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Abstract. Two digraphs G = (V, E) and G ′ = (V, E ′) are isomorphic up to comple-
mentation if G ′ is isomorphic to G or to the complement G := (V, {(x, y) ∈ V 2

: x ̸=
y, (x, y) ̸∈ E}) of G. The Boolean sum G+̇G ′ is the symmetric digraph U = (V, E(U ))
defined by {x, y} ∈ E(U ) if and only if (x, y) ∈ E and (x, y) ̸∈ E ′, or (x, y) ̸∈ E and
(x, y) ∈ E ′. Let k be a nonnegative integer. The digraphs G and G ′ are (≤ k)-hypomorphic
up to complementation if for every t-element subset X of V , with t ≤ k, the induced
subdigraphs G↾X and G ′↾X are isomorphic up to complementation. The digraphs G and G ′

are hereditarily isomorphic (resp. hereditarily isomorphic up to complementation) if for each
subset X of V , the induced subdigraphs G↾X and G ′↾X are isomorphic (resp. isomorphic up
to complementation). Here, we give the form of the pair {G, G ′} whenever G and G ′ are
two digraphs, (≤ 5)-hypomorphic up to complementation and such that the Boolean sum
U := G+̇G ′ and the complement U are both connected, and thus we deduce that G and G ′

are hereditarily isomorphic up to complementation; we prove also that the value 5 is optimal.
The case U or U is not connected is studied in a forthcoming paper.
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1. INTRODUCTION

In this paper, we study the reconstruction of digraphs up to complementation (definitions
and notations are given in Section 2). Ulam’s reconstruction conjecture on digraphs [22],
still unsolved for graphs, is well-known (see [2,3]). Fraı̈ssé made a related conjecture about
relational structures. The case of binary relations was solved by Lopez [14–16], he showed
that all binary relations are (≤ 6)-reconstructible. The case of ternary relations was solved
negatively by Pouzet [17]. On the other hand, Stockmeyer [20] showed that the tournaments
are not, in general, (−1)-reconstructible, so invalidating the conjecture of Ulam for digraphs.
In 1993, Hagendorf raised the (≤ k)-half-reconstruction problem for digraphs and solved it
with Lopez [12,13], they showed that the finite digraphs are (≤ 12)-half-reconstructible.
In 1995, Boudabbous and Lopez [6] showed that the finite tournaments are (≤ 7)-half-
reconstructible. This motivated, in 2013, M. Alzohairi, M. Bouaziz and Y. Boudabbous
to introduce the concept of (≤ k)-hereditary reconstructibility of posets [1]. In 2015, Y.
Boudabbous proposed the problem of (≤ k)-hereditarily reconstruction of digraphs. He
solved this problem for tournaments with A. Boussaı̈ri, A. Chaı̈chaâ and N. El Amri [5].

We say that a symmetric digraph G is connected if for any distinct vertices a and b
of G, there are vertices a = x0, x1, . . . , xm = b of G, such that x i G xi+1 for each
i ∈ {0, . . . , m − 1}. Otherwise G is said disconnected. A component of G is a maximal
connected subdigraph of G. Let G = (V, E) and G ′ = (V, E ′) be two digraphs, 2-
hypomorphic up to complementation. The Boolean sum G+̇G ′ of G and G ′ is the symmetric
digraph U = (V, E(U )) defined by {x, y} ∈ E(U ) if and only if (x, y) ∈ E and (x, y) ̸∈ E ′,
or (x, y) ̸∈ E and (x, y) ∈ E ′. Clearly U = G+̇G ′. Denote DG,G′ the binary relation
on V such that: for x ∈ V , x DG,G′ x ; and for x ̸= y ∈ V , x DG,G′ y if there exists a
sequence x = x0, x1, . . . , xm = y of elements of V satisfying (xi , xi+1) ∈ E if and only if
(xi , xi+1) ̸∈ E ′, for each i , 0 ≤ i ≤ m−1. The relation DG,G′ is an equivalence relation called
the difference relation, its classes are called difference classes, this relation was introduced
by Lopez [14]. Then clearly C is a connected component of U := G+̇G ′ if and only if C is
an equivalence class of DG,G′ , and thus DG,G′ and DG,G′ have only one class if and only if
U and U are connected. In 2003, Dammak [8] proved the following result.

Proposition 1.1 ([8]). Let T and T ′ be two finite tournaments, (≤ 5)-hypomorphic up to
complementation, and U := T +̇T ′. If U and U are connected, then T and T ′ are total
orders.

In 1999, Ille raised the problem of the (≤ k)-reconstruction up to complementation of
digraphs. The case of symmetric digraphs was solved by Dammak, Lopez, Pouzet and Si
Kaddour [9,10], they proved that, the symmetric digraphs on v vertices are t-reconstructible
up to complementation for every 4 ≤ t ≤ v−3. In fact, the case t = v−3 was solved in [10]
using the following result established by Pouzet, Si Kaddour and Trotignon [18].

Theorem 1.2 ([18]). If G and G ′ are two symmetric digraphs, 3-hypomorphic up to
complementation and |V (G)| ≥ 10, then the connected components of U := G+̇G ′, or
of its complement U, are cycles of even length or paths.

We define the symmetric digraph Pn in the following manner, V (Pn) = {0, 1, . . . , n − 1},
and for i ̸= j ∈ {0, 1, . . . , n − 1}, {i, j} is an edge of Pn when |i − j | = 1. Thus
Pn := 0 1 . . . n − 2 n − 1. A path is a symmetric digraph isomorphic to
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Fig. 1. Cn .

Fig. 2.
−→
Cn .

Pn . A cycle is a symmetric digraph isomorphic to Cn := (V (Pn), E(Pn) ∪ {{0, n − 1}}) for
some integer n ≥ 3 (see Fig. 1).

We define the digraph
−→
Pn by, for i ̸= j ∈ {0, 1, . . . , n − 1}, i −→−→

Pn
j when j = i + 1.

Thus
−→
Pn := 0 −→ 1 −→ · · · −→ n − 2 −→ n − 1. We call directed path or oriented

path a digraph isomorphic to
−→
Pn , and directed cycle or oriented cycle a digraph isomorphic

to
−→
Cn := (V (

−→
Pn ), E(

−→
Pn ) ∪ {(n − 1, 0)}) for some integer n ≥ 3 (see Fig. 2).

We define
−→

P f
n (resp.

−→

C f
n ) obtained from

−→
Pn (resp.

−→
Cn) by switching the void pairs by the

full pairs. Thus
−→

P f
n =

(
−→
Pn

)∗
and
−→

C f
n =

(
−→
Cn

)∗
.

A total order is a tournament T such that for x, y, z ∈ V (T ), if x −→T y and y −→T z
then x −→T z. Given a total order O = (V, E), for x, y ∈ V , x < y means x −→O y. Thus,
a total order on n vertices can be denoted by v0 < v1 < · · · < vn−1.

Our main result is the following.

Theorem 1.3. Let G and G ′ be two digraphs on the same set V of n ≥ 4 vertices such
that G and G ′ are (≤ 5)-hypomorphic up to complementation. Let U := G+̇G ′. If U and
U are connected, then G ′ and G are hereditarily isomorphic up to complementation; more
precisely one of the following holds:

(1) G and G ′ are two total orders.

(2) G ≃
−→
Pn or G ≃

−→
Cn , and G ′ = G∗.

(3) G ≃
−→
Pn or G ≃

−→
Cn , and G ′ = G∗.

(4) G ≃
−→

P f
n or G ≃

−→

C f
n , and G ′ = G∗.

(5) G ≃
−→

P f
n or G ≃

−→

C f
n , and G ′ = G∗.

In Proposition 3.5, we prove that the value 5 is optimal by giving two digraphs G, G ′, on
the same vertex set V with |V | ≥ 5, which are (≤ 4)-hypomorphic up to complementation
and not (≤ 5)-hypomorphic up to complementation, U := G+̇G ′ and U are connected but G
and G ′ are not isomorphic up to complementation, and thus not hereditarily isomorphic up to
complementation.
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From Theorem 1.3, we deduce trivially the following result for digraphs which is similar
to Theorem 1.2.

Corollary 1.4. Let G and G ′ be two digraphs on the same set V of n ≥ 4 vertices such that
G and G ′ are (≤ 5)-hypomorphic up to complementation and U := G+̇G ′. If U and U are
connected and G is not a total order, then U or U is a cycle or a path.

2. DEFINITIONS AND NOTATIONS

A directed graph or simply digraph G consists of a finite and nonempty set V of
vertices together with a prescribed collection E of ordered pairs of distinct vertices, called
the set of the edges of G. Such a digraph is denoted by (V (G), E(G)) or simply (V, E).
Given a digraph G = (V, E), to each nonempty subset X of V associate the subdigraph
(X, E ∩ (X × X )) of G induced by X denoted by G↾X . Given a proper subset X of V , G↾V \X
is also denoted by G − X , and by G − v whenever X = {v}. With each digraph G = (V, E)
associate its dual G∗ = (V, E∗) and its complement G =

(
V, E

)
defined as follows. Given

x ̸= y ∈ V, (x, y) ∈ E∗ if (y, x) ∈ E , and (x, y) ∈ E if (x, y) ̸∈ E .
Let G = (V, E) be a digraph, for x ̸= y ∈ V , x −→G y or y ←−G x (or simply x −→ y

if there is no confusion) means (x, y) ∈ E and (y, x) ̸∈ E ; x G y (or simply x y)
means (x, y) ∈ E and (y, x) ∈ E ; x . . .G y (or x . . . y or x G y) means (x, y) ̸∈ E and
(y, x) ̸∈ E . For X, Y ⊆ V , X G Y and X . . .G Y (or X GY ) are defined in the same way.
If X = {x} or Y = {y}, we can replace X by x and Y by y.

Given a digraph G = (V, E), two distinct vertices x and y of G form a directed pair or
oriented pair if either x −→G y or x ←−G y. Otherwise, {x, y} is a neutral pair; it is full
if x G y, and void if x . . .G y. Two interesting types of digraphs are symmetric digraphs
and tournaments. A digraph G = (V, E) is a symmetric digraph or graph (resp. tournament)
whenever for x ̸= y ∈ V , x G y or x . . .G y (resp. x −→G y or y −→G x). If G = (V, E)
is a graph, each edge (x, y) of G is identified with the pair {x, y} and is called an edge of G.
For instance, given a set V , (V,∅) is the empty graph on V whereas (V, [V ]2) is the complete
graph on V , where [V ]2 is the set of pairs {x, y} of distinct elements of V .

Given two digraphs G = (V, E) and G ′ = (V ′, E ′), a bijection f from V onto V ′ is
an isomorphism from G onto G ′ provided that for any x, y ∈ V , (x, y) ∈ E if and only if
( f (x), f (y)) ∈ E ′. The digraphs G and G ′ are isomorphic, which is denoted by G ≃ G ′,
if there exists an isomorphism from one onto the other, otherwise G ̸≃ G ′. A digraph H
embeds into G, or H is embeddable in G, if H is isomorphic to an induced subdigraph of G.

Given two digraphs G and G ′ on the same vertex set V . They are equal up to
complementation if G ′ = G or G ′ = G. Let k be an integer with 0 < k < |V |, the
digraphs G and G ′ are k-hypomorphic (resp. (−k)-hypomorphic) if for every k-element (resp.
(|V | − k)-element) subset X of V , the induced subdigraphs G↾X and G ′↾X are isomorphic.
The digraphs G and G ′ are (≤ k)-hypomorphic if they are t-hypomorphic for each integer
t ≤ k. A digraph G is k-reconstructible (resp. (−k)-reconstructible) if any digraph k-
hypomorphic (resp. (−k)-hypomorphic) to G is isomorphic to G. A digraph G is (≤ k)-
reconstructible if any digraph (≤ k)-hypomorphic to G is isomorphic to G. The digraphs
G and G ′ are isomorphic up to complementation (resp. hemimorphic) if G ′ is isomorphic
to G or G (resp. to G or G∗). The digraphs G ′ and G are hereditarily isomorphic [19] if
for each nonempty subset X of V , the digraphs G↾X and G ′↾X are isomorphic. They are
hereditarily isomorphic up to complementation [4] if they are hereditarily isomorphic, or G ′



The (≤ 5)-hypomorphy of digraphs up to complementation 5

Fig. 3. Qn .

and G are hereditarily isomorphic. Let k be a positive integer, the digraphs G and G ′ are
k-hypomorphic up to complementation (resp. k-hemimorphic) if for every k-element subset
X of V , the induced subdigraphs G↾X and G ′↾X are isomorphic up to complementation (resp.
hemimorphic). The digraphs G and G ′ are (≤ k)-hypomorphic up to complementation (resp.
(≤ k)-hemimorphic) if they are t-hypomorphic up to complementation (resp. t-hemimorphic)
for each integer t ≤ k. A digraph G is k-reconstructible up to complementation (resp. k-half-
reconstructible) if any digraph k-hypomorphic up to complementation (resp. k-hemimorphic)
to G is isomorphic up to complementation (resp. hemimorphic) to G. A digraph G is
(≤ k)-reconstructible up to complementation (resp. (≤ k)-half-reconstructible) if any digraph
(≤ k)-hypomorphic up to complementation (resp. (≤ k)-hemimorphic) to G is isomorphic
up to complementation (resp. hemimorphic) to G.

A 3-cycle is a tournament isomorphic to
−→
C3 := ({0, 1, 2}, {(0, 1), (1, 2), (2, 0)}). A flag is

a digraph hemimorphic to ({0, 1, 2}, {(0, 1), (1, 2), (2, 1)}). A peak is a digraph hemimorphic
to ({0, 1, 2}, {(0, 1), (0, 2), (1, 2), (2, 1)}) or to ({0, 1, 2}, {(0, 1), (0, 2)}). Let G be a digraph,
the positive degree (resp. negative degree) of a vertex x of G, denoted d+G (x) (resp. d−G (x)),
is the number of y ∈ V (G) such that x −→G y (resp. y −→G x). Notice that, here, d+G (x)
(resp. d−G (x)) is not the outdegree (resp. indegree) of the vertex x . The type of G is (e, e′)
where e and e′ are respectively the number of full pairs of G and G. Let G = (V, E) and
G ′ = (V, E ′) be two digraphs and a, b ∈ V . We say that {a, b} has the same character in G
and G ′ if and only if G↾{a,b} ≃ G ′↾{a,b}.

Let G = (V, E) be a graph, the degree of a vertex x of G, denoted dG(x), is the number
of y ∈ V (G) such that x G y.

3. THE GALLAI DECOMPOSITION THEOREM

Given a digraph G = (V, E), a subset I of V is an interval of G if for every x ∈ V \ I
either x −→G I or x ←−G I or x G I or x . . .G I . For instance, ∅, V and {x} (where
x ∈ V ) are intervals of G, called trivial intervals. A digraph is indecomposable if all its
intervals are trivial, otherwise it is decomposable.

The graph Qn (see Fig. 3) is defined in the following manner. For i ̸= j ∈ {0, 1, . . . , n −
1}, {i, j} is an edge of Qn whenever either i, j ∈ {0, 1, . . . , n − 3} and |i − j | = 1 or
{i, j} = {n − 2, ℓ}, where ℓ ∈ {0, 1, . . . , n − 4} ∪ {n − 1}.

Theorem 3.1 ([7]). Let S = (V, E) be an indecomposable graph with |V | ≥ 4. Let W
denote the set of x ∈ V such that there is a subset X of V satisfying S↾X is isomorphic to P4
and x ∈ X. We have: |V \ W | ≤ 1. Furthermore, if V \ W = {x}, then there are a subset X
of V containing x and an isomorphism f from S↾X onto Q5 such that f (x) = v0.
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Theorem 3.2 ([7]). Let S = (V, E) be an indecomposable graph with |V | ≥ 5. For
a ̸= b ∈ V , there is a subset X of V satisfying: a, b ∈ X and there is an isomorphism
f from S↾X or S↾X onto Pk or Qk , where k ≥ 5, such that f ({a, b}) = {0, k − 1}.

We begin with a well-known property of the intervals. Given a digraph G = (V, E),
if X and Y are disjoint intervals of G, then X −→G Y , or X ←−G Y , or X G Y , or
X . . .G Y . This property leads to consider interval partitions of G, that is, partitions of V , all
the elements of which are intervals of G. The elements of such a partition P become the
vertices of the quotient G/P = (P, E/P) of G by P defined as follows: given X ̸= Y ∈ P ,
(X, Y ) ∈ E/P if (x, y) ∈ E for x ∈ X and y ∈ Y . Given a digraph G = (V, E), a subset X
of V is a strong interval [11] of G provided that X is an interval of G and for each interval Y
of G, we have: if X ∩ Y ̸= ∅, then X ⊆ Y or Y ⊆ X . For |V | ≥ 2, the family of the maximal
strong intervals under inclusion which are distinct from V is denoted by P(G). The family
P(G) constitutes an interval partition of V . Now we state the Gallai decomposition theorem.

Theorem 3.3 ([11]). Given a digraph G = (V, E), with | V |≥ 2. The corresponding
quotient G/P(G) is a complete digraph or an empty digraph or a total order or an
indecomposable digraph with at least 3 vertices.

The inverse operation of the quotient is the lexicographic sum defined as follows: let
m be an integer, m ≥ 1, S = ({0, 1, . . . , m − 1}, E) be a digraph and for i < m,
G i = (Vi , Ei ) be a digraph such that the Vi ’s are nonempty and pairwise disjoint. The
lexicographic sum over S of the G i ’s or simply the S-sum of the G i ’s, is the digraph denoted
by S(G0, G1, . . . , Gm−1) and defined on the union of the Vi ’s as follows: given x ∈ Vi and
y ∈ V j , where i, j ∈ {0, 1, . . . , m − 1}, (x, y) is an edge of S(G0, G1, . . . , Gm−1) if either
i = j and (x, y) ∈ Ei or i ̸= j and (i, j) ∈ E : this digraph replaces each vertex i of S by G i .
We say that the vertex i of S is dilated by G i .

From Theorem 3.3, we have immediately this result.

Corollary 3.4. Given a graph G = (V, E). Then G and G are connected if and only if
G = S(G0, G1, . . . , Gm−1), where S is an indecomposable graph with at least 4 vertices and
G i is a graph for each i ∈ {0, 1, . . . , m − 1}.

The following result shows the optimality of the value 5 in Theorem 1.3.

Proposition 3.5. Let A3 := {{a0, b0, c0}, {(a0, b0), (b0, c0), (c0, a0)}}. Let G (resp. G ′) be the

digraph obtained from
−→
Pn

(
resp.

(
−→
Pn

)∗ )
by dilating the vertex 0 by A3. Let U := G+̇G ′.

Then G and G ′ are (≤ 4)-hypomorphic up to complementation, not (≤ 5)-hypomorphic
up to complementation, U and U are connected, but G and G ′ are not isomorphic up to
complementation, and thus not hereditarily isomorphic up to complementation.

Proof. Note that A3 is an oriented cycle isomorphic to C3. The graph U is obtained from Pn

by dilating the vertex 0 by the empty graph with vertex set {a0, b0, c0}. By Corollary 3.4, U
and U are connected. Clearly G and G ′ are (≤ 4)-hypomorphic up to complementation. The
subdigraphs G↾{a0,b0,c0,1,2} and G ′↾{a0,b0,c0,1,2} are not isomorphic because d+G′↾{a0,b0,c0,1,2}

(1) = 3

but d+G↾{a0,b0,c0,1,2}
(x) ≤ 2 for all vertex x . The subdigraphs G↾{a0,b0,c0,1,2} and G ′↾{a0,b0,c0,1,2}

are not isomorphic because there are full edges in G↾{a0,b0,c0,1,2} whereas there are none
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in G ′↾{a0,b0,c0,1,2}. Thus G and G ′ are not (≤ 5)-hypomorphic up to complementation. As
d+G′ (1) = 3 and there is no vertex x in G of degree 3, and there are full edges in G whereas
there are none in G ′, then G and G ′ are not isomorphic up to complementation. Thus G and
G ′ are not hereditarily isomorphic up to complementation. □

4. PRELIMINARY RESULTS

Theorem 4.1 ([21]). Let G be a graph. If G and G are connected then G embeds a P4.

Remark 4.2. Let G and G ′ be two digraphs on the same set V such that G and G ′ are
(≤ 3)-hypomorphic up to complementation. Let U := G+̇G ′ and a, b, c ∈ V . If G↾{a,b,c} is a
peak or a flag, then U↾{a,b,c} is a complete or an empty graph.

Lemma 4.3. Let G and G ′ be two digraphs on the same set V such that G and G ′ are
(≤ 3)-hypomorphic up to complementation. Let U := G+̇G ′ and a, b, c ∈ V .

(1) If E(U↾{a,b,c}) or E(U ↾{a,b,c}) is the set {{a, b}, {b, c}}, then {a, b} is an oriented pair in
G if and only if {b, c} is an oriented pair in G.

(2) If E(U↾{a,b,c}) or E(U ↾{a,b,c}) is the set {{a, b}} and {a, b} is an oriented pair in G, then
{a, b} is an interval of G↾{a,b,c} and G ′↾{a,b,c}.

(3) If E(U↾{a,b,c}) or E(U ↾{a,b,c}) is the set {{a, b}} and {a, b} is a neutral pair in G, then
{a, b} is not an interval of G↾{a,b,c}, and {b, c} is an oriented pair in G if and only if
{a, c} is an oriented pair in G. Moreover if c −→G a (resp. c G a) then b −→G c
(resp. c. . .G b).

Proof. (1) By contradiction. Without loss of generality (W.l.o.g.), we assume that a −→G b
and b G c, then a ←−

G′
b and b. . .

G′
c. If {a, c} is an oriented pair in G not reversed in

G ′, then G ′↾{a,b,c} ̸≃ G↾{a,b,c} and G ′↾{a,b,c} ̸≃ G↾{a,b,c} because exactly one of G↾{a,b,c} and
G ′↾{a,b,c} is a peak, which contradicts the 3-hypomorphy up to complementation. If {a, c} is
a neutral pair in G not reversed in G ′, then G ′↾{a,b,c} ̸≃ G↾{a,b,c} and G ′↾{a,b,c} ̸≃ G↾{a,b,c}
because exactly one of G↾{a,b,c} and G ′↾{a,b,c} is a flag, which contradicts the 3-hypomorphy
up to complementation.
(2) W.l.o.g., we assume that E(U↾{a,b,c}) = {{a, b}}. Then E(U ↾{a,b,c}) = {{a, c}, {b, c}} and
U = G+̇G ′. We can assume that a −→G b, then a −→

G′
b.

• Case 1. {b, c} is an oriented pair in G.
W.l.o.g. we assume b −→G c, thus b ←−

G′
c. Since a −→G b, b −→G c and

{a, c} −→
G′

b, from the 3-hypomorphy up to complementation we have a −→G c and
the conclusion follows.

• Case 2. {b, c} is not an oriented pair in G.
W.l.o.g. we can assume b G c, thus b· · ·

G′
c. From (1) of this lemma, {a, c} is a neutral pair

in G. Since G and G ′ are 3-hypomorphic up to complementation, a G c and the conclusion
follows.
(3) We have E(U↾{a,b,c}) or E(U ↾{a,b,c}) = {{a, b}} and {a, b} is a neutral pair in G.
W.l.o.g., we can assume that E(U↾{a,b,c}) = {{a, b}} and a G b, so a. . .

G′
b.

• Case 1. {a, c} is an oriented pair in G not reversed in G ′.
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W.l.o.g., we assume that a −→G c, so a −→
G′

c. We have U↾{a,b,c} is neither a complete
graph nor an empty graph, so from Remark 4.2, each of G↾{a,b,c} and G ′↾{a,b,c} is neither a
peak nor a flag, so b←−G c and b←−

G′
c.

• Case 2. {a, c} is a neutral pair in G not reversed in G ′.
W.l.o.g., we assume that a G c, so a

G′
c. As a G {b, c} and a

G′
c and a. . .

G′
b,

then the 3-hypomorphy up to complementation applied to G↾{a,b,c} gives b. . .G c, so b. . .
G′

c.
In the two cases we have {a, b} is not an interval of G↾{a,b,c}. □

Lemma 4.4. Let G and G ′ be two digraphs on the same vertex set V such that G and G ′

are (≤ 3)-hypomorphic up to complementation, and U := G+̇G ′. Let n ≥ 3 be an integer,
X := {v0, v1, . . . , vn−1} ⊂ V and x ∈ V \ X.

We assume that U↾X∪{x} = x v0 v1 . . . vn−1.

(1) If G↾X = v0 −→ v1 −→ · · · −→ vn−1, then G↾X∪{x} = x −→ v0 −→ v1 −→ · · · −→

vn−1 and G ′↾X∪{x} = G∗↾X∪{x}.

(2) If G↾X =
−→

P f
n , then G↾X∪{x} is isomorphic to

−−→

P f
n+1 by an isomorphism f such that

f (vi ) = i + 1 for each i ∈ {0, . . . , n − 1} and f (x) = 0, and G ′↾X∪{x} = G∗↾X∪{x}.

Proof. (1) We have E(U↾{x,v0,v1}) = {{x, v0}, {v0, v1}} and v0 −→G v1, then (1) of
Lemma 4.3 gives {x, v0} is an oriented pair in G, reversed in G ′, let j ∈ {2, 3 . . . n − 1},
we have E(U↾{x,v0,v j }) = {{x, v0}}, then (2) of Lemma 4.3 applied to {x, v0, v j } gives
that {x, v0} is an interval of G↾{x,v0,v j }. As v0. . .G v j , thus x . . .G v j and x . . .

G′
v j . We have

U↾{x,v1,v2} = x . . .v1 v2, x . . .G v2 and v1 −→G v2, then (2) of Lemma 4.3 gives x . . .G v1
and x . . .

G′
v1. As v0 U v1 and x . . .U v1 then, from Remark 4.2, G↾{x,v0,v1} is not a peak,

thus x −→G v0 and x ←−
G′

v0. Then, G↾X∪{x} = x −→ v0 −→ v1 −→ · · · −→ vn−1 and
G ′↾X∪{x} = G∗↾X∪{x}.
(2) The proof is similar to that of first assertion. □

Lemma 4.5. Let G and G ′ be two digraphs on the same vertex set V such that G and G ′ are
(≤ 4)-hypomorphic up to complementation, and U := G+̇G ′. Let X := {v0, v1, v2, v3} ⊂ V .
If U↾X = v0 v1 v2 v3, we have :

(1) If {v0, v1} is a neutral pair in G, then

{G↾X , G ′↾X } =
{

H, H∗
}

or {G↾X , G ′↾X } =
{

H∗, H
}
,

where H := v1 −→ v3 −→ v0 −→ v2.
(2) If (v0 −→G v1 and v1 −→G v2) or (v0 ←−G v1 and v1 ←−G v2), then

{G↾X , G ′↾X } =

{
−→
P4,

(
−→
P4

)∗}
or {G↾X , G ′↾X } =

{
−→

P f
4 ,

(
−→

P f
4

)∗}
.

(3) If (v0 −→G v1, v1 ←−G v2) or (v0 ←−G v1 and v1 −→G v2), then

{G↾X , G ′↾X } = {v0 < v2 < v1 < v3, v1 < v0 < v3 < v2}

or {G↾X , G ′↾X } = {v2 < v3 < v0 < v1, v3 < v1 < v2 < v0}.

Proof. (1) As {v0, v1} is a neutral pair in G, w.l.o.g., we assume that v0 G v1. Then
v0. . .G′

v1. We have E(U↾{v0,v1,v2}) = {{v0, v1}, {v1, v2}} and v0 G v1, so (1) of Lemma 4.3
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applied to {v0, v1, v2} gives {v1, v2} is a neutral pair in G reversed in G ′. We have
E(U↾{v1,v2,v3}) = {{v1, v2}, {v2, v3}}, so (1) of Lemma 4.3 applied to {v1, v2, v3} gives {v2, v3}

is a neutral pair in G reversed in G ′. According to the nature of the pair {v1, v2}, we have the
following cases:

• Case 1. v1 G v2.
Then v1. . .G′

v2. We have v0. . .U v2, then the 3-hypomorphy up to complementation applied to
{v0, v1, v2} gives {v0, v2} is an oriented pair in G not reversed in G ′. We assume that v0 −→G

v2 and v0 −→G′
v2 (resp. v0 ←−G v2 and v0 ←−G′

v2). As U↾{v0,v2,v3} = v0. . .v2 v3, then
(3) of Lemma 4.3 gives v0 ←−G v3 and v0 ←−G′

v3 (resp. v0 −→G v3 and v0 −→G′
v3). As

U↾{v0,v1,v3} = v3. . .v0 v1, then (3) of Lemma 4.3 gives v1 −→G v3 and v1 −→G′
v3 (resp.

v1 ←−G v3 and v1 ←−G′
v3). Since v1 U v2 and v1. . .U v3, from Remark 4.2, G↾{v1,v2,v3}

is not a flag, so v2 G v3 and v2. . .G′
v3. Then G ′↾{v0,v1,v2,v3}

= H and G↾{v0,v1,v2,v3} = H∗

(resp. G↾{v0,v1,v2,v3} = H and G ′↾{v0,v1,v2,v3} = H∗).

• Case 2. v1. . .G v2.
Then v1 G′

v2. As v0. . .U v2 and v1 U v2 then, from Remark 4.2, G↾{v0,v1,v2} is not a flag,
so {v0, v2} is a neutral pair in G not reversed in G ′. W.l.o.g. we can assume that v0 G v2,
so v0 G′

v2. Since E(U↾{v0,v2,v3}) = {{v2, v3}} and {v2, v3} is a neutral pair in G, then (3) of
Lemma 4.3 gives v0. . .G v3 and v0. . .G′

v3. We have v0. . .G′
{v1, v3}, v0. . .G v3 and v0 G v1,

so the 3-hypomorphy up to complementation applied to {v0, v1, v3} gives v1 G′
v3, so

v1 G v3. We have v1 G′
{v2, v3}, v1. . .G v2 and v1 G v3, then the 3-hypomorphy up

to complementation applied to {v1, v2, v3} gives v2. . .G′
v3, so v2 G v3. Then G↾{v0,v1,v2,v3}

and G ′↾{v0,v1,v2,v3}
have respectively the types (4,2) and (3,3), so G ′↾{v0,v1,v2,v3}

̸≃ G↾{v0,v1,v2,v3}

and G ′↾{v0,v1,v2,v3}
̸≃ G↾{v0,v1,v2,v3}, that contradict the 4-hypomorphy up to complementation.

(2) • Case 1. v0 −→G v1 and v1 −→G v2.
Then v1 −→G′

v0 and v2 −→G′
v1. We have v0. . .U v2, if {v0, v2} is an oriented pair

in G, then one of the subdigraphs G↾{v0,v1,v2} and G ′↾{v0,v1,v2}
is a 3-cycle and the other

is a total order of order 3, that contradict the 3-hypomorphy up to complementation, so

{v0, v2} is a neutral pair in G not reversed in G ′, thus G↾{v0,v1,v2} =
−→
P3 or

−→

P f
3 , and

G ′↾{v0,v1,v2}
= G∗↾{v0,v1,v2}

. As U↾{v0,v1,v2,v3} is a P4 then, from Lemma 4.4, G↾{v0,v1,v2,v3} =
−→
P4

or
−→

P f
4 , and G ′↾{v0,v1,v2,v3}

= G∗↾{v0,v1,v2,v3}
.

• Case 2. v0 ←−G v1 and v1 ←−G v2.
Then v0 −→G′

v1 and v1 −→G′
v2. From Case 1, by exchanging the roles of G and G ′, we

have G ′↾{v0,v1,v2,v3}
=
−→
P4 or

−→

P f
4 , and G↾{v0,v1,v2,v3} = (G ′)∗↾{v0,v1,v2,v3}

.
(3) • Case 1. v0 −→G v1 and v1 ←−G v2.
Then v0 ←−G′

v1 and v1 −→G′
v2. As v1 U v2 and v0. . .U v2 then, from Remark 4.2,

G↾{v0,v1,v2} is not a peak, so {v0, v2} is an oriented pair in G not reversed in G ′. We assume that
v0 −→G v2 and v0 −→G′

v2 (resp. v0 ←−G v2 and v0 ←−G′
v2). We have E(U↾{v1,v2,v3}) =

{{v1, v2}, {v2, v3}} and v1 ←−G v2, then (1) of Lemma 4.3 gives {v2, v3} is an oriented pair
in G reversed in G ′, we have E(U↾{v0,v2,v3}) = {{v2, v3}}, then (2) of Lemma 4.3 applied
to {v0, v2, v3} gives {v2, v3} is an interval of G↾{v0,v2,v3}, so v0 −→G v3 and v0 −→G′

v3

(resp. v0 ←−G v3 and v0 ←−G′
v3). We have E(U↾{v0,v1,v3}) = {{v0, v1}} and v0 −→G v1,

then (2) of Lemma 4.3 applied to {v0, v1, v3} gives {v0, v1} is an interval of G↾{v0,v1,v3}, so
v1 −→G v3 and v1 −→G′

v3 (resp. v1 ←−G v3 and v1 ←−G′
v3). We have v1 ←−G v2,
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v1 −→G v3 and v1 −→G′
{v2, v3} (resp. v1 −→G′

v2, v1 ←−G′
v3 and v1 ←−G {v2, v3}),

then the 3-hypomorphy up to complementation applied to {v1, v2, v3} gives v2 −→G v3, so
v2 ←−G′

v3 (resp. v2 ←−G′
v3, so v2 −→G v3), thus G↾X = v0 < v2 < v1 < v3 and

G ′↾X = v1 < v0 < v3 < v2 (resp. G↾X = v2 < v3 < v0 < v1 and G ′↾X = v3 < v1 < v2 < v0).

• Case 2. v0 ←−G v1 and v1 −→G v2.
Then v0 −→G′

v1 and v1 ←−G′
v2. From Case 1, by exchanging the roles of G and G ′, we

have G ′↾X = v0 < v2 < v1 < v3 and G↾X = v1 < v0 < v3 < v2 or G ′↾X = v2 < v3 < v0 < v1

and G↾X = v3 < v1 < v2 < v0. □

Proposition 4.6. Let G and G ′ be two digraphs on the same vertex set V , (≤ 5)-hypomorphic
up to complementation. Let U := G+̇G ′. If U and U are connected and G is not a

tournament, then there exists X ⊂ V , such that G↾X ≃
−→
P4 or

−→

P f
4 , and G ′↾X = G∗↾X or

G ′↾X = G∗↾X .

Proof. From Theorem 4.1, there exists X := {u0, u1, u2, u3} ⊂ V such that
u0 u1 u2 u3 is an induced P4 of U . The hypotheses of Lemma 4.5 are satisfied.
If we have (1) or (2) of Lemma 4.5, then we conclude.

Now we consider that only the situation (3) of Lemma 4.5 holds. (⋆)

That is if X := {u0, u1, u2, u3} ⊂ V such that u0 u1 u2 u3 is an induced
P4 of U , then {G↾X , G ′↾X } = {u0 < u2 < u1 < u3, u1 < u0 < u3 < u2} or
{u2 < u3 < u0 < u1, u3 < u1 < u2 < u0}. From this, if ui −→G ui+1 then ui+1 ←−G ui+2

for each i ∈ {0, 1}.
We will show that the situation (⋆) is impossible, which completes our proof.

As G is not a tournament, there exist a, b ∈ V (G) such that {a, b} is a neutral pair in G.
From Corollary 3.4, U = S(U0, U1, . . . , Um−1), where S is an indecomposable graph with at
least 4 vertices and the Ui ’s are graphs, for each i ∈ {0, 1, . . . , m − 1}.

Claim 4.7. {a, b} ̸⊆ V (Ui ), for each i ∈ {0, 1, . . . , m − 1}.

Proof. We assume by contradiction, that there exists i ∈ {0, 1 . . . , m − 1} such that
a, b ∈ V (Ui ). Then from Theorem 3.1, there exist v0, v1, v2, v3 ∈ V (U ) such that one of
the following cases holds.

• Case 1. In U , we have v0 v1 v2 {a, b}.
Let x ∈ {a, b}. We have U↾{v0,v1,v2,x} = v0 v1 v2 x , so from (⋆), G↾{v0,v1,v2,x} and
G ′↾{v0,v1,v2,x} are two total orders of order 4, w.l.o.g., we can assume that G↾{v0,v1,v2,x} = v0 <

v2 < v1 < x and G ′↾{v0,v1,v2,x} = v1 < v0 < x < v2. Then G↾{v0,v1,v2,a,b} = v0 < v2 < v1 <

{a, b} and G ′↾{v0,v1,v2,a,b} = v1 < v0 < {a, b} < v2. Clearly, since G↾{v2,a,b} is a peak and
v2 U {a, b}, from Remark 4.2, a U b. Since G↾{v1,a,b} is a peak and v1. . .U {a, b}, from
Remark 4.2, a. . .U b. A contradiction.

• Case 2. In U , we have v0 {a, b} v2 v3.
The proof is similar to that of Case 1.

• Case 3. In U , we have
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As U↾{v0,v1,v2,v3} = v0 v1 v2 v3, from (⋆), G↾{v0,v1,v2,v3} and G ′↾{v0,v1,v2,v3}
are

two total orders of order 4. W.l.o.g., we assume that G↾{v0,v1,v2,v3} = v0 < v2 < v1 < v3
and G ′↾{v0,v1,v2,v3}

= v1 < v0 < v3 < v2. Let x ∈ {a, b}. We have E(U↾{x,v2,v3}) =
{{x, v2}, {v2, v3}} (resp. E(U↾{x,v0,v1}) = {{v0, v1}, {x, v1}}) and {v2, v3} (resp. {v0, v1}) is
an oriented pair in G, then (1) of Lemma 4.3 applied to {x, v2, v3} (resp. {x, v0, v1}) gives
{x, v2} (resp. {x, v1}) is an oriented pair in G reversed in G ′. Since E(U↾{x,v1,v3}) = {{x, v1}},
(2) of Lemma 4.3 applied to {x, v1, v3} gives {x, v1} is an interval of G↾{x,v1,v3}, we have
v1 −→G v3, so x −→G v3 and x −→

G′
v3. We have {x, v2} −→G v3, x −→

G′
v3,

v3 −→G′
v2, then the 3-hypomorphy up to complementation applied to {x, v2, x3} gives

x −→
G′

v2, so x ←−G v2. We have G↾{v2,a,b} is a peak and v2 U {a, b}, then a U b. We
have G↾{v3,a,b} is a peak and v3. . .U {a, b}, then a. . .U b. A contradiction. □

From Claim 4.7, there are i, j ∈ {0, 1 . . . , m − 1}, i ̸= j , such that a ∈ V (Ui ) and
b ∈ V (U j ). For each X := {v0, v1, v2, v3} ⊂ V , if v0 v1 v2 v3 is an induced P4
of U , then from (⋆), G↾{v0,v1,v2,v3} and G ′↾{v0,v1,v2,v3}

are total orders, so {a, b} is not a subset
of X and m ≥ 5. From Theorem 3.2, there is a subset Y := {v0, v1, . . . , vm−1} of V (S)
satisfying: a, b ∈ Y and there is an isomorphism f from U↾Y or U ↾Y onto Pm or Qm , such
that f ({a, b}) = {v0, vm−1}.

• Case 1. U↾{v0,v1,...,vm−1} ≃ Pm .
W.l.o.g., we can assume that a = v0, b = vm−1 and U↾{v0,v1,...,vm−1} = Pm . We have for
each i ∈ {0, 1 . . . , m − 4}, U↾{vi ,vi+1,vi+2,vi+3} ≃ P4 then, from (⋆), G↾{vi ,vi+1,vi+2,vi+3} and
G ′↾{vi ,vi+1,vi+2,vi+3}

are total orders, thus {v j , v j+1} is an oriented pair in G reversed in G ′

for each j ∈ {0, 1, . . . , m − 2}. For i ∈ {0, 1 . . . , m − 4}, we have U↾{vm−1,vi ,vi+1} =

vm−1. . .vi vi+1 and {vi , vi+1} is an oriented pair in G, so (2) of Lemma 4.3 applied to
{vm−1, vi , vi+1} gives {vi , vi+1} is an interval of G↾{vm−1,vi ,vi+1}, then {v0, v1, . . . , vm−3} is an
interval of G↾{vm−1,v0,v1,...,vm−3}. As G↾{vm−4,vm−3,vm−2,vm−1} is a total order, {vm−3, vm−1} is an
oriented pair in G, then {v0, vm−1} = {a, b} is oriented in G. A contradiction.

• Case 2. U↾{v0,v1,...,vm−1} ≃ Qm .
W.l.o.g., we can assume that a = v0, b = vm−1 and U↾{v0,v1,...,vm−1} = Qm .

Case 2.1. m = 5.

Then U↾{v0,v1,v2,v3,v4} = Q5 = , a = v0 and b = v4.

As U↾{v2,v1,v3,v4} = v2 v1 v3 v4, thus from (⋆), G↾{v2,v1,v3,v4} and G ′↾{v2,v1,v3,v4}
are

total orders. We have E(U↾{v0,v1,v2}) = {{v0, v1}, {v1, v2}} and {v1, v2} is an oriented pair in
G, so (1) of Lemma 4.3 applied to {v0, v1, v2} gives {v0, v1} is an oriented pair in G reversed
in G ′, we have E(U↾{v0,v1,v4}) = {{v0, v1}}, thus (2) of Lemma 4.3 applied to {v0, v1, v4} gives
{v0, v1} is an interval of G↾{v0,v1,v4}. As {v1, v4} is an oriented pair in G, then {v0, v4} = {a, b}
is an oriented pair in G. A contradiction.

Case 2.2. m > 5.
We have U↾{v0,vm−1,vm−2,vm−3,vm−4} = {v0, vm−1} vm−2 vm−4 vm−3, where {v0, vm−1}

is an interval of U↾{v0,vm−1,vm−2,vm−3,vm−4}. A contradiction is obtained by making a proof
similar to that of Case 1 of the proof of Claim 4.7. □
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5. RECONSTRUCTION UP TO COMPLEMENTATION

Lemma 5.1. Let G and G ′ be two digraphs on the same vertex set V such that G and G ′ are
(≤ 5)-hypomorphic up to complementation. Let U := G+̇G ′, X := {v0, v1, v2, v3} ⊂ V and

x ∈ V \ X. If G↾X =
−→
P4 or

−→

P f
4 , and G ′↾X = G∗↾X then,

(1) x . . .U {v1, v2}.
(2) Up to isomorphism, U↾X∪{x} is one of the following graphs:

Proof. W.l.o.g., we can assume that G↾X = v0 −→ v1 −→ v2 −→ v3, so G ′↾X = G∗↾X =

v3 −→ v2 −→ v1 −→ v0 and U↾X = v0 v1 v2 v3. It suffices to prove (1) because
(2) is a consequence of (1). By contradiction x U v1 or x U v2.

• Case 1. x U v1 and x . . .U v2, or x U v2 and x . . .U v1.
W.l.o.g., we can assume that x U v1 and x . . .U v2.

Case 1.1. x . . .U v3.
Since U↾{x,v1,v2,v3} = x v1 v2 v3 and G↾{v1,v2,v3} = v1 −→ v2 −→ v3, by
Lemma 4.4, G↾{x,v1,v2,v3} = x −→ v1 −→ v2 −→ v3 and G ′↾{x,v1,v2,v3}

= G∗↾{x,v1,v2,v3}
.

Thus in G we have {v0, x} −→ v1 −→ v2 −→ v3, and in G ′ we have {v0, x} ←− v1 ←−

v2 ←− v3. So G ′↾X∪{x} ̸≃ G↾X∪{x}. On the other hand, G ′↾X∪{x} and G↾X∪{x} are not isomorphic
because their types are distinct. Then G ′↾X∪{x} and G↾X∪{x} are not 5-hypomorphic up to
complementation, a contradiction.

Case 1.2. x U v3 and x . . .U v0.
As E(U ↾{x,v0,v3}) = {{x, v0}, {v0, v3}} and v0. . .G v3, (1) of Lemma 4.3 gives {x, v0} is a
neutral pair in G. We have E(U ↾{x,v0,v1}) = {{x, v0}} and v0 −→G v1, then (3) of Lemma 4.3
gives v1 −→G x and v1 ←−G′

x . As E(U ↾{x,v1,v3}) = {{v1, v3}} and v1. . .G v3, (3) of
Lemma 4.3 gives x −→G v3 and x ←−

G′
v3. Since E(U↾{x,v0,v3}) = {{x, v3}}, thus (2)

of Lemma 4.3 applied to {v0, x, v3} gives {x, v3} is an interval for G↾{x,v0,v3}, since v0. . .G v3,
so x . . .G v0 and x . . .

G′
v0.

In G we have v0 −→ v1 −→ {x, v2} −→ v3 and in G ′ we have v0 ←− v1 ←− {x, v2} ←−

v3, so G ′↾X∪{x} ̸≃ G↾X∪{x}. By types, G ′↾X∪{x} ̸≃ G↾X∪{x}. We get a contradiction with the
5-hypomorphy up to complementation.

Case 1.3. x U {v0, v3}.
As E(U ↾{x,v0,v2}) = {{v0, v2}, {v2, x}} and v0. . .G v2, (1) of Lemma 4.3 gives {x, v2} is a
neutral pair in G. Since E(U ↾{x,v2,v3}) = {{x, v2}} (resp. E(U ↾{x,v1,v2}) = {{x, v2}} and
v1 −→G v2), (3) of Lemma 4.3 applied to {x, v3, v2} (resp. {x, v1, v2}) gives x ←−G v3
and x −→

G′
v3 (resp. x −→G v1 and x ←−

G′
v1). We have E(U ↾{x,v0,v3}) = {{v0, v3}},

thus (3) of Lemma 4.3 applied to {x, v0, v3} gives x −→G v0 and x ←−
G′

v0. As
E(U↾{x,v0,v2}) = {{x, v0}}, (2) of Lemma 4.3 applied to {x, v0, v2} gives {x, v0} is an interval
of G↾{x,v0,v2}, then x . . .G v2 and x . . .

G′
v2. The induced digraphs G↾{v0,v1,v2,x} and G ′↾{v0,v1,v2,x}
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are not isomorphic up to complementation, which gives a contradiction with the hypothesis
G and G ′ are (≤ 5)-hypomorphic up to complementation.
• Case 2. x U {v1, v2}.

Case 2.1. x . . .U {v0, v3}.
We have E(U ↾{x,v1,v3}) = {{x, v3}, {v1, v3}} and v1. . .G v3 (resp. E(U ↾{x,v0,v2}) =
{{x, v0}, {v0, v2}} and v0. . .G v2), then (1) of Lemma 4.3 gives {x, v3} (resp. {x, v0}) is a
neutral pair in G. We have E(U ↾{x,v2,v3}) = {{x, v3}} and v2 −→G v3 (resp. E(U ↾{x,v0,v1}) =
{{x, v0}, {x, v1}} and v0 −→G v1), then (3) of Lemma 4.3 applied to {x, v2, v3} (resp.
{v0, v1, x}) gives v2 ←−G x and v2 −→G′

x (resp. v1 −→G x and v1 ←−G′
x). We have

E(U↾{x,v1,v3}) = {{x, v1}} (resp. E(U↾{x,v0,v2}) = {{x, v2}}), then (2) of Lemma 4.3 applied
to {x, v1, v3} (resp. {v0, v2, x}) gives {x, v1} (resp. {x, v2}) is an interval of G↾{x,v1,v3} (resp.
G↾{v0,v2,x}) then x . . .G v3 and x . . .

G′
v3 (resp. x . . .G v0 and x . . .

G′
v0). By types, G ′↾{v0,v1,v2,x} ̸≃

G↾{v0,v1,v2,x}. If σ is an isomorphism from G↾{v0,v1,v2,x} onto G ′↾{v0,v1,v2,x}, then σ (v1) = v1

because v1 is the only vertex in {v0, v1, v2, x}, whose not adjacent to any neutral pair
in G↾{v0,v1,v2,x}; now since d+G↾{v0,v1,v2,x}

(v1) = 2 and d+G′↾{v0,v1,v2,x}
(v1) = 1, we deduce that

G ′↾{v0,v1,v2,x} ̸≃ G↾{v0,v1,v2,x}. A contradiction.

Case 2.2. x U v3 and x . . .U v0 or x U v0 and x . . .U v3.
W.l.o.g., we can assume that x U v3 and x . . .U v0.
We do the same proof as Case 1.2. In G we have v0 −→ v1 −→ {x, v2} −→ v3 and in G ′

we have v0 ←− v1 ←− {x, v2} ←− v3, so G ′↾X∪{x} and G↾X∪{x} are not 5-hypomorphic up to
complementation, a contradiction.

Case 2.3. x U {v0, v3}.
According to the nature of {x, v2} in G, we can distinguish the following subcases.

Case 2.3.1. x −→G v2 or x ←−G v2.
W.l.o.g. we can suppose x −→G v2. As x U v2 then x ←−

G′
v2. We have E(U ↾{x,v0,v2}) =

{{v0, v2}}, v0. . .G v2 and x −→G v2. So, (3) of Lemma 4.3 applied to {x, v0, v2} gives
x ←−G v0 and x −→

G′
v0. We have E(U ↾{x,v0,v3}) = {{v0, v3}} and v0. . .G v3, then

(3) of Lemma 4.3 applied to {x, v0, v3} gives x −→G v3 and x ←−
G′

v3. We have
E(U ↾{x,v1,v3}) = {{v1, v3}} and v1. . .G v3. So (3) of Lemma 4.3 applied to {x, v1, v3} gives
x ←−G v1 and x −→

G′
v1. We have that x is the only vertex in {v0, v2, v3, x}, which is

not adjacent to any neutral pair in G↾{v0,v2,v3,x}. As d+G↾{v0,v2,v3,x}
(x) ̸= d+G′↾{v0,v2,v3,x}

(x), then

G ′↾{v0,v2,v3,x} ̸≃ G↾{v0,v2,v3,x}. Moreover G ′↾{v0,v2,v3,x} ̸≃ G↾{v0,v2,v3,x} because their types are
distinct. We get a contradiction with the 4-hypomorphy up to complementation.

Case 2.3.2. x . . .G v2.
Then x

G′
v2. As v2. . .G {x, v0}, v0. . .G′

v2 and x
G′

v2, thus x G v0, so x . . .
G′

v0.
As v0. . .G′

{x, v3}, v0. . .G v3 and x G v0, then x
G′

v3, so x . . .G v3. As v3. . .G {x, v1},
v1. . .G′

v3 and x
G′

v3, then x G v1, so x . . .
G′

v1. Since G↾{v0,v2,v3,x} and G ′↾{v0,v2,v3,x}
have respectively the types (1, 4) and (2, 3), G ′↾{v0,v2,v3,x} and G↾{v0,v2,v3,x} are not isomorphic
up to complementation, a contradiction.

Case 2.3.3. x G v2.
We do the same proof as Case 2.3.2. □

From Lemma 5.1, we obtain the following result.
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Corollary 5.2. Let G and G ′ be two digraphs on the same vertex set V such that G and G ′ are
(≤ 5)-hypomorphic up to complementation. Let U := G+̇G ′, X := {v0, v1, . . . , vk−1} ⊂ V

and x ∈ V \ X. If G↾X =
−→
Pk or

−→

P f
k , and G ′↾X = G∗↾X then,

(1) x . . .U {v1, . . . , vk−2}.
(2) Up to isomorphism, U↾X∪{x} is one of the following graphs:

Proposition 5.3. Let G and G ′ be two digraphs on the same set V of n ≥ 4 vertices, such
that G and G ′ are (≤ 5)-hypomorphic up to complementation and U := G+̇G ′ is connected.
Let X ⊂ V .

(1) If G↾X ≃
−→
P4 and G ′↾X = G∗↾X , then G ≃

−→
Pn or G ≃

−→
Cn , and G ′ = G∗.

(2) If G↾X ≃
−→
P4 and G ′↾X = G∗↾X , then G ≃

−→
Pn or G ≃

−→
Cn , and G ′ = G∗.

(3) If G↾X ≃
−→

P f
4 and G ′↾X = G∗↾X , then G ≃

−→

P f
n or G ≃

−→

C f
n , and G ′ = G∗.

(4) If G↾X ≃
−→

P f
4 and G ′↾X = G∗↾X , then G ≃

−→

P f
n or G ≃

−→

C f
n , and G ′ = G∗.

Proof. It suffices to prove (1) because (2), (3) and (4) are consequences of (1). As G↾X ≃
−→
P4 ,

let
−→
Pℓ be a largest induced oriented path in G reversed in G ′. Clearly, ℓ ≥ 4. W.l.o.g. we can

assume
−→
Pℓ = v0 −→ v1 −→ · · · −→ vℓ−1 and G ′

↾V (
−→
Pℓ)
= v0 ←− v1 ←− · · · ←− vℓ−1.

So U
↾V (
−→
Pℓ) = v0 v1 . . . vℓ−2 vℓ−1. If V (

−→
Pℓ) = V , then G =

−→
Pℓ and G ′ = G∗.

In the rest of this proof, we assume that V \ V (
−→
Pℓ) ̸= ∅. As U is connected, there exists

vℓ ∈ V \ V (
−→
Pℓ), such that U

↾V (
−→
Pℓ)∪{vℓ}

is connected. From (2) of Corollary 5.2, up to

isomorphism, U
↾V (
−→
Pℓ)∪{vℓ}

is one of the following graphs:

If U
↾V (
−→
Pℓ)∪{vℓ}

is the graph vℓ v0 v1 . . . vℓ−2 vℓ−1 then, from Lemma 4.4,
we have G

↾V (
−→
Pℓ)∪{vℓ}

= vℓ −→ v0 −→ v1 −→ · · · −→ vℓ−1 and G ′
↾V (
−→
Pℓ)∪{vℓ}

= G∗
↾V (
−→
Pℓ)∪{vℓ}

,

that contradict the fact that
−→
Pℓ is the largest induced oriented path in G reversed in G ′. Then

U
↾V (
−→
Pℓ)∪{vℓ}

is the second graph.
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If there is x in V \ (V (
−→
Pℓ) ∪ {vℓ}), we have vi−1 vi vi+1 vi+2 for each i ∈

{1, . . . , ℓ−2}, then from (1) of Lemma 5.1, x . . .U vi for each i ∈ {1, . . . , ℓ−1}, also we have
vℓ−1 vℓ v0 v1, so from (1) of Lemma 5.1, x . . .U {v0, vℓ}. Thus x . . .U (V (

−→
Pℓ)∪{vℓ}).

As U is connected, V = V (
−→
Pℓ) ∪ {vℓ}.

We have G↾{v0,v1,...,vℓ−2} = v0 −→ v1 −→ · · · −→ vℓ−2 and U↾{vℓ,v0,v1,...,vℓ−2} =

vℓ v0 v1 . . . vℓ−3 vℓ−2, then from Lemma 4.4, G↾{vℓ,v0,v1,...,vℓ−2} = vℓ −→

v0 −→ v1 −→ · · · −→ vℓ−2 and G ′↾{vℓ,v0,v1,...,vℓ−2}
= G∗↾{vℓ,v0,v1,...,vℓ−2}

.
We have U ↾{vℓ−2,vℓ−1,vℓ}

= vℓ−2 vℓ. . .vℓ−1, vℓ−2 −→G vℓ−1 and vℓ−2. . .G vℓ, then
(3) Lemma 4.3 applied to {vℓ−2, vℓ−1, vℓ} gives vℓ−1 −→G vℓ and vℓ−1 ←−G′

vℓ. Then
G =
−−→
Cℓ+1 and G ′ = G∗.

Proof of Theorem 1.3. If G is a tournament then from Proposition 1.1, G and G ′ are
total orders. If G is not a tournament, then using Proposition 4.6, there exists a subset X

of V (G) such that, G↾X ≃
−→
P4 or

−→

P f
4 , and G ′↾X = G∗↾X or G∗↾X ; then we conclude using

Proposition 5.3.
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