = 1, g(η → ∞) → 0. Here primes denote

differentiation with respect to η, and the two R1, R2 give experimental measures of the roughness in
vertical or horizontal directions, respectively, see [1], [2].

4.5.2 Results

Figure 2 (a) shows the velocity profiles of U(η) for the case of roughness with vertical grooves, increasing
R2 results in a slight thinning of boundary layer flows and an increase in the jets. Figure 2(b) slightly
displays thinning in a decrease in the jets of U ′(η) towards the surface of plate with increasing groove
depth (R2). Figure 2 displays a similar movement towards the plate surface with increasing R2 and ε,
which is interpreted as a narrowing of the thermal rough boundary layer. Similarly, this is seen as a
reduction in the temperature profile gradient similar to that seen in Figure 2 (c).
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Figure 2: Mean flow profiles, in the cases of various roughness, axial velocity U(η), velocity gradient
U ′(η), temperature velocity Θ(η). R1 = 0, R2 > 0 (waviness wall).
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4.5.3 Energy Analysis

The examination of the energetic input and output of disturbance to the mean flow depends on the
eigenfunctions. The integrating through the boundary layer results in the integral energy equation. dE

dx
=

−
{∫∞

0
U ′⟨ûv̂⟩dy

}I
+ 1

R

{
d
dx

∫∞
0
µ̄⟨v̂q̂⟩dy−

∫∞
0
µ̄⟨q̂2⟩dy

}II
+ 1

R

{
d
dx

∫∞
0
µ̄′⟨ûv̂⟩+U ′⟨µ̂v̂⟩dy+

∫∞
0
µ̄′⟨ûq̂⟩−

µ̄′′(⟨ê+ v̂2⟩)− U ′⟨µ̂ŝ⟩dy
}III

. The left-hand- side terms of represent the total mechanic energy (TME)

of the system, and here E =
∫∞
0
U⟨ê⟩+ ⟨ûp̂⟩dy. The integral I represents energy production due to

Reynolds stresses (EPRS), the integral II represents energy dissipation due to viscosity (EDV), and
terms in III represent additional terms arising from variable viscosity (AVV). Hence the terms in III
vanish, when ε = 0.
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Figure 3: Preliminary results of the energy balance integral showing the contribution of the individual
components of the energy balance equation

Note that for the integral energy solved via numerical integration contains the only non-negligible
terms (on the left-hand side) are I and the second term of II. However, all the terms in III are
consistently negligible. The remaining terms are normalized with respect to

∫∞
0
U⟨ẽ⟩+ ⟨ũp̃⟩dy. Figure

3 represents the change in energy contributions for surface roughness generated by vertically roughness
combined with values of ε at Rc(ε) + 200. Figure 3 presents the energy balance calculation for a range
of temperature-dependent viscosity and wave roughness. This case shows the energy balance calculation
for a range of temperature-dependent viscosity and wave grooves. We note that this case leads to a
large reduction in energy contribution term, and this means that there is a stabilization effect on the
(T-S) waves. Note that the significantly invariant of the energy dissipation of the system (EDV) acts
to clearly reduce in the total energy of the system as a result of increasing R2 and ε.
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4.6 Eman Alshehery: Numerical treatment for convective Sutterby nanofluid
flow with activation energy through intelligent computational tech-
nique

Eman Alshehery1,∗, Eman Alaidarous2, RaniaAlharbey2, Asif Raja3

1Department of Mathematics, College of Science, University of Bisha, 8154, Alnamas 67398-5644, Saudi
Arabia.
2Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi
Arabia.
3Future Technology Research Center, National Yunlin University of Science and Technology, Yunlin
64002, Taiwan.

Abstract

Recently, employing artificial intelligence techniques to solve problems in various fields has
become more popular. Also, using nanofluids to enhance fluid thermal and mechanical properties,
makes nanofluids interesting for various applications, particularly in heat transfer and cooling
systems. This work aims to study the flow dynamics in a three-dimensional convective flow of
Sutterby nanofluid (3D-CSNFF) across a bidirectional extending surface with the effect of the
activation energy and chemical reaction.
* Eman Fayz A. Alshehery

The mathematical formulation for the proposed flow model was obtained through non-linear partial
differential equations (PDEs). Then the leading PDEs were transmitted into non-linear ordinary
differential equations (ODEs) by similarity transformation variables. The solution methodology in this
study is implemented in two phases:

� Firstly, the numerical solutions for the mathematical formulation of flow model are found by
solving ODEs for different scenarios of physical parameters (by changing the Sutterby fluid
parameter (β1), mixed convection parameter, Brownian motion, thermophoresis, activation
energy, and chemical reaction rate through various four cases) through the Lobatto IIIA method
by using bvp4c package in MATLAB platform.

� Secondly, these solutions were used as reference data (target data) through the nftool package in
the MATLAB platform to apply the Levenberg Marquardt back propagation method LMM-TNN
to investigate the approximate solution of the flow model by determining the number of neurons,
training, testing, and validation data for learning ANN, which uses ten neurons, 80% of the data
set for training step, 10% for validation step, and 10% for testing step. A form of an artificial
neural network ANN for the flow model is displayed in Figure 4.

Figure 4: ANNs scheme for 3D-CSNFF.

Result 1: The accuracy of the proposed LMM-TNN is analyzed using the results of error analysis
between target data (the solution by Lobatto IIIA) and output data (the solution by LMM-TNN) such
as:
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� The mean squared error MSE of performance for training, testing, and validation processes. It is
about 10−9, as shown in Figure 5(a).

� The error histogram for the different scenarios with different cases is about 10−7, as presented
Figure 5(b).

(a) MSE representation. (b) Error histogram graph.

Figure 5: The analysis of the accuracy and efficiency of the proposed LMM-TNN.

Result 2: The solution of the flow model by LMM-TNN which analyzes the impact of different
physical parameters on flow velocities, fluid temperature, and nanoparticle concentration profiles:

� The axial velocity is growing for large values for Sutterby fluid parameter while the tangential
velocity decreases.

� For rising rates of thermophoresis and Brownian motion, the fluid temperature is increasing.

� The nanoparticle concentration is rising for large values of activation energy while it is reduced
for high rates of chemical reaction rate.
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4.7 Diaa eldin Elgezouli: Greener AI: Fractional Edge Detection for
Precision Water Mapping

Diaa eldin Elgezouli
Department of Basic Sciences Common First Year Deanship, King Saud University Saudi Arabia.

Abstract

This study is developing a novel approach to edge detection from satellite imagery using
fractional calculus, and specifically the Grünwald-Letnikov (GL) order of fractional derivative, to
enhance feature extraction in segmenting water features. Traditional edge detection operators like
the Canny operator are compared to a fractional-order derivative model to compare performance
in detecting subtle environmental features. A lightweight CNN is learned on conventional and
fractional edge-enriched data, and its efficiency is estimated with metrics like mean squared
error (MSE), peak signal-to-noise ratio (PSNR), and computational performance. Experiments
demonstrate that processing with fractional order refines the maintenance of edges in complex
satellite terrain, with valuable implications for sustainable applications like water resource moni-
toring, ecological surveys, and climatic change mapping. This research links applied mathematics
that is fractional calculus to environmental science, providing a mathematically valid tool for
high-resolution geospatial analysis in life sciences.

* Lead presenter: Diaa eldin Elgezouli, Department of Basic Sciences, King Saud University.

Summary

This paper suggests a fractional calculus-based edge detection algorithm for satellite imagery that
uses the Grünwald-Letnikov (GL) derivative to improve water body segmentation. We compare
standard Canny and fractional edge detection pipelines, demonstrating better feature preservation
using fractional methods by a lightweight CNN trained on edge-augmented data.

Result 1: Fractional Edge Detection Outperforms Traditional

Methods

Key Finding: The GL-based fractional edge detector (α = 0.8) achieves higher PSNR (∼28.5 dB
vs. 25.1 dB for Canny) and lower MSE (0.002 vs. 0.003) on satellite water body images, with better
retention of fine-scale hydrological features (Fig. 6).

Figure 6: Comparative analysis of edge detection methods.
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Idea of the Proof:

1. Mathematical Foundation: The GL fractional derivative generalizes integer-order differentia-
tion:

Dαf(x) = lim
h→0

1

hα

∞∑
k=0

(−1)k
(
α

k

)
f(x− kh) (4.7.1)

2. Implementation:

� Bidirectional application preserves edge continuity

� Adaptive contrast enhancement maintains natural gradients

3. Validation:

� CNN architecture achieves real-time processing (<2ms/image)

� Quantitative metrics show consistent improvement across 50 test images

Result 2: Computational Efficiency with Fractional Order

Adaptability

Key Finding: The method maintains real-time speeds (<2 ms/image at 256×256 resolution)
despite mathematical complexity, with α tuning (0.5 ≤ α ≤ 1.0) for feature-specific optimization.

Idea of the Proof:

1. Optimization:

� Series truncation at 10 terms

� Vectorized binomial coefficient computation

2. Empirical Validation:

� Timing: 1.8 ms (GL) vs. 1.2 ms (Canny) per image

� α-sensitivity: 0.8 optimal for water bodies

3. CNN Training:

� 3-epoch convergence (batch size=16)

� GL model shows faster loss reduction

Implications and Limitations

� Applications: Water resource monitoring, climate adaptation

� Limitations: α requires calibration per dataset

� Future Work: Scaling to >10k images
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Table 2: Performance Comparison (α = 0.8)

Metric Canny Fractional
PSNR (dB) 25.1 28.5
MSE 0.003 0.002
Time/image (ms) 1.2 1.8
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4.8 Amr R. El-Dhaba: Nonlocal Electromechanical Effects in Anisotropic
Dielectric Materials within Simplified Strain Gradient Elasticity

Amr R. El-Dhaba
Department of Mathematics and Statistics, College of Science, King Faisal University
E-mail: aemam@kfu.edu.sa, ORCID ID: - 0000-0002-6123-9002.

Abstract

In this paper, we investigate the effect of non-locality on the flexoelectric effect in dielectric
materials using the simplified strain gradient theory of elasticity. Our methodology consists of two
main stages. In the first stage, we apply the variational principle to the strain energy functional
and virtual work for the external forces. The second stage incorporates the hypothesis introduced
by Stratton [1] and later extended by Landau and Lifshitz [2] to derive the field equations and
boundary conditions. The non-locality hypothesis states that the variation in any electric quantity
includes both the variation of that quantity and the variation in displacement.

This procedure results in a nonlinear system of partial differential equations, where the
nonlinearity appears in the equation of motion, while the electrostatic equations governing
polarization and its gradient remain linear. As an application of the developed mathematical
model, we consider a one-dimensional semi-infinite domain occupied by an elastic dielectric
material. The field equations and boundary conditions are formulated in Cartesian coordinates.
To obtain hierarchical solutions to the problem, we apply the reductive perturbation method [3].
The results are then plotted and analyzed in detail.

Keywords: Non-local flexoelectric effect, micro-inertia effect; cubic materials; Simplified strain
gradient elasticity; Variational techniques; Reductive perturbation technique.

4.8.1 Introduction

The flexoelectric effect is a property of certain materials that allow them to generate electricity despite
being non-conductive. This effect discovered by Kogan [4] and takes its name by Indenbom [5]. The
flexoelectric effect occurs when the material subjected to non-homogeneous deformation (tension or
compression) and the internal structure deformed as in the following:

Figure 7: In-homogeneous deformation

Therefore, due to the disruption of the material’s internal structure, causing both negative and
positive charges to be shifted around their equilibrium positions. As a result, the dipole moment
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changes, or a spontaneous polarization induced inside the material.
This effect becomes more noticeable as the material’s dimensions decrease, making it a size-dependent
phenomenon. At larger scales, strain gradients are typically negligible, making the flexoelectric effect
weak or undetectable. However, at the nanoscale, where sharp deformations and high strain gradients
are more common, the effect becomes significantly more prominent.

4.8.2 Hamilton’s Principle

The variational principle is a widely used technique to obtain field equations and boundary conditions
for any continuous system undergoing infinitesimal deformation during two different times.∫ t1

t0

(∫
V

(
δWKin − δH + f ex

i δui − ρeδϕ+ Eex
i δPi + Eex

ij δPi,j

)
dV

+

∫
sT

(
texi δui + τ exi njδui,j

)
dS −

∫
sD

σ̄eδϕdS +

∫
∂S

F edge
i δuidL

)
dt = 0,

(4.8.1)

where H = H(εij, γi(jk), Pi, Pi,j) denotes the electric enthalpy, W ex is the work done by external forces,
and WKin is the kinetic energy. ϕ is the electric potential, Pi is the i-polarization vector, and Pi,j is the
derivative of the i-polarization vector in the j-direction. ρe represents the volume electric charge, and
σ̄e is the surface electric charge. Eex

i measures the electric field due to the variation of polarization,
while Eex

ij measures the electric field due to the variation of the gradient of polarization. texi is the

stress vector, τ exi is the higher-order stress vector, and F edge
i is the component of the wedge force due

to unsmooth domains. Finally, δ represents the variation operator.
As states before, one can write

δPi = δPPi + δuPi, (4.8.2)

where δPPi is the variation of the polarization due to the polarization, and δuPi is the variation of the
polarization due to the displacement.
But

δuPi = Pi,jδuj. (4.8.3)

Thus, the total variation in polarization is defined as

δPi = δPPi + Pi,jδuj. (4.8.4)

Similarly, the total variation in the gradient of polarization is given by

δPi,j = δPPi,j + δuPi,j = δPPi,j + Pi,jkδuk. (4.8.5)

The variation of the electric potential is written as

δϕ = δϕϕ+ δuϕ, (4.8.6)

where δϕϕ is the variation of the electric potential due to the electric potential, and δuϕ is the variation
of the electric potential due to the displacement. Then, the total variation of the electric potential is
given by

δϕ = δϕϕ+ ϕ,jδuj. (4.8.7)

Similarly, the total variation of the gradient of the electric potential is written as

δϕ,i = δϕϕ,i + δuϕ,i = δϕϕ,i + ϕ,ijδuj. (4.8.8)

By substituting Eqs. (2)–(8) into Eq. (1) and performing some mathematical manipulations, the field
equations and boundary conditions are derived.
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4.9 Ahad Alotaibi: Fixed Point Results Via Multivalued Contractive
Type Mappings Involving A Generalized Distance On Metric Type
Spaces

Abdul Latif1, Ahad Alotaibi2,∗ and Maha Noorwali3
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2Department of Mathematics King Abdulaziz University Rabigh Branch Saudi Arabia
E-mail address: aalotaiby@kau.edu.sa
3Department of Mathematics King Abdulaziz University Jeddah Saudi Arabia
E-mail address: mnorwali@kau.edu.sa.

Abstract

In this paper, we present some general results on the existence of fixed points for multivalued
contractive type mappings with respect to generalized distance related to metric type spaces.
Some common fixed point results for Banach operator pairs are also obtained. Further, examples
are provided in the support of our main results. Consequently, our results either improve or
generalize many existing results of the metric fixed point theory.

* Ahad Alotaibi

Metric fixed point theory is one of the most important and applicable research areas of nonlinear
analysis. The well known Banach Contraction Principle (BCP), has been appeared as a powerful tool
for solving several scientific problems related to a number of scientific areas. The classical concept of
metric (distance) has been extended either by reducing or modifying the metric axioms. One of its
generalization, known as a b-metric (metric type). In the literature a number of fixed points results have
been established in these both directions. In [3], Kada et al. introduced a notion of generalized distance,
namely a w-distance on metric spaces and then improved several known results via this generalized
distance, while, metric type version of w-distance introduced by Hussain et al. [1], called it wt-distance
(wb-distance) and proved fixed point and common fixed point results for singlevalued mappings with
respect to wb-distance. For further results in this direction, see [4, 5] and references therein. In this
paper, we present some fixed point results for multivalued nonlinear generalized contractions along
with supporting examples. In fact, our results either improve or generalize a number of known fixed
point results.

In the sequel, we consider (S,Db) is a complete metric type space otherwise stated and pb is a
wb-distance on S. Now, we present some of our main fixed point results via multivalued contractive
type mappings involving generalized distance pb.

Theorem 1 Consider a mapping J : S → C(S) with a b-lower semi-continuous h on S defined by
h(u) = pb(u, J(u)). Assume that the following conditions hold:

(a) there exist a constant c ∈ (0, 1) and a function φ : R+ → [c, 1) with lim sup
q→t+

φ(q) < 1 for every

t ≥ 0,

(b) for u of S, there exits v of J(u) satisfying

[φ(h(u))]r pb(u, v) ≤ h(u), where r ∈ (0, 1), (4.9.1)

and

h(v) ≤ φ(h(u)) pb(u, v). (4.9.2)

81



Then, there exists u0 ∈ S such that pb(u0, J(u0)) = 0. Further, if pb (u0, u0) = 0, then u0 ∈ J (u0).
Now, we observe that the conclusion of Theorem 1 still holds, if we dispense the b-lower semi-

continuity of the function h with somewhat another mathematical condition.
Theorem 2 Assume that all the assumptions of Theorem 1 are valid except the b-lower semi-

continuity of the function h. Further, if inf {pb(u, z) + pb(u, J(u)) : u ∈ S} > 0, for every z ∈ S with
z /∈ J(z), then Fix(J) ̸= ∅.

Now, we present a common fixed point result for Banach operator pairs of metric type spaces.
Theorem 3 Let g : S → S be a single valued mapping with Fix(g) is a closed subset of S and

let J : S → C(S) be a multivalued mapping satisfying the conditions (a) and (b) of Theorem 1,
where the function h on S defined by h(u) = pb(u, J(u)) is a b-lower semi-continuous and (J, g) is a
Banach operator pair. Then, there exists u0 ∈ S such that h(u0) = 0. Further, if pb (u0, u0) = 0, then
u0 = g(u0) ∈ J (u0).

Now we present some examples in support of our main results.
Example Let S = [0,∞). Define Db(x, y) = (x − y)2 for all x, y ∈ S. Then S is a metric type

space with b = 2. Define a wb-distance on S by pb(x, y) = x2 + y2, for all x, y ∈ S. Now, for any real
number c > 1, let J : S → C(S) be defined by

J(x) =
{x
c

}
∪ [1 + 2x,∞), ∀x ∈ [0,∞)

Define g : S → S by g(x) = x,∀x ∈ S and define a function φ : [0,∞) → (0, 1) by φ(t) = 1
c2
. Since

J(x) ⊆ Fix(g),∀x ∈ Fix(g). Then (J, g) is a Banach operator pair. Thus, for each x ∈ [0,∞) all the
conditions of Theorem 1 and Theorem 3 are satisfied and hence Fix(J) ̸= ∅ and C(J, g) ̸= ∅. Note
that Fix(J) = {0} and C(J, g) = {0}.
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4.10 Bader Saidan: Exotic options in fractal activity time models with
the Student distribution of log-returns
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Abstract

Modeling financial price movements is crucial for both investment strategies and derivative
pricing, see the fundamental work of [2]. [3]; [4] introduced supOU and related models incorporating
various dependence structure for option pricing and hedging.

Although stochastic models are widely adopted in asset pricing, they face difficulties in
accurately capturing the empirical properties of financial returns. These challenges include non-
normal, fat-tailed distributions and the dependence structure of squared and absolute returns,
commonly referred to as the Taylor effect [2, 10]. To remedy this issue, [8] explored time-changed
that use the Lévy processes with Student distribution, normal inverse Gaussian (NIG) distribution
and variance-gamma (VG) distributions. It is important to note that while increments of Lévy
processes are independent and their marginal distribution is non-Gaussian, but the dependencies
of squared returns are not adequately described.

We consider the fractal activity geometric Brownian motion (FATGBM) model proposed by [1].
We focus on the FATGBM with Student marginals because log-returns for real data are well
fitted by the location scale Student distribution. This model captures key empirical features of
returns; the absence of correlation while preserving dependence, as well as distributions with
heavier tails and higher peaks compared to the Gaussian distribution. Specifically, it extends
geometric Brownian motion by evaluating standard Brownian motion at a random activity time
rather than calendar time.

It is evident that the activity time process is approximately self-similar. Therefore, we need a
method that can incorporate both the required distributional and dependence features as well
as the property of asymptotic self-similarity. We note that the inverse gamma distribution is
infinitely divisible and self-decomposable and based on that we construct the fractal activity time
through Ornstein-Uhlenbeck (OU)-type process which has the inverse gamma distribution. After
construction of this fractal activity time, we use so-called skew-correcting martingale that imposes
parameter restrictions to ensure that {e−rtSt} is a martingale, which relates to the absence of
arbitrage.

We derive options pricing formulae for different derivatives which are digital options or cash-
or-nothing, power options which are basically the standard European options (vanilla options)
with the underlying asset’s price raised to a certain power. Finally, barrier options which are
considered as exotic options, we use the Girsanov theorem and the joint conditional density to
drive pricing formulae for these options. We run numerical simulation to confirm the derived
formulae by using the Monte-Carlo method.

The talk is based on the joint work with N. Leonenko and A. Pepelyshev [14].
* Lead presenter
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4.11 Elsiddig Awadelkarim: Unbiased Parameter Estimation for Partially
Observed Diffusion

Elsiddig Awadelkarim
King Abdullah University of Science and Technology, Saudi Arabia. elsiddigawadelkarim.elsiddig@kaust.edu.sa.

Abstract

We consider the problem of estimating static parameters for a partially observed diffusion
process Xt with discrete-time noisy observations {Yt}Tt=1 over a fixed time interval [0, T ]. The
diffusion satisfies the equation

dXt = aθ(Xt)dt+ σ(Xt)dWt

where Wt is a standard Brownian motion, and the goal is to estimate θ. In particular, we assume
that one must time-discretize the partially observed diffusion process and work with the model
with bias and consider maximizing the resulting log-likelihood of the discrete model. Using a novel
double randomization scheme, based upon Markovian stochastic approximation we develop a new
method to unbiasedly estimate the static parameters, that is, to obtain the maximum likelihood
estimator for the continuous model with no time discretization bias. Under assumptions we prove
that our estimator is unbiased and investigate the method in several numerical examples, showing
that it can empirically out-perform existing unbiased methodology.

* Lead presenter
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4.12 Fadhah Alanazi: Vine Copula Construction

Fadhah Alanazi
Department of Mathematics and Sciences, Prince Sultan University, Saudi Arabia.

Vine copulas have emerged as a powerful tool for modeling complex multivariate dependencies
in various fields, including finance, hydrology, and machine learning. Central to the construction of
vine copula models is the choice of bivariate copulas, which serve as building blocks for capturing
pairwise dependencies in a hierarchical structure. The type of copula selected, whether Gaussian,
Student-t, Clayton, Gumbel, or others, dramatically impacts the construction process and the resulting
model’s accuracy and interpretability. This talk explores how different copula families influence
the flexibility, dependence on the tail, and overall fit of vine copula models. We will discuss the
implications of selecting appropriate copulas for capturing diverse dependency structures, particularly
in high-dimensional settings, and highlight the trade-offs between model complexity and computational
efficiency. Through real-world examples and simulations, we demonstrate how choosing a copula family
can lead to significantly different inferences and predictions, emphasizing the importance of thoughtful
copula selection in practical applications. At the end of this talk, participants will gain insight into
best practices for constructing robust vine copula models tailored to their specific data characteristics
and research objectives.
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4.13 Fadwa Althrwi: Analysis of Perturbed Gerdjikov-Ivanov Equation
Using Traditional and Improved Adomian Decomposition Methods
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1 Department of Mathematics and Statistics, College of Science, University of Jeddah, Jeddah 23445,
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Abstract

This paper investigates the perturbed Gerdjikov-Ivanov (pGI) equation, a nonlinear partial
differential equation (PDE), That describes the evolution of optical solitons, solitons are critical
in optical communications. The pGI equation is an extension of the classical Gerdjikov-Ivanov
(GI) equation, incorporating perturbation terms that account for external forces or influences on
wave dynamics.

The study focuses on solving the pGI equation using two analytical methods: the traditional Adomian
Decomposition Method (ADM) and its improved version, The improved Adomian Decomposition
Method (IADM). These methods provide approximate solutions without requiring linearization, making
them effective for handling nonlinear equations. The pGI equation is expressed as:

iut + auxx + b|u|4u+ icu2u∗x = i[αux + β((u)2mu)x + δ(u2m)xu], m ≥ 1. (4.13.1)

where u = u(x, t) is a complex-valued wave profile, and the coefficients a, b, and c represent group-
velocity dispersion, quintic nonlinearity, and nonlinear dispersion, respectively. The exact solution
that will be treated in the analysis take place in, see [1]. This paper focuses on the solution from the
classical Kudryashov’s method, given by

u(x, t) =

√
A1

d exp (η(x− νt) + 1)
exp (i(−κx+ 1

4
t(aη2 − 4aκ2 − ακ) + ϑ)) (4.13.2)

where the solution sets is

A0 = 0, A1 = A1, ω =
1

4
(aη2 − 4aκ2 − ακ) b = −3aη2

4A2
1

, c =
−aη2 − A1βκ

A1κ
(4.13.3)

with A1 and d are any non-zero arbitrary constants.
The study begins by applying the traditional ADM to the pGI equation. ADM decomposes the

solution into an infinite series of components [2, 3], represented as:

u(x, t) =
∞∑
n=0

un(x, t) (4.13.4)

Where the components un, n ≥ 0 will be determined recreantly. ADM and it’s modifications uses
Adomian polynomials to handle nonlinear terms, simplifying the equation into manageable sub-problems
according to specific algorithms set by Adomian [4–6].

An =
1

n!

dn

dλn
[A(

∞∑
i=0

u(x, t)λi)]λ=0, n = 0, 1, 2, . . . (4.13.5)

Employ the operator form Lt =
∂
∂t

on equation (4.13.1). Then, define the nonlinear term in equation
to be

A = −b|u|4u− icu2u∗x + i[αux + β((u)2mu)x + δ(u2m)xu] (4.13.6)
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Next, apply the inverse operator, L−1
t (·) =

∫ t
0
(·)dt. Thus, we conclude with the recursive relation

u0(x, t) = u(x, 0) (4.13.7)

uk+1(x, t) = −L−1
t a(uk)xx + L−1

t Ak (4.13.8)

where A are Adomian polynomials and each component u is determined recursively.
Forward IADM splits the solution into real and imaginary parts, allowing for a more precise handling

of nonlinear and perturbation terms.
First, the function u is presented by

u(x, t) = u1(x, t) + iu2(x, t) (4.13.9)

This will convert equation 4.13.1 into a complex system of two equations. As previous, apply the
operator Lt =

∂
∂t
. Then, simplify and split the real and the imaginary part. Respectively, define the

nonlinear terms by A1 and A2, to be the Adomian polynomials,

A1 = b[u21 + u22]
2u1 + c[(u21 − u22)u2x − 2u1u2(u1x)]

+ αu2x + β[(u21 + u22)
mu2]x + δ[((u21 + u22)

m)xu2] (4.13.10)

A2 = −b[u21 + u22]
2u2 − c[(u21 − u22)u1x − 2u1u2(u2x)]

+ αu1x + β[(u21 + u22)
mu1]x + δ[(u21 + u22)

m)xu1] (4.13.11)

Next, apply the inverse operator L−1
t (·) =

∫ t
0
(·)dt for both equations, this gives the recursive relation

u1,0(x, t) = u1(x, 0) (4.13.12)

u2,0(x, t) = u2(x, 0) (4.13.13)

u1,k+1(x, t) = −aL−1
t (u2,k(x, t))xx + L−1

t A2,k (4.13.14)

u2,k+1(x, t) = aL−1
t (u1,k(x, t))xx + L−1

t A1,k, k ≥ 0,m ≥ 1. (4.13.15)

where u1(x, 0) = Re(u(x, 0)), u2(x, 0) = Im(u(x, 0)) and Ar, r = 1, 2 are the Adomian polynomials
defined as in equation (4.13.5). Pursue with the numerical analysis, consider m = 1 and the following
parameters in equation(4.21.2) as

A0 = 0, A1 = 0.0001,ν = 0.0005, a = 0.002, ϑ = 0.01, κ = 0.01, (4.13.16)

η = 1, d = 1, α = 0.002, β = 0.0001, δ = 0.002 (4.13.17)

The results and profiles of the two methods are illustrated in Figure.??. This figure present the
graphs of the exact solution from equation (4.13.2), along with the approximate solutions from the
ADM in equation (4.13.7) and the IADM in equation (4.13.12). Result 1: ADM provides accurate,
fast-converging solutions for the pGI equation by decomposing it via Adomian polynomials, simplifying
nonlinear terms and enabling efficient computation. but may face convergence and accuracy issues
for strong nonlinearity or complex boundaries. IADM enhances this by iteratively reducing errors,
offering superior accuracy and stability, particularly in nonlinear or complex scenarios. Result 2: The
plots use color-coded markers to distinguish methods clearly illustrating that both ADM and IADM
closely follow the exact solution, with IADM maintaining higher accuracy over time due to its iterative
refinement. Both methods handle nonlinearity and perturbations well, supporting broader application
to nonlinear PDEs.
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Figure 8: Each graph represent the exact solution (aquamarine line), ADM (orange), and IADM (red)
approximations, at t = 0., t = 0.1, t = 0.2, t = 0.3, t = 0.4 till t = 0.5.
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4.14 Jianqing Zhu: Localized Arabic Large Language Model

Jianqing Zhu*, and Jinchao Xu
King Abdullah University of Science and Technology, Saudi Arabia.

Abstract

This research presents a comprehensive framework for developing culturally-aligned, linguisti-
cally proficient Arabic Large Language Models (LLMs) that address the underrepresentation of
Arabic in mainstream LLMs. By integrating targeted Arabic pre-training, progressive vocabulary
expansion, supervised fine-tuning with native Arabic instructions, and culturally-sensitive reinforce-
ment learning, the proposed models significantly outperform existing open Arabic LLMs in both
accuracy and cultural awareness. Moreover, the introduction of ”native alignment”–embedding
cultural alignment from the pre-training phase–enhances model stability and safety. This work
not only sets a new state-of-the-art for Arabic LLMs but also contributes open-source models to
support inclusive and responsible AI development for Arabic-speaking communities.

* Lead presenter

This research focuses on developing and democratizing localized Large Language Models (LLMs)
specifically tailored for the Arabic language, addressing significant gaps in cultural sensitivity, linguistic
appropriateness, and accessibility. Arabic, characterized by distinct linguistic features and rich cultural
nuances, remains inadequately supported by mainstream LLMs, which predominantly cater to widely
spoken languages such as English and Chinese. Consequently, the Arab world experiences slower
progress in benefiting from advanced natural language processing technologies comparable to state-of-
the-art models like GPT-4. To bridge this technological divide, this research introduces comprehensive
methodologies for developing culturally-aligned, linguistically proficient Arabic LLMs capable of
effectively meeting diverse, application-specific needs of Arabic-speaking communities.

Firstly, we introduce a robust and culturally-aware Arabic LLM developed via a multi-stage pipeline
designed explicitly for the linguistic and cultural nuances of Arabic. The model undergoes additional
pre-training using an extensive Arabic corpus, effectively capturing the language’s unique semantic,
syntactic, and cultural features. This phase ensures that the model’s foundational knowledge aligns
closely with Arabic linguistic conventions and cultural sensitivities. Subsequently, we employ Supervised
Fine-Tuning (SFT), utilizing native Arabic instructions paired with GPT-4-generated responses in
Arabic, significantly enhancing the model’s accuracy and coherence in both interpreting and generating
Arabic content. Complementing SFT, our model undergoes Reinforcement Learning with AI Feedback
(RLAIF), guided by a culturally sensitive reward model. This strategy explicitly integrates local values
and cultural expectations into the alignment process, resulting in a model that excels on standard
linguistic benchmarks and demonstrates heightened awareness and respect toward cultural contexts.
Extensive evaluations across various benchmarks confirm that our model sets a new state-of-the-art
standard, notably outperforming existing open Arabic LLMs in both linguistic proficiency and cultural
alignment.

Secondly, addressing the practical challenge of tokenizer vocabulary efficiency, this research highlights
an innovative method inspired by vocabulary acquisition in human second language learning, specifically
targeting Arabic-specific vocabulary constraints. Conventional tokenizers often encounter a high out-
of-vocabulary (OOV) rate when dealing with languages like Arabic, resulting in reduced knowledge
retention and degraded performance during early training stages. To overcome this limitation, the
introduced model employs a Progressive Vocabulary Expansion strategy, utilizing a modified Byte Pair
Encoding (BPE) algorithm. This method incrementally expands Arabic subwords within a dynamically
adjusted vocabulary throughout training, balancing and steadily reducing the OOV ratio. Through
rigorous ablation studies, this progressive expansion approach is empirically validated, demonstrating
notable improvements in both training efficiency and overall performance. Consequently, the proposed
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model achieves comparable, and in some cases superior, performance relative to leading Arabic LLMs
across multiple Arabic linguistic benchmarks.

Lastly, this research emphasizes the crucial aspect of alignment in developing reliable and safe
Arabic LLMs. Traditional methods often rely heavily on alignment techniques implemented during
post-training stages such as instruction tuning and reinforcement learning–approaches collectively
termed ”post alignment.” In contrast, this work advocates for the concept of ”native alignment,” where
alignment practices are embedded during the initial pre-training phase itself. Native alignment leverages
extensively curated and culturally-sensitive pre-training data, proactively preventing the incorporation
of unaligned content and biases from the outset. This strategic approach enhances model stability,
safety, and effectiveness by reducing reliance on post-hoc interventions. Comprehensive experiments
and further ablation studies conducted in this research substantiate the substantial benefits of native
alignment. Models trained under the native alignment paradigm exhibit enhanced alignment stability
and superior performance across various evaluation metrics. Importantly, this research also provides
open-source access to these developed Arabic LLMs, significantly enriching the Arabic LLM community
and supporting ongoing research and development efforts.

In conclusion, this research systematically addresses the critical need for culturally-aligned, linguis-
tically proficient, and democratized Arabic Large Language Models (LLMs). Through the integration
of targeted Arabic pre-training, progressive vocabulary expansion, supervised fine-tuning with native
Arabic instructions, culturally-sensitive reinforcement learning, and native alignment strategies, the
proposed models–particularly AceGPT-v2-32B and AceGPT-v2-70B–achieve state-of-the-art perfor-
mance across a wide range of Arabic benchmarks. As shown in Table 3, AceGPT-v2-70B notably
surpasses existing open Arabic models and demonstrates competitive results even when compared to
general-purpose models like GPT-3.5 and GPT-4. Furthermore, the implementation of native alignment
improves not only cultural sensitivity but also enhances model stability and safety. This comprehensive
approach sets new benchmarks for responsible, culturally respectful language technologies and offers
powerful open-source tools to advance Arabic NLP research and empower Arabic-speaking communities.

Arabic English Chinese

Model Avg.
MMLU
(trans)

MMLU$koto et al.) ARC BoolQ EXAMs
ACVA
clean

ACVA
all

Avg. MMLU RACE Avg. CMMLU CEval

ArabicGPT-8B 66.69 54.45 62.21 72.44 71.65 52.98 76.54 76.55 75.68 67.33 84.02 52.25 51.68 52.82
ArabicGPT-32B 70.63 57.12 68.70 78.07 77.22 52.89 81.36 79.03 82.86 74.43 91.28 77.11 76.10 78.11
ArabicGPT-70B 73.99 64.26 72.50 85.53 82.66 56.99 78.61 77.38 83.69 78.98 88.39 67.56 68.03 67.09
Jais-30B-v3 [1] 57.84 35.68 62.36 51.02 76.30 32.24 73.63 73.66 57.03 59.65 54.40 31.51 25.91 37.10
GPT-3.5 [2] 62.44 46.07 57.72 60.24 76.12 45.63 74.45 76.88 74.70 69.10 80.30 53.20 53.90 52.50
GPT-4 [3] 75.78 65.04 72.50 85.67 85.99 57.76 84.06 79.43 87.00 83.00 91.00 70.45 71.00 69.90

Table 3: Performance comparison of various models across Arabic, English, and Chinese benchmarks.
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4.15 Kais Feki: Bounded Linear Operators and Their Inequalities in
Hilbert and Semi-Hilbert Spaces

Kais Feki
Department of Mathematics, College of Science and Arts, Najran University, Najran 66462, Kingdom
of Saudi Arabia Email: kfeki@nu.edu.sa.

Abstract

This study explores bounded linear operators and their inequalities in both single and multivari-
able contexts within Hilbert and semi-Hilbert spaces. The primary focus is on the A-spectral radius
of A-bounded operators, its interplay with the A-numerical radius, and the characterization of
A-normaloid operators. New inequalities are established for the A-spectral radius and A-numerical
radius, providing deeper insights into operator behavior in these spaces.

Keywords: Positive operator, A-numerical radius, A-spectral radius, A-normaloid operator, A-
spectrum, operator inequality.
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4.16 Waled Al-Khulaifi: Exponential Decay in a Delayed Wave Equation
with Variable Coefficients

Waled Al-Khulaifi1,2,∗, Manal Alotibi1,3 and Nasser-Eddine Tatar1,4
1King Fahd University of Petroleum & Minerals, Department of Mathematics, Dhahran, 31261, Saudi
Arabia
2Interdisciplinary Research Center for Construction and Building Materials, KFUPM, Dhahran, 31261,
Saudi Arabia
3Center for Integrative Petroleum Research, KFUPM, Dhahran, 31261, Saudi Arabia
4Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, KFUPM, Dhahran,
31261, Saudi Arabia.

Abstract

In this talk, we consider a wave equation that incorporates strong damping and a time delay
term, both with weighted coefficients. Previous studies, such as [1], have established exponential
stability under the condition that the weight of the damping (or strong damping) dominates that
of the delay term. This condition has also been extended to cases involving weighted coefficients,
as demonstrated by [2]. Our study introduces a new perspective: we prove that exponential
stability can still be achieved, even in scenarios where the delay term is not dominated by the
damping term. A numerical example will be presented to validate our result.

* Lead presenter
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4.17 Fawaz Alharbi: Vector Fields on Bifurcation Diagrams of Quasi
Singularities

Fawaz Alharbi
Department of Mathematics, College of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract

We describe the generators of the vector fields tangent to the bifurcation diagrams and caustics
of simple quasi boundary singularities. As an application, submersions on the pair (G,B) which
consists of a cuspidal edge G in R3 that contains a distinguishing regular curve B, are classified.
This classification is used as a means to investigate the contact that a general cuspidal edge G
equipped with a regular curve B ⊂ G has with planes. The singularities of the height functions on
(G,B) are discussed and they are related to the curvatures and torsions of the distinguished curves
on the cuspidal edge. In addition to this, the discriminants of the versal deformations of the sub-
mersions that were accomplished are described and they are related to the dual of the cuspidal edge.

* Lead presenter

In a series of papers [2, 5], a new non- standard equivalence relation, on a space Rn equipped with
a variety Γ, are studied, and consequently simple classes were obtained. Classification of projections
of Lagrangian manifolds endowed with a hypersurface Γ is accomplished through the utilization
of these classes. As a result of the classification, the bifurcation diagrams and caustics of versal
unfolding of simple classes were described in [1], which conduct in a different manner. In particular, let

G(z, u) = G̃(z, u) + u0, with z ∈ Rn and u = (u0, u1 . . . , us) are parameters, be a versal unfolding of
the simple g(z) = G(z, 0) with respect the quasi equivalence relation. Then, the respective bifurcation
diagram in the space of parameters consists of two components W0 which is the standard discriminant
given by the equations G = 0 and ∂G

∂z
= 0 and W1 which is contained in W0 and it is determined by

constraints that define Γ. The caustics is located in the unfolding base ũ = (u1, . . . , us) (which does
not include λ0),and it also consists of two parts Σ0 which represents the singular set image of W0 under
the projection π : u → ũ and Σ1 = π(W1). The preceding construction yields that the bifurcation
diagrams is a pair W = (W0,W1) where W0 is a hypersurface in Rs

u and W1 ⊂ W0, while the caustics
is the union Σ∗ = Σ0 ∪ Σ1 with dim(Σ0) = dim(Σ1).

In the current work, we shall calculate the generators of the vector fields that are parallel to the
quasi bifurcation diagrams and caustics, obtained in [1]. This implies that, for the bifurcation diagrams,
we seek vector fields that preserve not only W0 but also the points of W0, and for the caustics we seek
vector fields that preserve both Σ0 and Σ1.

Result 1 The stationary algebra of W(Bk), for k = 2, 3, 4, and W(F2,3) is obtained.

Result 2: As application, we consider a cuspidal edge G equipped with a distinguished regular
curveB in it. The object appears as a bifurcation diagram of the quasi boundary class B3. We shall
apply the module of vector fields obtained to classify submersions on the pair (G,B). Then we use
such classification to study the contact of a general cuspidal edge equipped with a regular curve in
it via studying the singularities of height function on (G,B). Mind that, there are two distinguished
regular curves ΣG (the singular set) and B. Finally, we examine the duality of the two curves via
describing the versal deformation of the generic submersions that are obtained.
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4.18 Maha Alshammari: Specht Modules for the Symmetric Group S6

Maha Oudah Alshammari1 and Faryad Ali2
1IMAMU, Department of Mathematics and Statistics, maha-o@outlook.sa
2IMAMU, Department of Mathematics and Statistics, faali@imamu.edu.sa.

Abstract

The symmetric group S6 plays a key role in many areas of research in addition to mathematics
and therefore is of great importance. In this paper, we study the irreducible representations
of symmetric group S6 by using the Specht Modules, which are irreducible sub-modules of the
permutation modules. We provide a complete description of the construction of irreducible
representations via the Frobenius Formula. We describe the construction of Specht Modules Sλ

for each partition λ of 6. The group S6 is symmetric group of order 720 with 11 conjugacy classes
of its elements. We compute all the Specht Modules Sλ by applying the Frobenius Formula.

* Maha Oudah Alshammari

Let us consider the partition λ = (3, 2, 1). We compute the value of the Specht module corresponding
to the permutation (123) ∈ S6, which has cycle type µ = (3, 13). Thus, by the Frobenius Formula, the
value of Sλ at µ = (3, 1, 1, 1) will be the coefficient of x51x

3
2x3 in∏

1⩽i<j⩽3

(xi − xj)
4∏
i=1

(xµi1 + xµi2 + xµi3 )

where ∏
1⩽i<j⩽3

(xi − xj) = (x1 − x2)(x1 − x3)(x2 − x3)

and
4∏
i=1

(xµi1 + xµi2 + xµi3 ) = (x31 + x32 + x33)(x1 + x2 + x3)
3.

On computing the product, we obtain that the coefficient of x51x
6
2x3 is −2. Therefore S(3,2,1) = −2

corresponding to the permutation (123) ∈ S6. Similarly, for λ = (5, 1) corresponding to the permutation
(1 2 3)(4 5) ∈ S6 will be the coefficient of x61x

1
2 in the expansion of∏

1⩽i<j⩽2

(xi − xj)
3∏
i=1

(xµi1 + xµi2 ) = (x1 − x2)(x
3
1 + x32)(x

2
1 + x22)(x

1
1 + x12)

= x71 + x41x
3
2 − x31x

4
2 − x72.

We obtain that the value of S(5,1) corresponding to the conjugacy class with representative (1 2 3)(4 5) ∈
S6 is zero.
By using a similar technique as in the above cases, the value of S(2,2,2) at the permutation (1 2 3)(4 5 6) ∈
S6 will be equal to the coefficient of x41x

3
2x

2
3 in∏

1⩽i<j⩽3

(xi − xj)
3∏
i=1

(xµi1 + xµi2 + xµi3 )

In this case, we obtain S(2,2,2) = 3 corresponding to the conjugacy class with representative
(123)(456) ∈ S6.
We compute values of Sλ for each partition λ ∈ S6, which we produce in the following table.
Since the Specht Modules are irreducible, we obtain the full character table of S6.
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Table 4: Character Table of S6

Representative (1) (12) (123) (12)(34) (1234) (123)(45)
Cycle Type (16) (2, 14) (3, 13) (22, 12) (4, 12) (3, 2, 1)
Weight 1 15 40 45 90 120
χ1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1
χ3 5 3 2 1 1 0
χ4 5 −3 2 1 −1 0
χ5 10 2 1 −2 0 −1
χ6 10 −2 1 −2 0 1
χ7 9 3 0 1 −1 0
χ8 9 −3 0 1 1 0
χ9 5 1 −1 1 −1 1
χ10 5 −1 −1 1 1 −1
χ11 16 0 −2 0 0 0

Table 5: Character Table of S6 (Continued)

Representative (12345) (12)(34)(56) (123)(456) (1234)(56) (123456)
Cycle Type (5, 1) (23) (32) (4, 2) (6)
Weight 144 15 40 90 120
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 0 −1 −1 −1 −1
χ4 0 1 −1 −1 1
χ5 0 −2 1 0 1
χ6 0 2 1 0 −1
χ7 −1 3 0 1 0
χ8 −1 −3 0 1 0
χ9 0 −3 2 −1 0
χ10 0 3 2 −1 0
χ11 1 0 −2 0 0
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4.19 Mashael Algoulity: Optimal financial benchmark tracking in a market
with a Hull-White interest rate model

Mashael Algoulity1,∗ and Bujar Gashi2
1Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451,
Saudi Arabia. Email: malgoulity@ksu.edu.sa
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UK. Email:Bujar.Gashi@liverpool.ac.uk.

Abstract

We consider the problem of optimally tracking a general stochastic financial benchmark in an
incomplete market with a Hull-White interest rate model. Due to the possibly unbounded solution
to interest rate equation, and our use of quadratic tracking error as an optimality functional, the
resulting optimization problem is an example of a stochastic linear-quadratic control problem with
possibly unbounded coefficients. We find the solution to this problem in a explicit closed form
as an affine tracking-error feedback control the coefficients of which are determined by a linear
backward stochastic differential equation with unbounded coefficients.

* Lead presenter

Consider a financial market consisting of a bank account with price S0 and n stocks with prices Si,
i = 1, ..., n, which are solutions to the following equations:

dS0 = r S0 dt, , S0(0) > 0; dSi = Si(µidt+ σ′
idW ), Si(0) > 0, i = 1, ..., n,

Here the interest rate r, the expected rate of return µi, and the volatility σi, are stochastic processes,
whereas W is a standard Brownian motion. The investor’s wealth equation in this market is given as:

dy = (ry + u′B) dt+ u′σ dW, y(0) > 0, (4.19.1)

where the elements of vector B are µi − r and the rows of matrix σ are σi, i = 1, ..., n. The vector u is
the investor’s trading strategy, with its element ui representing the amount of wealth in the i’th stock,
for i = 1, ..., n. A basic problem in optimal investment is how to choose the trading strategy u so that
the wealth y tracks in a certain best possible (optimal) way a desired benchmark trajectory. This is
an example of an optimal stochastic control problem. One of its first solutions was given in [4] in the
setting of constant coefficients r, B, and σ; a particular benchmark process, such as an exponential
growth; and an infinite-horizon cost functional through which the quadratic tracking error is minimised.
More recently, in [2] we have considered a more general market model where all coefficients can be
random and possibly unbounded. The problem was formulated as a stochastic linear-quadratic (LQ)
control problem with possibly unbounded coefficients and its solution was obtained by the completion
of squares method. The solution turned out to be an affine tracking-error feedback control law the
coefficients of which are determined by a pair of linear backward stochastic differential equations
(BSDEs). Although our result in [2] is rather general, it does exclude the well-known Hull-White
interest rate model (and its special cases of the Vasicek model, Ho-Lee model, and Merton model) the
equation of which is:

dr = (αr + β)dt+ γ′dW, r(0) > 0,

where α, β, γ are some given functions.
In this paper, we consider the problem of optimally tracking a general stochastic financial benchmark

in the formulated incomplete market with the interest rate process r following the Hull-White model.
The financial benchmark process is:

dx = x1 dt+ x′2 dW, x(0) > 0, (4.19.2)
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where x1 and x2 are given processes. The optimality criterion that we use is the terminal quadratic
tracking error, and this leads to the following optimal financial benchmark tracking problem:{

min
u(·)∈A

E
[
(y(T )− x(T ))2

]
s.t. (4.19.1) and (4.19.2),

(4.19.3)

for some suitable admissible set of controls A. This renders the formulated optimization problem an
example of a stochastic LQ control problem with random and possibly unbounded coefficients. In order
to state its solution, consider the BSDE:

dp = p1dt+ p′2dW, p(T ) = 0 a.s.,

p1 := −p
h

[
ḣ+ hqβ +

1

2
h q2γ′γ + hr(q̇ + αq)

]
− [2(rx− x1) + pr] + h q γ′(−2x2 + p2)

+(B′ + qγ′σ′)(σσ′)−1
(
− 2x′2σ

′ + p′2σ
′ + p(B′ + qγ′σ′)

)
,

(4.19.4)

with h and q being solutions to certain ordinary differential equations. Let the control process u∗,
which is of a tracking-error y − x affine feedback form, be defined as:

u∗(t) := −1
2

(
σσ′)−1[

(y − x) (2B′ + 2qγ′σ′) +
(
− 2x′2σ

′ + p′2σ
′ + p(B′ + qγ′σ′)

)]′
, t ∈ [0, T ].

Result 1 If u∗(·) ∈ A, then u∗ is the unique solution to problem (4.19.3).

Idea of the proof: We use the completion of squares-method to find the solution. This involves
finding sufficient conditions for the solvability of equation (4.19.4), which is with unbounded coefficients,
and the integrability of certain processes. We have drawn ideas from our recent papers [1], [2], [3]. This
is an interesting case of a stochastic LQ control problem that does not require Riccati BSDE.
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4.20 Noura Alhouiti: Scalar and Holomorphic Bisectional Curvatures for
Pointwise Hemi-slant Submanifolds of Complex Space Forms

Noura Alhouiti
Department of Basic Sciences, University Collage of Haqel, University of Tabuk, Saudi Arabia.

Abstract

In the present article, we examine the scalar and holomorphic bisectional curvatures for
pointwise hemi-slant submanifolds of complex space forms. We provide a general example of
pointwise hemi-slant submanifold in the Euclidean space. Then, we give these submanifolds
a characterization. Moreover, we compute the Ricci tensor, scalar curvature and bisectional
curvature.

Introduction

A significant class of submanifolds of almost Hermitian manifold is the class of pointwise slant
submanifolds were examined by B.-Y. Chen and O. J. Garay in [1]. Since then, numerous geometers
have investigated these submanifolds in different structures such as [2, 3, 5]. After that, the idea of
pointwise hemi-slant submanifolds was appeared in [4, 6].

In this paper, we focus on scalar and holomorphic bisectional curvatures for pointwise hemi-slant
submanifolds of complex space forms.

Pointwise hemi-slant submanifolds of a complex space form

Let M̃(c) be a complex space form and M a submanifold of M̃(c). Then, M is said to be a pointwise
hemi-slant submanifold if it admits Dθ and D⊥ as orthogonal distributions such that:

(i) The orthogonal direct decomposition TM = Dθ ⊕D⊥ is admissible in the tangent space TM .

(ii) With slant function θ, the distribution Dθ is pointwise slant.

(iii) The distribution D⊥ is a totally real.

Now, we present some findings for this submanifold as follows:
Theorem 1 For any complex space form M̃(c), let M be a pointwise hemi-slant submanifold of

M̃(c), such that c ̸= 0. If the second fundamental form h is parallel, then, M is either CR or totally
real submanifold of M̃ .

Theorem 2 For any complex space form M̃(c), let M be a pointwise hemi-slant submanifold of
M̃(c), such that c ̸= 0. If the curvature tensor R⊥ of the normal connection ∇⊥ vanishes identically
and AξAfξ = AfξAξ, for any ξ ∈ Γ(T⊥M). Therefore, M is totally real submanifold of M̃ .

Theorem 3 For any complex space form M̃(c), let M be a pointwise hemi-slant submanifold of
M̃(c). Then, we have the Ricci tensor S of M as follows:

S(X,W ) =
c

4

{
n+ 6 cos2 θ

}
g(X,W ) + n g(σ(X,W ), H⃗)

−
n∑
r=1

g(σ(X, er), σ(er,W )),

for every X,W ∈ Γ(TM), where n = 2p+ q for 2p = dim(Dθ) and q = dim(D⊥).
From this theorem, we conclude the following corollary.
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Corollary 4 For any complex space form M̃(c), let M be a totally umbilical pointwise hemi-slant
submanifold of M̃(c). Then, the Ricci tensor S of M satisfies

S(X,W ) =
c

4

{
n+ 6 cos2 θ

}
g(X,W ),

for every X,W ∈ Γ(TM).
Theorem 5 For any complex space form M̃(c), let M be a pointwise hemi-slant submanifold of

M̃(c). Then, the scalar curvature τ of M is given by

τ =
c

4
n(n+ 6 cos2 θ) + n2∥H⃗∥2 − ∥σ∥2.

The above theorem immediately leads to the following corollary.
Corollary 6 For any complex space form M̃(c), let M be a totally umbilical pointwise hemi-slant

submanifold of M̃(c). Subsequently, M , the scalar curvature τ of M fulfills

τ =
c

4
n(n+ 6 cos2 θ).

Theorem 7 For any complex space form M̃(c), let M be a pointwise hemi-slant submanifold of
M̃(c). Then, for any unit vectors X ∈ Γ(Dθ) and Z ∈ Γ(D⊥), the holomorphic bisectional curvature
HB(X,Z) of (X,Z) on M is given by

HB(X,Z) = −2
(
∥h(X,Z)∥2 + g(J∇JXZ,∇XZ)

)
.
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4.21 Nuha Alasmi: Optimal investment in a multi-stock market with
borrowing and unbounded random coefficients
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Abstract

We consider the problem of optimal investment in a multi-stock market with borrowing,
unbounded random coefficients, and the power utility from terminal wealth. The resulting opti-
mization problem, is a multi-input stochastic optimal control problem with a nonlinear system
dynamics and unbounded random coefficients. A certain multi-dimensional piece-wise completion
of squares method and a linear backward stochastic differential equation are used to find an
explicit closed-form solution as a linear state-feedback control, the gain of which can have up to
five different regimes.

* Lead presenter

Consider a market of a bond with price B and n stocks with prices Si, i = 1, ..., n, that are solutions
to following equations:

dB = Brdt, B(0) > 0; dSi = Si(µidt+ σ′
idW ), Si(0) > 0, i = 1, ..., n.

Here r is the bond interest rate, µi and σi are the appreciation rate and volatility of the i’th stock, and
W is a d-dimensional standard Brownian motion. If R is the borrowing interest rate, then the wealth
equation of an investor in this market is given as:

dy =
(
ry + u′a− b[u′1− y]+

)
dt+ u′σdW, y(0) > 0, (4.21.1)

where a := [µ1− r, ..., µn− r]′, b := R− r, 1 is an n-dimensional vector of ones, u is the trading strategy
with its i’th element representing the amount of wealth in the i’th stock, [u′1− y]+ := max[0, u′1− y],
and σ is the volatility matrix with σ′

i as its i’th row. The market coefficients r, a, b, and σ are stochastic
processes in general and possibly unbounded. The optimal investment problem in this market with
power utility from terminal wealth is the following optimal stochastic control problem:

min
u(·)∈A

−1

γ
E [yγ(T )] ,

s.t. (4.21.1).

(4.21.2)

where γ ∈ (0, 1), and A is a suitable admissible set of controls. The first solution to problem (4.21.2)
was given in [6] under the assumption of complete market, i. e. n = d, and deterministic coefficients.
More recently, there has been an increasing interest in the more realistic case of markets with random
and possibly unbounded coefficients (see, e. g., our recent works [1]- [5], and the references therein).
These recent works have focused exclusively in the market with a single stock, i.e. the case with n = 1,
and have left open the problem in multi-stock market .

In this paper, we derive an explicit closed-form solution to the problem (4.21.2) for a class of multi-
stock markets. The derivation now is more involved and it turns out to be of a linear state-feedback
form with up to five different regimes (as compared to only three different regimes when n = 1). In
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order to state this solution, we first introduce the following processes: ξ := (1 − γ)σσ′, f̄ := α′
1ξα1,

f := (α′
1a− α′

1ξα0), where α
′
0 := [1 0 ... 0] is n-dimensional, and α′

1 := [−1n−1 In−1] with 1n−1

being an (n−1)-dimensional vector of ones and In−1 an (n−1)-dimensional identity matrix. Further let:
g1 := −0.5a′ξ−1a; g2 := −0.5(a− b1)′ξ−1(a− b1)− b; h1 := (ξ−1a)′1; h2 := (ξ−1a− ξ−1b)′1; k1 := ξ−1a;
k2 := ξ−1(a− b1), k3 := α0 + f̄−1f ′, and

Γ :=



k1 if h1 ≤ 1 and h2 ≤ 1,

k1 if g1 ≤ g2, h1 ≤ 1 and h2 > 1,

k2 if g1 > g2, h1 ≤ 1, and h2 > 1,

k2 if h1 > 1, and h2 > 1,

k3 if h1 > 1 and h2 ≤ 1,

Result 1 If u∗ := Γy is an element of A, then u∗ is the unique solution to problem (4.21.2).

Idea of the proof: We develop a certain multi-dimensional piece-wise completion of squares method,
combined with the theory of linear backward stochastic differential equations with unbounded coefficients,
to prove Result 1. Our approach borrows several ideas from [1]- [5], which require a considerable
generalisation.
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4.22 Rahaf Al-Zammam: Sequential Tests Based on F-Distribution for
Detecting Active Effects in Unreplicated Two-Level Factorial Designs

A.A.Al-Shiha1 and R.A.Al-Zammam2

1Department of Mathematics and Sciences, Prince Sultan University, Saudi Arabia
2Department of Statistics and O.R ,King Saud University, Saudi Arabia

Abstract

This paper presents a novel methodology in the field of non-replicated factor analysis for
detecting active effects, which are of great importance in various scientific and practical applications.
Factorial experiments play a crucial role in many research areas, as they allow researchers to
determine which factors significantly influence outcomes. However, in unreplicated designs,
distinguishing between active and inactive effects is a challenging task, particularly when error
variance estimation is required. Traditional methods, such as Lenth’s approach, have been widely
used to detect active effects, relying heavily on the assumption that most effects are inactive and
can be used to estimate the experimental error variance( Sparsity Assumption) However, these
assumptions may not always hold, leading to inaccuracies in detecting significant effects.

The primary objective of this paper is to introduce a more reliable, systematic, and effective methodology
that outperforms Lenth’s well-established approach. The proposed method eliminates the need for
error variance estimation, which is a key limitation in existing methods. Instead, it leverages the
F-distribution for significance testing, ensuring robustness and increased accuracy in identifying active
effects under various experimental conditions. The method is particularly useful in scenarios where the
assumption of rare active effects does not hold, making it a valuable tool for researchers working with
non-recursive factor experiments This paper aims to achieve several key objectives.

1. Independence from the Sparsity Assumption making it suitable for handling dense or complex
data. This contrasts with traditional models, which heavily depend on this assumption.

2. Straightforward and uncomplicated implementation mechanisms, making it easy to understand
and apply even for non-specialists.

3. The test does not require the estimation of error variance, which reduces computational
complexities associated with data analysis and enhances efficiency and speed.

4. The test is built on the statistical F-distribution, which improves result accuracy and facilitates
its application in practical statistics.

5. The test can utilize existing traditional tables for critical values of the F-distribution, eliminating
the need to create new tables and providing additional ease of application.

To validate the proposed methodology, an extensive Monte Carlo simulation study was conducted
using the R programming language. This simulation evaluated test size and statistical power, comparing
the accuracy and effectiveness of the proposed method against Lenth’s approach. Various scenarios
were analyzed, including different significance levels, varying sample sizes, and diverse active effect
values, to ensure a comprehensive evaluation. The results, presented through figures clearly illustrate
the superiority of the proposed method in all tested conditions. Additionally, three applications
were analyzed to assess the practical relevance of the proposed method. In each case, both the
proposed method and Lenth’s method were applied to detect active effects, and the results were
compared. The findings demonstrated that the proposed method consistently provided more accurate
and reliable results, confirming its potential for use in diverse research and industrial settings. The
conclusion of this paper summarizes the key findings from the theoretical analysis, simulation study,
and practical applications. The results strongly support the effectiveness of the proposed methodology
and its advantages over existing techniques. By eliminating the need for error variance estimation, the
proposed method simplifies factorial analysis while maintaining statistical rigor and accuracy. this
research contributes to the advancement of statistical methodologies in experimental analysis, offering a
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more reliable and robust alternative to traditional methods for detecting active effects in non-recursive
factorial experiments.

Result (1)
Suppose that y1, y2, . . . , ym are independent, and yi ∼ N(µi, τ

2); i = 1, 2, . . . ,m, in other words:

y =

y1
...
ym

 ∼MVN(µ, τ 2I) where µ =

µ1
...
µm


then:

1. Qj =
(yj−µj)2

τ2
∼ χ2

(1), j = 1, 2, . . . ,m
(
Qj = Qj(y)

)
2. Q∗

j =
∑m

i=1
i ̸=j

Qi ∼ χ2
(m−1), j = 1, 2, . . . ,m

(
Q∗
j = Qj(y)

)
3. Qj and Q

∗
j are independent

4. Fj =
Qj

Q∗
j/(m−1)

∼ F (1,m− 1)

Result (2)
Consider the random variables mentioned in Result (1), we need to test the following null hypothesis

and alternative hypothesis:

H0 : µ1 = µ2 = · · · = µm = 0 ⇔ µ = 0

H1 : µk ̸= 0, for some i ⇔ µ ̸= 0

Under H0, we have y ∼MVN(0, τ 2I), and hence we have the following:

1. Qj =
y2j
τ2

∼ χ2
(1).

2. Q∗
j ∼ χ2

(m−1).

3. Qj and Q
∗
j are independent.

4. Fj =
Qj

Q∗
j/(m−1)

∼ F (1,m− 1).

Therefore, we reject H0 at a significance level α if:

Fj > Fα/2(1,m− 1) or Fj < F1−α/2(1,m− 1)

for at least one j.
For example, for j = 1 and under H0, we have:

F1 =
y21∑m

i=2 y
2
i /(m− 1)

∼ F (1,m− 1).

The proofs of Result (1) and Result (2) are straightforward.

105



References

[1] G. E. P. Box and R. D. Meyer: An analysis for unreplicated fractional factorials, Technometrics, 28
(1986), 11-18.

[2] M. Hamada and N. Balakrishnan: Analyzing unreplicated factorial experiments: A review with some new
proposal, Statistica Sinica, 8 (1998), 1-41.

[3] R. V. Lenth: Quick and easy analysis of unreplicated factorials, Technometrics, 31 (1989), 469-473.

[4] T. M. Loughin and W. Noble: A permutation test for effects in an unreplicated factorial design,
Technometrics, 39 (1997), 180-190.

[5] P. D. Haaland and M. A. O’Connell: Inference for effect-saturated fractional factorials, Technometrics,
37 (1995), 82-93.

[6] A. A. Al-Shiha and S. S. Yang: A multistage procedure for detecting significant effects in unreplicated
factorial designs, Biometrical Journal, 41 (1999), 659-670.

[7] M. A. F. Aboukalam and A. A. Al-Shiha: A robust analysis for unreplicated factorial experiments,
Computational Statistics and Data Analysis, 36 (2001), 31-46.

[8] F. Aboukalam: More on quick analysis of unreplicated factorial designs avoiding shrinkage and inflation
deficiencies, International Journal of Reliability and Applications, 7 (2006), 167-175.

[9] D. C. Montgomery: Design and Analysis of Experiments, 9th Edition, Wiley, 2017, pp. 1, 12-40.

[10] A. A. Al-Shiha and M. A. F. Aboukalam: Quick and easy analysis of unreplicated factorial designs
avoiding shrinkage deficiency, Journal of Statistical Theory and Applications, 6 (2007), 35-43.

[11] F. Aboukalam, M. Alharbi, and M. Ishaq Bhatti: Improved approximation scales for unreplicated factorial
experiments, Journal of Statistical Theory and Applications, 21 (2022), 200-216.

106



4.23 Shreen El-Sapa: Effect of slippage on a translational motion of two
interacting non-concentric spheres squeezed by couple stress fluid

Shreen El-Sapa1 Noura S. Alsedais 2

1Department of Mathematics and Computer Science, Faculty of Science, Damanhour University,
Damanhour, Egypt
2Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman Univer-
sity, 11671 Riyadh, Saudi Arabia.

Abstract

This study investigates the behavior of couple stress fluid that occupies the space between two
non-concentric spheres under slippage conditions. The research is innovative in its application
of velocity slip conditions to the sphere surfaces. Additionally, the spheres translate axially at
various linear speeds. The solutions are derived semi-analytically using a superposition method
combined with a numerical collocation approach, specifically at low Reynolds numbers. This
paper also examines the hydrodynamic drag force that the fluid exerts on the internal particle.

4.23.1 Introduction

The paper addresses the limitations of traditional nonpolar fluids in modeling fluid dynamics with
suspended particles, leading to increased interest in polar fluids, particularly Stokes’ couple stress fluid.
This type of fluid is significant for various industrial applications, such as crude oil extraction and
cooling processes, due to its unique length-dependent properties. Previous research has investigated
different flow scenarios involving couple stress fluids and highlighted the importance of slip conditions,
which challenge the conventional no-slip boundary assumption [1]- [3].

4.23.2 Field equations and mathematical formulation

The steady motion of an incompressible couple stress liquid are dictated by [1]:

ui,j = 0, µui,jj − ηui,jjkk − p,i = 0, (1)

ωi =
1

2
eijkuk,j. (2)

Here, the constant µ is the fluid viscosity, η is the viscosity of 1st couple stress, ui is the velocity of
the fluid, and p is the fluid pressure. Furthermore, boundary conditions on the surfaces of the spheres
rj = aj, j = 1, 2:

1. Slippage restriction: βj
(
urj − Uj cos θj

)
= 0, βj

(
uθj + Uj sin θj

)
= τrjθj ,

where βj is the slippage parameter changing its values from zero to infinity.

2. No couple stresses: mijni = 0 on
where ni is the unit normal to the surface of the solid sphere.

In addition, the vorticity and velocity vectors are shown by u⃗ = (ur(r, θ), uθ(r, θ), 0), ω⃗ = (0, 0, ωϕ(r, θ)).
Eliminating the pressure from (1) leads to the partial differential equation:

E4
(
E2 − κ2

)
ψ = 0, (3)
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where the material constant is defined as κ =
√

a2µ
η
. The solution of (3) obtained as:

ψ =
∞∑
n=2

[
Anr

−n+1 +Bnr
−n+1/3 + Cn

√
rKn− 1

2
(kr)

]
Im
n
(ζ), (4)

where Kn(.) is the modified Bessel function of the second kind, and Imn(ζ) denotes the Gagenbauer
functions. We get the velocity components from this relations ur = − 1

r2 sin θ
∂ψ
∂θ
, uθ =

1
r sin θ

∂ψ
∂r
.

The tangential stress can be obtained from this relation:

τrθ = µ

[
1

r

∂ur
∂r

− uθ
r

+
∂uθ
∂r

]
− 2η

[
∂2ωϕ
∂r2

+
2

r

∂ωϕ
∂r

+

(
1

r2
∂2

∂θ2
+ cot θ

∂

∂θ
− csc2 θ

)
ωϕ

]
(5)

4.23.3 Results

Slippage parameters: Perfect and partial slippage increase the normalized drag force compared to
no-slip conditions [3], especially as interatomic forces between solid and liquid rise.

Size ratio: As the size ratio a1
a2

approaches 0.99, the normalized drag force increases, indicat-
ing that larger size discrepancies enhance drag, with convergence of drag values observed at higher ratios.

Size ratio: As the size ratio a1
a2

approaches 0.99, the normalized drag force increases, indicat-
ing that larger size discrepancies enhance drag, with convergence of drag values observed at higher ratios.

Velocity ratio: Increasing the velocity ratio U2

U1
generally decreases the normalized drag force,

highlighting the importance of relative speeds in fluid dynamics between the spheres.

Couple Stress Parameters: Increasing the first couple stress parameter significantly raises the
drag force, indicating its strong influence on fluid behavior. In contrast, an increase in the second
couple stress parameter tends to lower the drag force.
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4.24 Maha Helmi: Approximate model for the propagation of surface
waves on a coated cylindrical half-space with imperfect interface and
Winkler-Fuss load

Maha M. Helmi
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif
21944, Saudi Arabia. Email: m.hlmi@tu.edu.sa

Abstract

In the present communication, we show how elastic surface waves propagate on a coated cylin-
drical half-space by deriving an approximate equation of anti-plane motion through the application
of the asymptotic approximation method; the untapped asymptotic approximation techniques
that derive the consequential effective boundary conditions have been deployed. The coated
structure was assumed to have generalized imperfect conditions on its interface of the coating
and half-space layers, while at the same time endowed with a Winkler-Fuss elastic foundation
on the coating medium, serving as a shearing mechanical loading. Comparatively, the derived
approximate results have been noted to agree with the corresponding analytical results, which
comprise both the displacements, stresses and the resultant dispersion relations. Moreover, some
realistic contrast setups have been analyzed in the end.
Keywords: Anti-plane shear motion, coated half-space, cylindrical composites, imperfect inter-
face, elastic foundations, asymptotic analysis.

4.24.1 Introduction

Propagation of surface waves on elastic structures and composites is an important phenomenon of
contemporary interest. The recent development in modern structures and materials has triggered vast
interest from the research community to propose optimal models and methods for perfect implementation
and analysis, respectively. Mathematically, various researchers have both recently and long ago modeled
the propagation of surface waves in composite and multilayered media [1, 2], including the interaction
of multilayered media with the imposed mechanical loads that are exerted externally [3, 4], and the
on the other hand, the vast relevance of siding contact conditions presumed on the interfaces of
the multilayered structures, the so-called imperfect interfacial conditions [5]. Certainly, these two
phenomena of elastic foundations and imperfect interface between layers have been extensively examined
in relation to elastic structures that appear mostly in rectangular coordinate systems, with a few
studies concerning structures in cylindrical and spherical coordinate settings. Moreover, the importance
of elastic foundations in supporting the geometrical configuration of elastic structures can never be
overemphasized. For this season, the literature is full of various considerations and proposals of several
elastic foundations, with the view to attaining perfect structural dynamics.

4.24.2 Problem formulation

This study considers the anti-plane shear motion in a cylindrical coordinate system such as the
displacement fields take the following setting: ur = 0, uθ = u(r, z, t) and uz = 0, where r is the
radius of the cylinder, z is the azimuthal variable, while t is the temporal variable. Further, with the
consideration of a coated cylindrical half-space, see Figure 1, the equation of anti-plane shear motion
in the respective layers is presided over by the following out-of-plane displacement field.
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τ prθ,r + τ pθz,z +
2

r
τ prθ = ρp

∂2up
∂t2

, p = 1, 2, (4.24.1)

where up are the out-of-plane displacement fields in the coating (0 ≤ z ≤ h) when p = 1, and the
half-space (h ≤ z < ∞) when p = 2; h is a finite thickness. In addition, τrθ and τ

p
θz are the related

shear stresses expressed as follows

τ prθ = µp

(
∂up
∂r

− up
r

)
, and τ pθz = µp

∂up
∂z

, p = 1, 2, (4.24.2)

where µp for p = 1, 2 are the material constants in the layers of the coated cylinder, while ρp are the
corresponding densities in the layers.
Boundary conditions: At z = 0, we have a mechanical load P as follows τ 1θz = −P, at z = 0.
Certainly, upon considering the load to be due to Winkler-Fuss elastic foundation, P then takes
the following expression [4] P = χu1, where χ is the rigidity of the Winkler-Fuss elastic foundation.
Moreover, when χ = 0, the loading reduces to that of the known case of traction-free surface condition.
Moreover, as z → ∞, we imposed a boundedness condition at infinity as follows: u2 → 0, as z → ∞.
Imperfect interfacial conditions: The interface between the coating and the half-space is at z = h.
Thus, the following generalized sliding contact conditions are considered [5]

u1 − u2 = ψτ 2θz, τ 1θz = τ 2θz, at z = h, (4.24.3)

where ψ ̸= 0 is the imperfect interface (sliding contact) parameter; besides, one gets perfect interface
when ψ = 0.

To solve the governing model, one first re-write (4.24.1) using the constitutive relations in (4.24.2)
as follows

∂2up
∂r2

+
1

r

∂up
∂r

− up
r2

+
∂2up
∂z2

=
1

c2p

∂2up
∂t2

, p = 1, 2 (4.24.4)

where cp =
√

µp
ρp

for p = 1, 2, are the shear speeds in the respective layers.

Next, Eq. (4.24.4) features the Bessel differential equation of order one in the radial r, a harmonic
wave solution of the following form:

up(r, z, t) = Vp(z)J1(kr)e
iωt, p = 1, 2 (4.24.5)

where k is the dimensional wavenumber, J1(.) is the Bessel function of the first kind of order one, ω is
the angular frequency, while i is the imaginary unit.
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Accordingly upon utilizing Eq. (4.24.5) in Eq. (4.24.4), the following reduced differential equations
are thus obtained

d2Vp
dz2

− α2
pVp = 0, αp =

√
k2 − ω2

c2p
, p = 1, 2 (4.24.6)

which then yield the following respective displacement fields in the governing layers of the coated body

u1(r, z, t) =(A1 cosh(α1z) +B1 sinh(α1z))J1(kr)e
iωt, 0 ≤ z ≤ h,

u2(r, z, t) =A2J1(kr)e
−α2z+iωt, h ≤ z <∞,

(4.24.7)

where A1, B1 and A2 are constants to be determined, while B2 → 0 as z → ∞.
Accordingly, with the utilization of the imposed boundary and interfacial conditions in Eqs. (??)-

(4.24.3), the respective exact solutions in Eq. (4.24.7) thus yields the following exact dimensionless
dispersion relation (

µ (ξ2Ψ− 1) ξ21 + ξ2X
)
tanh (ξ1) = ξ1 ((µXΨ+ 1)ξ2 − µX) , (4.24.8)

where

ξ1 =
√
K2 − Ω2, ξ2 =

√
K2 − ℧2Ω2, (4.24.9)

with

K = kh, Ω =
ωh

c1
, ℧ =

c1
c2
, Ψ =

ψµ2

h
, X =

χh

µ1

, (4.24.10)

where K is the dimensionless wavenumber, Ω is the dimensionless frequency, ℧ is the dimensionless
speed ratio, Ψ is the dimensionless sliding or imperfect contact parameter, while X is the dimensionless
stiffness of the Winkler-Fuss load; moreover, the rigidity ratio and density ratio are expressed as follows
µ = µ1

µ2
, and ρ = ρ1

ρ2
, respectively.
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4.25 Ibrahim Shaaban: Fractional Differential-Integral Inequalities and
Their Applications in Medicine: A Mathematical Model for Cancer
Treatment

Ibrahim Mohammed Shaaban
Department of Basic Sciences Common, First Year Deanship, King Saud University, Saudi Arabia.

Abstract

Fractional differential-integral inequalities provide a framework for modeling complex biological
systems characterized by memory and hereditary properties. This research addresses their
application in medicine, focusing on cancer dynamics. We propose a model based on a fractional
inequality to describe tumor growth and treatment, incorporating immune response and therapeutic
interventions. The stability of the model is analyzed theoretically, and numerical simulations
confirm its effectiveness, highlighting the advantages of fractional calculus in understanding and
optimizing cancer therapies.
* Lead presenter

4.25.1 Introduction

Mathematical models play a crucial role in understanding biological systems and designing effective
treatments. Traditional differential equations often fail to capture the complexities of biological
processes involving memory effects. Fractional calculus, with its nonlocal derivatives and integrals,
offers a powerful alternative. This study explores fractional differential-integral inequalities and their
applications in modeling cancer dynamics, aiming to provide deeper insights into tumor growth and
therapeutic strategies.

4.25.2 Fundamental Concepts

Fractional Calculus Fractional calculus extends the concept of derivatives and integrals to non-
integer orders, enabling the modeling of systems with memory and hereditary properties. The two
primary definitions used in this study are:

Caputo Derivative:

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)α−n+1
dτ, n− 1 < α ≤ n. (4.25.1)

Riemann-Liouville Derivative:

0D
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(τ)

(t− τ)α−n+1
dτ, n− 1 < α ≤ n. (4.25.2)

4.25.3 Fractional Differential-Integral Inequalities

Fractional differential-integral inequalities involve fractional derivatives and integrals, providing a
versatile tool for analyzing dynamic systems. These inequalities describe relationships between various
states of a system, often capturing intricate dependencies more accurately than classical counterparts.
A general form of such inequalities can be expressed as:

Dα
t x(t) ≤ f

(
t, x(t), Dβ

t x(t)
)
, 0 < α, β ≤ 1. (4.25.3)

where f is a given function that encapsulates the system’s dynamics. These inequalities are particularly
useful in ensuring boundedness, stability, and convergence of solutions in complex systems.
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4.25.4 Application to Cancer Dynamics

Model Formulation The proposed model represents tumor growth, immune response, and treatment
effects using a fractional differential-integral inequality:

Dα
t x(t) ≤ −ax(t) + bxn(t)− cu(t). (4.25.4)

� Dα
t : Fractional derivative of order α.

� x(t) : Tumor size at time t.

� u(t) : Treatment effect (e.g., chemotherapy, immunotherapy).

� Constants a, b, c : Represent biological interactions.

� n : Exponent reflecting tumor growth dynamics.

This inequality ensures that the tumor size dynamics remain bounded under specific treatment
protocols, reflecting realistic biological constraints.

4.25.5 Results

� Graphical Analysis: The results demonstrate tumor dynamics under different treatment scenarios,
constrained by a fractional inequality.

� Effect of Fractional Order: The parameter α significantly influences the system’s memory and
response properties, while the inequality ensures realistic bounds on tumor growth.

� Numerical Results: Simulations show that the proposed model accurately predicts tumor size
chang over time, particularly when initial conditions and biological parameters are adjusted.

� Therapeutic Effectiveness: Results confirm that therapeutic interventions, such as chemotherapy
an immunotherapy, substantially reduce tumor growth rates, especially when parameters a, b, c
are carefully chosen.

� Parameter Effects: The model reveals that increasing b reflects nonlinear interactions among
canceı cells, while decreasing a lowers initial growth rates.
Practical Application: The model can be used to design personalized treatment protocols based
on patient-specific biological characteristics.
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4.26 Reemah Alhuzally: On a Two–Dimensional Dirichlet Type Problem
for a Linear Hyperbolic Equation of Fourth Order
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hothali@bu.edu.sa

Abstract

A linear hyperbolic equation of fourth order a Dirichlet type boundary problem in an orthog-
onally convex domain is investigated. Sharp sufficient conditions guaranteeing solvability and
well–posedness of the problem under consideration are established.

* Lead presenter
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4.27 Sami Alabiad: Full classification of a class of finite local rings of
length 5

Sami Alabiad and Alhanouf Ali Alhomaidhi
Department of Mathematics, College of Science, King Saud University

Abstract

This talk aims to explore finite local rings characterized by the established invariants p, n,m, l,
and k, where p denotes a prime number. We offer a detailed characterization of Frobenius local
rings with length l = 5 and t = 3, 5, where t denotes the index of nilpotency of the maximal ideal.
The significance of Frobenius rings is evident in coding theory, as it has been shown that two
famous theorems by MacWilliams–the Extension Theorem and the MacWilliams identities–are
relevant not only to finite fields but also to finite Frobenius rings. Consequently, we categorize
and enumerate Frobenius local rings of order p5m for t = 3, 5, delineating their characteristics in
relation to diverse values of n.

*Lead Presenter

Result 1: The number of Frobenius local rings of length 5 with invariants p, n,m, k and index of
nilpotency t = 5 is given in the following table:

Table 6: Numbers of chain rings of length 5 and of order p5m.

Char (R) = pn Number of Non-Isomorphic Classes

n = 1 1

n = 2 and ip = 3


{
3, if p ≡ 1 (mod 3),

1, if p ̸≡ 1 (mod 3), (p ̸= 3),
1
m

∑m−1
i=0 3(i,m), if p = 3

n = 2 and ip = 4


{

2(2m−1)
m

, if pm ≡ 3 (mod 4),
4
m

∑m−1
i=0 (pi − 1, 4), if pm ≡ 1 (mod 4), (p ̸= 2),

1, if p = 2

n = 3

{
2, if p ̸= 2,
1
m

∑m−1
i=0 2(i,m), if p = 2

n = 4 0

n = 5 1

Idea of the proof: The proof is executed by examining all possible relationships among the
elements of the minimal generating set of the maximal ideal over the primary subring for n = 1, 2, 3, 4,
and 5.

Result 2: The number of Frobenius local rings of length 5 with invariants p, n,m, k and index of
nilpotency t = 3 is

N =

{
16, if p = 2,

17, if p ̸= 2.
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Idea of the proof: The result is demonstrated by examining two cases: (i) p = 2; (ii) p ̸= 2. We
identify all potential relationships between the generators of the maximal ideal over the coefficient
subring where n = 1, 2, and 3.
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4.28 Sarah Aljohani: New Developments in Fc-Contractions and Fixed-
Circle Theorems in Metric-Like Spaces

Sarah Aljohani Department of Mathematics and Sciences Prince Sultan University Saudi Arabia
sjohani@psu.edu.sa

Abstract

This study investigates fixed-circle theorems within the context of metric-like spaces, utilizing
methods developed by Cirić-type, Hardy-Rogers, Reich, and Chatterjea. We introduce a novel
class of Fc-contractions, providing a deeper understanding of circular symmetries in metric-like
spaces. Through practical examples, we demonstrate the versatility and potential applications
of these contractions. Furthermore, we explore the role of discontinuous self-mappings that
maintain fixed circles, offering new insights into mappings with discontinuities. This work not
only advances theoretical understanding but also lays the groundwork for future applications in
fields such as robotics and economic modeling, where such mathematical structures can be utilized
for optimization and stability analysis.

* Lead presenter
Let (Y, δ) be a metric space and S be an Fc with w0 ∈ Y . Define the number σ by

σ = min{δ(w, Sw) : w ̸= Sw}(1)
If there exist t > 0, F ∈ F, and w0 ∈ Y , such that for all w ∈ Y :

δ(w, Sw) > 0 ⇒ t+ F (δ(w, Sw)) ≤ F (m(w,w0)),

where

m(w,w0) = max
{
|δ(w,w0)− δ(w0, w0)|, δ(w, Sw), δ(w0, Sw0),

1

2
[|δ(w, Sw0)− δ(w0, w0)|+ |δ(w0, Sw)− δ(w0, w0)|]

}
.

then S is said to be a C-type Fc-contraction.

If there exist t > 0, F ∈ F , and w0 ∈ Y , such that for all w ∈ Y , the following holds:
δ(w, Sw) > 0, implies

t+ F (δ(w, Sw)) ≤ F

(
α|δ(w,w0)− δ(w0, w0)|+ βδ(w, Sw) + γδ(w0, Sw0)

+ ζ|δ(w, Sw0)− δ(w0, w0)|+ η|δ(w0, Sw)− δ(w0, w0)|

)
,

where
α + β + γ + ζ + η = 1, α, β, γ, ζ, η ≥ 0, α ̸= 0,

then S is said to be a Hardy-Rogers type (H-R-type) Fc-contraction on Y .

If there exist t > 0, F ∈ F , and w0 ∈ Y , such that for all w ∈ Y the following holds: δ(w, Sw) > 0,
implies

t+ F (δ(w, Sw)) ≤ F (α|δ(w,w0)− δ(w0, w0)|+ βδ(w, Sw) + γδ(w0, Sw0)) ,
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where
α + β + γ < 1 and α, β, γ ≥ 0,

then S is said to be a R- type Fc-contraction on Y .

Result 1 If δ(w0, w0) ≤ σ, then Cw0,σ is a fixed circle of S. In particular, S fixes every disc Dw0,σ .
Result 2 If S is a C-type F − c-contraction on a metric-like space (Y, δ) with w0 ∈ Y and

δ(w0, w0) ≤ σ, where σ is defined as in (1), then S fixes the point w0.
Result 3 If S is a H-R-type Fc-contraction with w0 ∈ Y and δ(w0, w0) ≤ σ, then we have Sw0 = w0.
Result 4 If a self-mapping S on Y is a R-type Fc-contraction with w0 ∈ Y , σ is defined as in (1)

and δ(w0, w0) ≤ σ, then we have Sw0 = w0.
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4.29 Abdessatar Souissi: Matrix Product States as Observations of En-
tangled Hidden Markov Models

Abdessatar Souissi University of Monastir, Tunisia, s.abdessattar.souissi@ipest.rnu.tn.

Abstract

This paper reveals the intrinsic structure of Matrix Product States (MPS) by establishing
their deep connection to entangled hidden Markov models (EHMMs). It is demonstrated that a
significant class of MPS can be derived as the outcomes of EHMMs, showcasing their underlying
quantum correlations. Additionally, a lower bound is derived for the relative entropy between
the EHMM-observation process and the corresponding MPS, providing a quantitative measure of
their informational divergence. Conversely, it is shown that every MPS is naturally associated
with an EHMM, further highlighting the interplay between these frameworks. These results are
supported by illustrative examples from quantum information, emphasizing their importance in
understanding entanglement, quantum correlations, and tensor network representations.

This paper [1] establishes a fundamental connection between Matrix Product States (MPS) [6,
7] and Entangled Hidden Markov Models (EHMMs) [5], a subclass of Hidden Quantum Markov
Models (HQMMs) [2–4]. EHMMs describe entangled stochastic processes, where MPS arise as partial
observations of an underlying entangled Markov chain. This connection is formalized through the
following results.

Theorem 4.29.1 Let an EHMM be defined by the triplet (π1, (V
[n]
H )n, (V

[n]
O )n), where π1 is the initial

state, V
[n]
H are unistochastic hidden partial isometries, and V

[n]
O are observation partial isometries.

For any N ∈ N, the MPS generated by matrices A
[n]
k = (a

[n]
k;ij) with entries

a
[n]
k;ij = U

[n]
ij χ

[n]
i (k) (4.29.1)

can be expressed as a partial measurement of the EHMM state |ΨH,O;n⟩ with respect to the vector EN,n:〈
ΨH,O;n | EN,n

〉
=

∑
k1,...,kN

Tr(A
[1]
k1
· · ·A[N ]

kN
) |k1k2 · · · kN⟩, ∀n ≥ N. (4.29.2)

Additionally, the MPS tensors satisfy the gauge condition:∑
k

A
[n]
k A

[n] †
k = 1Im. (4.29.3)

This result establishes that a broad class of MPS with periodic boundary conditions can be rigorously
derived from EHMMs, revealing a structured relationship between tensor network states and entangled
quantum processes.

Theorem 4.29.2 Under the notations and assumptions of Theorem 4.29.1, let ρN = 1
m
|ψN⟩⟨ψN |

represent the density operators of the MPS and ρO;N denote the observation density matrix. The relative
entropy between these density operators satisfies the following inequality:

S(ρN∥ρO;N) ≥
1

m

∑
k1,...,kN

∣∣∣Tr(A[1]
k1
· · ·A[N ]

kN

)∣∣∣2 log


∣∣∣Tr(A[1]
k1
· · ·A[N ]

kN

)∣∣∣2
m3/2π†

(∏N
ℓ=1

∣∣∣A[ℓ]
kℓ

∣∣∣2
⋄

)
e

 (4.29.4)

Here, |A[ℓ]
kℓ
|2⋄ = A

[ℓ]
kℓ
⋄A[ℓ]

kℓ
, π† is an initial state and e = 1√

m

∑
j ej, and the summation spans all possible

sequences k1, . . . , kN .
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Theorem 4.29.2 establishes a lower bound on the relative entropy between the MPS and its
corresponding observation state and provides a measure of their distinguishability and entanglement.

These results highlight the deep interplay between HQMMs and tensor network states, offering new
insights into quantum correlations and their applications in quantum information theory.
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4.30 Sumayyah Alabdulhadi: Numerical investigation of thermal radia-
tion, slip and chemical reaction effects on MHD mixed convection
stagnation point flow through porous medium past an inclined plate

Sumayyah Alabdulhadi1, Anuar Ishak2 and Iskandar Waini3
1Department of Mathematics,
Faculty of Science, Qassim University,
Qassim 52571, Saudi Arabia
2Department of Mathematical Sciences,
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Abstract

This paper investigates the thermal radiation effects, slip as well as chemical reactions with
respect to the magnetohydrodynamic (MHD) mixed convection flow of a viscous fluid as an
outcome of an inclined plate in a porous medium. The effects of various parameters with respect
to the temperature, velocity, as well as concentration profiles together with the local Nusselt
number, skin friction coefficient and local Sherwood number are illustrated. The results illustrated
that the rise in the thermal radiation parameter and the heat generation/absorption parameter
raise the temperature profile. Meanwhile, the rise in the chemical reaction parameter and Schmidt
number reduces the concentration profile. Furthermore, it is revealed that the temperature and
concentration profiles rise with a rise in the value of the inclination angle parameter. Apart from
that, an opposite trend is noticed concerning the velocity profile. The findings also indicated that
the skin friction coefficient and local Sherwood and Nusselt numbers in the assisting flow region
are noticeably reduced by the increment in the inclination angle parameter. We contrasted our re-
sults to previously published research to assess their validity and discovered a substantial agreement.

* Lead presenter

Numerous research studies have employed flat plates in both horizontal and vertical positions. In
contrast, there has been little attention on the inclined flat plate. However, no study has so far been
reported about the analysis of the MHD mixed convection stagnation point flow towards an inclined
plate with slip, chemical reaction, and radiation effects. Therefore, we have demonstrated our interest
in this work to make an effort to discuss this new case. The current study aims to expand the paper
conducted by Niranjan et al. [1] and Alabdulhadi et al. [2],by considering the inclination angle. By
using the proper similarity transformations, a set of nonlinear ordinary differential equations (ODEs)
is isolated from the governing system of partial differential equations (PDEs). The resulting system of
equations is computed numerically using the MATLAB software’s bvp4c boundary value problem solver.
Examined and discussed are the effects of various physical variables on the skin friction coefficient,
local Nusselt and Sherwood numbers, velocity, temperature, and concentration profiles.

The magnetohydrodynamic (MHD) mixed convection stagnation point flow, heat, as well as mass
transfer produced by an inclined plate in a porous medium with consideration of slip, radiation, as well
as chemical reaction are studied. With the aid of MATLAB software’s bvp4c solver, the numerical
findings were achieved. Thus, the major findings of the present research are as below:
Result 1 The velocity profile f

′
(η) rises for greater values of Rd and Q. Nevertheless, it displays the

opposite attitude for different values of Cr and Sc.
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Result 2 The θ(η) and ϕ(η) increase while the f
′
(η) decreases by increasing the inclination angle

parameter ω, whereas a totally different trend is observed for the case of K.
Result 3 Both skin friction coefficient and mass transfer experience an increment with the rise in

Q, while the heat transfer acts in the opposite behavior.
Result 4 The enhancement in the inclination angle parameter ω remarkably reduces the values of

Re
1/2
x Cf , Re

−1/2
x Nux and Re

−1/2
x Shx in the assisting flow region.
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4.31 Suraiya Mahmood: Addition of Endomorphisms

Suraiya J. Mahmood
Retired, United Kingdom

Background
It is a well known fact that pointwise addition is not defined on the
endomorphisms of a non abelian group. H. Neuman [5], gave an example of a non
abelian group with a special addition ⊕ defined on its semigroup of endomorphisms,
which is different from pointwise addition. But even though the maps are written on
the left of the argument, it becomes a left nearring and the group is its left module.

Inspired by this example, Frolich [2] developed a method of defining a special
addition on special subsets of End(G), for non abelian groups using a generating
subset of G. He called the generating set a basis and addition a free addition. He
proved the following result:
Let (G,+) be a non abelian group. Then
1. If a non empty subset H of End(G) has a basis B an addition ⊕Bis defined on H

as (α⊕B β)(x) = α(x) + β(x), ∀ α, β ∈ H and ∀ x ∈ B. He called ⊕Bfree addition.
2. If H is a subsemigroup of (End(G), ◦) with basis B then (H ,⊕B, ◦) is a nearring and G

is a H−module.

Grainger [3] generalized this concept further. He used a subset X of G, not necessarily a generating
set and defined an addition on a special subset H of End(G), denoted by ⊕X . He called this subset X
a support system for H. He also generalized results of Frolich for this concept.

The following is an interesting and useful result by Grainger.
If H is a subsemigroup of (End(G), ◦), for a group (G,+), with support system X,
then (H,⊕X , ◦) is a left nearring and G is a left H− comodule.
If the free addition coincides with point wise addition then (H,⊕X , ◦) is a ring and
(G,+) is a left H− nearmodule.

Anyhow he did not give any example of a non abelian group to support his results. But he
suggested to look for some better examples than the example he gave of a cyclic group.
This article
In this article we study (End(S3), ◦) and (End(D8), ◦) in detail.
S3 = ⟨a, b|3a, 2b, 2(a+ b)⟩ and End(S3) = {0, I, α, α2, β, αβ, α2β, θi, i = 0, 1, 2}.
D8 = ⟨a, b|4a, 2b, 2(a+ b)⟩ ,
End(D8) = {0, I, αi, β, αiβ, (i = 1, 2, 3), θj, τj, (j = 0, 1, 2, 3, ϕ, ψ, ρ, µk, τk, ζk, δk, νk, (k = 1, 2, 3, 4)}

Idea of Proofs
Using the action of the endomorphism on the group elements and some results, we prove
the following results:

Theorem 1
Let H be a subsemigroup of (End(S3), ◦)
If θi, θj ∈ H, i ̸= j, i, j ∈ {0, 1, 2} then H has no support system.

Theorem 2
1. The subsemigroups {0} {I} , {θi} , 0 ≤ i ≤ 2,have support system S = {0} .

⊕S is the same as pointwise addition for {0} and is a zero ring.
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⊕S for {I} and {θi} is not not pointwise addition.
2. The subsemigroups {0, θi} , i ∈ {0, 1, 2} have support system S = {b} .

⊕S is the same as pointwise addition and each near ring is a field
isomorphic to Z2.

3. The subsemigroups {θ0, I, β} , {θ1, I, α2β} , {θ2, I, αβ} have support system S = {a} .
The zeros for ⊕S is θ0, θ1, θ2 respectively and the nearring is isomorphic to Z3.

4. The subsemigroups {0, I, αiβ} , i ∈ {0, 1, 2} have support system S = {a} .
⊕S is not pointwise addition in each case but the near ring is isomorphic to Z3.

Remarks
1. S3 is left nearmodule only in the case where ⊕Scoincides with pointwise addition. In all other

cases it is a comodule.
2. As seen above the other subsemigroups do not have support system. Anyhow for i ∈ {1, 2},each

subsemigroup {θi, θ0} is in 1-1 correspondence with
Z2 with same multiplication table. This induces an addition on it ⊞ making it a field and S3 a

Z2− comodule.

(End(D8), ◦)
We study (End(D8), ◦) in the same way and come up with more interseting results.
Considering the length we mention only one result. The detail will be given in the paper.
Theorem 3
The subsemigroup H = {0, I, α2, β, α2β, ϕ, ψ, ρ} of (End(D8), ◦) has a basis B = {a, b} ,
⊕Bis not pointwise addition but it is a ring. Moreover
({0, I, α2, β, α2β, ϕ, ψ, ρ} ,⊕B) = ⟨I⟩ ⊕B ⟨ρ⟩ ∼= Z4 ⊕ Z2.
For easy reference we record all the findings in the form of tables.

1. Tables of action of End(S3) on (S3,+) and of End(D8) on (D8,+)
2. Caley tables of (End(S3), ◦) and (End(D8), ◦)
3. Detail of additions on all subsemigroup of (End(S3), ◦) and nearrings and modules we get.
4. Detail of additions on all subsemigroups of (End(D8), ◦) and nearrings and modules we get.
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4.32 Tong Mao: Integral Representations of Barron and Sobolev Spaces
Via ReLUk Activation Function and Applications

Xinliang Liu, Tong Mao∗ and Jinchao Xu
King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

Abstract

This paper establishes that nonlinear shallow neural networks with ReLUk activation functions
can achieve their optimal approximation rates even when simplified to linearized networks with
fixed, preselected weights and biases. This key result challenges the prevailing belief that the
flexibility of trainable parameters in neural networks is essential for superior approximation
performance. Since the non-convexity of neural networks stems from the dependence on trainable
weights and biases, our result allows shallow network training to be reformulated as a linear,
convex problem, significantly simplifying the optimization process.

By analyzing both Sobolev and Barron function classes, we show that linearized shallow
networks achieve approximation rates comparable to their nonlinear counterparts. Notably, we
show that the approximation rates for Barron spaces remain intact when restricted to a Sobolev
subspace of comparable complexity in terms of metric entropy.

* Lead presenter

In the context of shallow ReLUk networks, a strong connection exists between Barron spaces
Bk(Ω) = Bσk(Ω) and the class of shallow networks:

1. A function f can be approximated by neural network classes {Σkn,M}∞n=1 if and only if f ∈ Bk(Ω) [2].

2. The Barron space Bk(Ω) has an integration form [2]

Bk(Ω) =
{∫

Sd
σk(θ · x̃)dµ(θ) : µ ∈ M(Sd)

}
. (4.32.1)

Moreover,

∥f∥Bk(Ω) ≃ inf
µ∈M(Sd)

{
|µ|(Sd) : f(x) =

∫
Sd
σk(θ · x̃)dµ(θ)

}
. (4.32.2)

3. Shallow ReLUk networks achieve the optimal approximation rate in Bk(Ω) [1]:

inf
fn∈Σk

n,M

∥f − fn∥L2(Ω) = O(n− 1
2
− 2k+1

2d ), (4.32.3)

where M ≃ ∥f∥Bk(Ω).

Given a predetermined set of parameters
{
θ∗j
}n
j=1

⊂ Sd, we define the corresponding basis functions

ϕj(x) = σk(θ
∗
j · x̃) = σk(w

∗
j · x+ b∗j), j = 1, . . . , n,

and the finite neuron space as Lkn = Lkn(
{
θ∗j
}n
j=1

) = span {ϕ1, . . . , ϕn} . Define the constrained version

of Lkn as Lkn,M =

{
n∑
j=1

ajϕj :
(
n

n∑
j=1

a2j

) 1
2 ≤M

}
. By applying the Cauchy–Schwarz inequality, it follows

that Lkn,M ⊂ Σkn,M . A key advantage of the linear spaces Lkn and Lkn,M lies in their structural simplicity,
which enables more efficient analysis and computation. Notably, optimization over Lkn,M reduces to a
convex least squares problem, whereas training in Σk

n,M generally involves solving a highly nonconvex
optimization problem.

Similar to the results on ReLUk neural networks Σk
n,M , this paper presents a novel perspective on

characterizing the finite neuron space Lkn and its constrained counterpart Lkn,M . Under the assumption
that the parameters {θ∗j}nj=1 form a quasi-uniform mesh over Sd, we establish the following results:
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1. A function f can be approximated by FNS {Lkn,M}∞n=1 if and only if f ∈ H d+2k+1
2 (Ω);

2. The Sobolev space H d+2k+1
2 (Ω) has an integration form

H
d+2k+1

2 (Ω) =

{∫
Sd
σk(θ · x̃)ψ(θ)dθ : ψ ∈ L2(Sd)

}
.

Moreover,

∥f∥
H

d+2k+1
2 (Ω)

≃ inf
ψ∈L2(Sd)

{
∥ψ∥L2(Sd) : f(x) =

∫
Sd
σk(θ · x̃)ψ(θ)dθ

}
,

3. The FNS achieves the optimal approximation rate in H d+2k+1
2 (Ω): inffn∈Lk

n,M
∥f − fn∥L2(Ω) =

O(n− 1
2
− 2k+1

2d ), where M ≃ ∥f∥
H

d+2k+1
2 (Ω)

.

Result 1 Let d, n ∈ N, k ∈ N0, Ω ⊂ Rd be a bounded domain, and {θ∗j}nj=1 =
{(w∗

j

b∗j

)}n
j=1

⊂ Sd be a

set of quasi-uniform points. Then for any f in the Sobolev space H d+2k+1
2 (Ω), there exists a1, . . . , an ∈ B

such that f can be approximated by a shallow ReLUk neural network with these predetermined

parameters as
∥∥∥f(x)− n∑

j=1

ajσk(w
∗
j · x+ b∗j)

∥∥∥
L2(Ω)

≲ n− 1
2
− 2k+1

2d ∥f∥
H

d+2k+1
2 (Ω)

. Moreover, the parameters

satisfy
(
n

n∑
j=1

a2j

) 1
2
≲ ∥f∥

H
d+2k+1

2 (Ω)
. The corresponding constants are independent of n, {θ∗j}nj=1, and f .

Idea of the proof: The work is still in progress. We expect to finish the whole paper before April 15.
Result 2 The Sobolev norm can be equivalently written as

∥f∥
H

d+2k+1
2 (Ω)

≃ inf
ψ∈L2(Sd)

{
∥ψ∥L2(Sd) : f(x) =

∫
Sd
σk(θ · x̃)ψ(θ)dθ

}
. (4.32.4)

Idea of the proof: The work is still in progress. We expect to finish the whole paper before April 15.
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Abstract

Viscoelastic materials are ubiquitous in industrial processes involving polymers and mixtures
of macromolecules with various suspending fluids. An interest in these materials dates back to
the very origin of rheological studies. We present a model for viscoelastic materials based on the
observation that the microscopic arrangement of molecules determines the state at which the
system would converge in the absence of applied forces. Differently from what happens for solids,
this state can evolve in time as a result of deformations and stresses. We incorporate concepts
originated in the theory of solid plasticity and introduce an elastically-relaxed deformation tensor.
The modeling effort focuses on the evolution of the relaxed state. We take as a basic request
that, if we keep the material in a static configuration, then the relaxed deformation tensor should
converge to the current deformation tensor.

Within this class of models, even the simple case with constant material parameters is able
to qualitatively reproduce a number of experimental observations in both simple shear and
extensional flows, including linear viscoelastic properties, the rate dependence of steady-state
material functions, the stress overshoot in incipient shear flows, and the difference in shear and
extensional rheological curves. Furthermore, by allowing the relaxation time of the model to depend
on the total strain, we can reproduce some experimental observations of the non-attainability of
steady flows in uniaxial extension, and link this to a concept of polymeric jamming or effective
solidification. Our framework is quite effective in reproducing experimental data of wormlike
micellar solutions.

Another distinctive feature of our approach is the fundamental use of logarithmic strains, that
leads to a proper generalisation to finite elastic deformations of the Maxwell model. Indeed, we
can recover the upper-convected Maxwell model and the Giesekus model for the elastic stress
evolution as different truncations for small elastic strains of the stress evolution implied by our
model.

* Dr. Muhanna Ali H Alrashdi

We introduced a class of tensorial models aimed at describing viscoelastic materials [1]. The
cornerstones of this framework are an elastic stress that depends logarithmically on a suitable measure
of strain and the choice of letting the elastic strain evolution emerge from two distinct evolution
equations, one for the current deformation and the other for a tensorial descriptor of the elastically-
relaxed state. While the former is a necessary kinematic relation between velocity and deformation,
the latter involves constitutive choices that are based on arguments borrowed from solid plasticity.
Our line of thought differs considerably from the classical Oldroyd’s approach [2,3]. Even though we
can derive an equation for a quantity akin to a conformation tensor, the objective rate entering its
evolution is not a matter of choice, as it descends directly from the kinematic evolution of the current
deformation gradient. We stress that, in our framework, viscoelastic fluids emerge as an interpolation
between purely viscous fluids and solids, controlled by a relaxation time parameter ranging from zero
(viscous fluid) to infinity (viscoelastic solid).

We have shown that a simple model with constant material parameters performs very well in
reproducing the behavior of viscoelastic fluids observed in rheometric experiments. Moreover, it helps
understanding the origin of the difference in extensional and shear rheology and the relative importance
of viscous, elastic, and plastic effects. Another important feature of this model is that it avoids the
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erroneous prediction of an exponential growth of the elastic stress in extensional flows that sometimes
arises in connection with elastic models of neo-Hookean type.

To approach the modelling of real fluids, it is important to consider the presence of multiple
relaxation times. This can be done within our framework by letting the relaxation time parameter
depend on other relevant quantities. We provide a first example of what can be achieved in this way
by addressing a situation in which an abrupt change in the elastic response during uniaxial extension
prevents the attainment of steady flows. Our findings suggest the presence of a phenomenon that
can be described as a progressive polymeric jamming, in which the relaxation time diverges due to
the experiment geometry. We have also shown how to capture the rheological behaviour of wormlike
micellar solutions [4] by means of a rate-dependent relaxation time. Meanwhile, we can indicate as the
presence of multiple relaxation modes a challenging aspect of real fluids that may require important
generalisations of our model.
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Abstract

In this research article, we present the procedure for generating GPT spaces in two different
ways: using the generalized neighborhood system and the monotonic operator. Then, we introduce
several types of generalized primal continuous functions. Some characteristics have been dissected,
and the relationships among them have been studied. We use the technique of Császár, which
changes the ”generalized topology” to other ”generalized topologies” weaker than it, to show some
important results. Furthermore, we show that the notion of ”strong GP-continuity” coincides
with the notion of ”GP-continuity” under some conditions. We present these results in a simple
graph to make it easier for the reader. Finally, we study the preservation of the notions of ”GP-
connected” and ”GP-hyperconnected” by different types of generalized primal continuous functions.

* Lead presenter:

Continuity has been a fundamental concept in pure mathematics, particularly in topology. A
function between two topological spaces is continuous if the preimage of every open set is open. To
determine whether a function is continuous, we must analyze the structure of the spaces involved. Such
functions are crucial because they preserve the topological structure of the domain space within the
codomain space.

This study focuses on generalized continuity under the influence of the primal set. Continuity is
one of the central topics in topology, and, therefore, we explore various types of continuous functions
in depth. These types have already been examined in the context of generalization theory. Here, we
investigate them from the perspective of primal collection. Additionally, we examine the relationships
between these functions and establish the necessary conditions for transforming weaker forms into
stronger ones. The significance of continuous functions in topology lies in their essential role in
preserving topological properties.

This article consists of four sections. Section 1 is divided into two parts: the first part summarizes
previous studies related to this research, while the second part revisits basic definitions and fundamental
theorems. In Section 2, we introduce three types of continuous functions in GPT spaces. First, we
construct GPT spaces in two different ways: one using the generalized neighborhood system and
the other using the monotonic operator. Then, we define GPN-continuous, GP-θ-continuous, and
almost GP-continuous functions, discussing their properties and characteristics. We also examine the
relationships among them and provide counterexamples. In Section 3, we introduce the concepts
of ”strong GP-continuous function,” ”strongly GP-θ-continuous function,” and ”super GP-continuous
function” and study the relationships among them. Additionally, we present the notions of ”weakly
GP-closed function” and ”GP-regular space,” analyzing their characteristics. In Section 4, we explore
the notions of ”GP-connected” and ”GP-hyperconnected” spaces. We then examine how different types
of generalized primal continuous functions preserve these properties. Main Results:

Theorem: Every GPN-continuous function is GP-continuous, where g is generated by the neighborhood
system.
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The idea of the proof relies on the fact that g is generated by the neighborhood system. However,
there exists a GP-continuous function induced by the neighborhood system that is not GPN-continuous.
An example illustrating this is provided in the paper.

Theorem: Let (T, g,P) and (T ‵, g‵,P ‵) be two GPT spaces. Consider p : T → T ‵. If T ‵ is GP-regular
and strong, then the next are identical:
(i) p is a strong GP-continuous;
(ii) p is a strongly GP-θ-continuous;
(iii) p is a GP-continuous.

The proof follows consequently from the construction of minor results in the paper.

Theorem: Let p : (T, g,P) → (T ‵, g‵,P ‵) be a contra GP-α-continuous onto function. Consider T
as GP-α-connected space. Then, T ‵ is GP-connected space.

The proof shows that a contra GP-α-continuous onto function preserves GP-connectedness. That is,
there do not exist non-empty disjoint (g,P)-open sets G and H such that T = G ∪H.

Theorem: Let (T, g,P) be a GPT space. Then, we have:
(i) T is GP-β-connected ⇒ GP-semi-connected ⇒ GP-α-connected ⇒ GP-connected.
(ii) T is GP-β-connected ⇒ GP-pre-connected ⇒ GP-α-connected.

The proof depends on the relationships between certain weak types of open sets that are given
throughout the paper.
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