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Abstract. A formula for calculating moments for wavelet packets is derived and a sufficient
condition for moments of wavelet packets to be vanishing is obtained. Also, the convolution
and cross-correlation theorems for Hilbert transform of wavelets are proved. Finally, using
MRA of L2(R), some results on the vanishing moments of the scaling functions, wavelets
and their convolution in two dimension are given.

Keywords: Wavelet packets; Hilbert transformation; Moments; Wavelet packets

Mathematics Subject Classification: 42C40; 44A15; 44A60; 65T60

1. INTRODUCTION

In 1984, the combined effort of Grossmann and Morlet [7] directed to a complete
mathematical study of the continuous wavelet transforms and their various applications. In
1988, the concept of Multiresolution Analysis (MRA) was introduced by S. Mallat [16] and
Y. Meyer [17]. Using MRA, wavelet spaces are constructed by splitting the frequency domain
dyadically and their bases are obtained with the help of translated and dialated form of a
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single function. A stronger extension of wavelets and MRA is wavelet packets which are par-
ticularly the superposition of wavelets and are especially well adapted for signal processing.
In 1988, Daubechies [4] found a new method to construct the compactly supported orthogonal
wavelet. A major problem at that time was to deal with the poor frequency localization of
wavelet bases and the solution was proposed by Coifman et al. [3] in 1990 as a result of which
they introduced the notion of wavelet packets which ensured better frequency localization
for the bases and thereby provided more adequate decomposition containing stationary and
transient components. They retain many of the significant characteristics such as smoothness,
orthogonality and localization properties of their root wavelets.

In 2005, Soares et al. [20] observed that if ψ(t) is a real wavelet, then Hilbert transform
of ψ(t) is also a real wavelet with same energy and admissibility coefficient of its generating
wavelet. Later in 2009, Chaudhury and Unser [2] observed that the fundamental reasons why
the Hilbert transform can be seamlessly integrated into the multiresolution framework of
wavelets are its scale and translation invariances, and its energy-preserving (unitary) nature.
For various details related to Hilbert transform one may refer to [6,14]. In 2015, Khanna
et al. [9,10] studied vanishing moments of Hilbert transform of wavelets and proved certain
results to approximate the functions in L2(R). Later, in 2016, Khanna et al. [11] introduced
the orthogonal Coifman wavelet packet systems, the biorthogonal Coifman wavelet packet
systems, and also introduced the notion of Hilbert transform of wavelet packets, and Hartley-
like wavelet packets. Recently, in 2017, Khanna et al. [12] studied vanishing moments of
wavelet packets and define the wavelets associated with Riesz projectors. Very recently,
Khanna et al. [13] studied wavelet packets and give various results related to their moments.

In this paper, moments of wavelet packets have been calculated and a sufficient condition
under which wavelet packets have vanishing moments is given. Hilbert transform wavelet
convolution and Hilbert transform wavelet cross-correlation theorems have been given to
analyze the Hilbert transform of convolved and cross-correlated functions (or signals).
Further, we develop a relationship between the vanishing moments of wavelets and the
Hilbert transform of convolved (or cross-correlated) wavelets. Finally, some results on
the vanishing moments of the scaling function, wavelets, and their convolutions in two
dimensions have been given.

2. PRELIMINARIES

Recall from [8,15] that a sequence of closed subspaces (V j ) j∈Z, of L2(R) is called a
multiresolution analysis (MRA), if

(i) V j ⊂ V j+1, for all j ∈ Z;
(ii) f ∈ V j if and only if f (2(·)) ∈ V j+1, for all j ∈ Z;

(iii)
⋂

j∈ZV j = {0};

(iv)
⋃

j∈ZV j = L2(R);
(v) There exists a function φ ∈ V0, such that {φ(· − k) : k ∈ Z} is an orthonormal basis

for V0.

The function φ whose existence is asserted in (v) is called a scaling function of the given
MRA.

Let M2,p be the uniquely defined Daubechies wavelet matrix of rank 2 and genus p
given by M2,p =

[
r0 . . . r2p−1
s0 . . . s2p−1

]
. We define rk = 0, sk = 0, for k ̸∈ [0, 2p − 1].
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The Daubechies scaling function φ and wavelet function ψ of genus p satisfy the usual
scaling equation φ(x) =

∑2p−1
k=0 rk φ(2x − k), for all x ∈ R and the wavelet equation

ψ(x) =
∑2p−1

k=0 sk φ(2x − k), for all x ∈ R. For details, see [22]. Also, φ satisfies the
normalization condition

∫
R φ(x) dx = 1 and

∑
k∈Zφ(x − k) = 1, for all x ∈ R. Wavelet

packets were basically prompted to enhance the frequency of resolution of signals attained
by wavelet analysis. The basic wavelet packets [19], ωn, n = 0, 1, 2, . . . , are defined by the
recursion formulae given as ω2n(x) =

∑2p−1
k=0 rk ωn(2x −k), ω2n+1(x) =

∑2p−1
k=0 sk ωn(2x −k)

or equivalently, in terms of the Fourier transform, we have ω̂2n(η) = m0( η2 ) ω̂n( η2 ) and
ω̂2n+1(η) = m1( η2 ) ω̂n( η2 ), where the symbols m0 and m1 are associated with the above
sequences by m0(η) =

∑2p−1
k=0 rkeιkη and m1(η) =

∑2p−1
k=0 skeιkη = eιηm0(η + π ).

Also, if we write n ∈ N into its unique dyadic expansion n =
∑

∞

j=1ϵ j 2 j−1, ϵ j ∈ {0, 1},
we have a general expression of the Fourier transform of the basic wavelet packets given by

ω̂n(η) =

q∏
j=1

mϵ j (2
− jη) ω̂0(2−qη), where q = max{ j : ϵ j = 1}. (2.1)

3. VANISHING MOMENTS OF WAVELET PACKETS

We begin this section with the following definition of vanishing moments given in [10]. A
function f (x) is said to have k vanishing moments if

∫
R xv f (x) dx = 0, 0 ≤ v ≤ k − 1,

where
∫
R xv f (x) dx is known as the vth moment of f (x), denoted by Momv( f ).

In the following result, we give a formula for calculating the moments of wavelet packets.

Theorem 3.1. The moments of wavelet packets ωn are given by

Momv(ω2n) =

∑
∑

1≤t≤q+2 ft =v

{
vC f1, f2,..., fq+2

iv

2 f1+2 f2+···+(q+1)( fq+1+ fq+2) m( f1)
0 (0)

( ∏
1≤t≤q

m( ft+1)
ϵt (0)

)(
i fq+2

2 fq+2 − 1
m fq+2 +

fq+2−1∑
l=1

dl Moml(ω0)
)}
,

Momv(ω2n+1) =

∑
∑

1≤t≤q+2 ft =v

{
vC f1, f2,..., fq+2

iv

2 f1+2 f2+···+(q+1)( fq+1+ fq+2) m( f1)
1 (0)

( ∏
1≤t≤q

m( ft+1)
ϵt (0)

)(
i fq+2

2 fq+2 − 1
m fq+2 +

fq+2−1∑
l=1

dl Moml(ω0)
)}
,

where dl =
fq+2 Cl

(−i)l

(2 fq+2 −1)
m

( fq+2−l)
0 (0) and m fq+2 =

∑2p−1
k=0 (rk k fq+2 ) and vC f1, f2,..., fq+2 =

v!
f1! f2!... fq+2!

(v ∈ N) are the multinomial coefficients. The sum is taken over all combinations
of nonnegative integer indices f1, . . . , fq+2 such that the sum of all fi ’s is v.

Proof. Consider ω̂2n(η) = m0

(
η

2

)
ω̂n

(
η

2

)
. Using (2.1), we obtain

ω̂2n(η) = m0

(η
2

) q∏
j=1

(
mϵ j (2

−( j+1)η)
)
ω̂0(2−(q+1)η).
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Now, Momv(ω2n) = t̂v ω2n(t)(0). Therefore

Momv(ω2n) = iv ω̂2n
(v)(0)

= iv
[

m0

(η
2

) ( q∏
j=1

mϵ j (2
−( j+1)η)

)
ω̂0(2−(q+1)η)

](v)

=

∑
∑

1≤t≤q+2 ft =v

{
vC f1, f2,..., fq+2

iv

2 f1+2 f2+···+(q+1)( fq+1+ fq+2) m( f1)
0 (0)( ∏

1≤t≤q

m( ft+1)
ϵt (0)

)
× ω̂

( fq+2)
0 (0)

}
,

where vC f1, f2,..., fq+2 =
v!

f1! f2!... fq+2!
, v ∈ N denotes the multinomial coefficients and the sum

is taken over all combinations of nonnegative integer indices f1, . . . , fq+2 such that the sum
of all fi ’s is v. This further gives

Momv(ω2n) =

∑
∑

1≤t≤q+2 ft =v

{
vC f1, f2,..., fq+2

iv

2 f1+2 f2+···+(q+1)( fq+1+ fq+2) m( f1)
0 (0)

( ∏
1≤t≤q

m( ft+1)
ϵt (0)

)(
1

(2 fq+2 − 1)

fq+2∑
l=1

( fq+2 Cl m(l)
0 (0) ω̂0

( fq+2−l)(0)
))}

.

Since m(l)
0 (0) =

∑2p−1
k=0 rk (ik)l and ω̂

fq+2−l
0 (0) = Mom fq+2−l(ω0) (−i) fq+2−l , it follows that

Momv(ω2n) =

∑
∑

1≤t≤q+2 ft =v

{
vC f1, f2,..., fq+2

iv

2 f1+2 f2+···+(q+1)( fq+1+ fq+2) m( f1)
0 (0)

( ∏
1≤t≤q

m( ft+1)
ϵt (0)

) (
1

(2 fq+2 − 1)

fq+2∑
l=1

(
fq+2 Cl

2p−1∑
k=0

(rk (ik)l)

Mom fq+2−l(ω0) (−i) fq+2−l
))}

=

∑
∑

1≤t≤q+2 ft =v

[
vC f1, f2,..., fq+2

iv

2 f1+2 f2+···+(q+1)( fq+1+ fq+2) m( f1)
0 (0)

( ∏
1≤t≤q

m( ft+1)
ϵt (0)

) (
1

(2 fq+2 − 1)

{2p−1∑
k=0

(
rk (ik) fq+2 Mom0(ω0)

)

+

fq+2−1∑
l=1

(
fq+2 Cl m(l)

0 (0) ω̂0
( fq+2−l)(0)

)})]
=

∑
∑

1≤t≤q+2 ft =v

{
vC f1, f2,..., fq+2

iv

2 f1+2 f2+···+(q+1)( fq+1+ fq+2) m( f1)
0 (0)

( ∏
1≤t≤q

m( ft+1)
ϵt (0)

) (
i fq+2

(2 fq+2 − 1)
m fq+2 +

fq+2−1∑
l=1

dl Moml(ω0)
)}
,

where dl =
fq+2 Cl

(−i)l

(2 fq+2 −1)
m

( fq+2−l)
0 (0) and m fq+2 =

∑2p−1
k=0 (rk k fq+2 ).
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Similarly, we have

Momv(ω2n+1) =

∑
∑

1≤t≤q+2 ft =v

{
vC f1, f2,..., fq+2

iv

2 f1+2 f2+···+(q+1)( fq+1+ fq+2) m( f1)
1 (0)

( ∏
1≤t≤q

m( ft+1)
ϵt (0)

)
×

(
i fq+2

2 fq+2 − 1
m fq+2 +

fq+2−1∑
l=1

dl Moml(ω0)
)}
,

where dl =
fq+2 Cl

(−i)l

(2 fq+2 −1)
m

( fq+2−l)
0 (0) and m fq+2 =

∑2p−1
k=0 (rk k fq+2 ). □

In the following result, we give a sufficient condition for moments of wavelet packets to
be vanishing.

Theorem 3.2. The wavelet packet moments, Momv(ωn), n ̸= 0 vanishes for v =

0, 1, 2, . . . , (p − 1) if for a wavelet matrix M2,p, each of the following conditions is satisfied.

(a) m fq+2 = 0, i.e., ( fq+2)th moment of scaling parameters rk vanishes,
(b) Moml(ω0) vanishes for l = 1, 2, . . . , ( fq+2 − 1),

where 1 ≤ fq+2 ≤ v and the sum of all combinations of non-negative integer indices
f1, . . . , fq+2 is v.

Proof. The proof can be worked out on the lines of Theorem 3.1. □

4. HILBERT TRANSFORM OF WAVELETS

Recall from [14] that the Hilbert trans f orm of a function f on a real line is defined by

H f (x) =
1
π

limϵ→0

∫
|x−t |≥ϵ

f (t)
x − t

dt =
1
π

limϵ→0

∫
|t |≥ϵ

f (x − t)
t

dt,

provided that the limit exists in some sense.
Also, the moment f ormula for the Hilbert transform of f is given by

H{xn f (x)} = xnH f (x) −
1
π

n−1∑
m=0

xm
∫
R

zn−1−m f (z) dz, n ≥ 0.

Note that the above formula holds if xn f (x) ∈ L p(R), 1 < p < ∞.

In the following results, we show that the wavelet transform of Hilbert transform of
convolved (cross-correlated) signals with Hilbert transform of convolved (cross-correlated)
wavelets can be decomposed as the convolution (cross-correlation) of the wavelet transform
of Hilbert transform of a signal with a wavelet and the wavelet transform of the other signal
with Hilbert transform of other wavelet.

Theorem 4.1 (Hilbert Transform Wavelet Convolution Theorem). Let ψ1, ψ2 be two wavelets
such that ψ1, ψ̂1 ∈ L1(R) and ψ2 ∈ L2(R) and let Wψ1 g′ and Wψ ′

2
h be the continuous

wavelet transform of two functions g′
= Hg and h with wavelets ψ1 and ψ ′

2 = Hψ2,
respectively, where g ∈ L2(R) and h, ĥ ∈ L1(R). If f = g ∗ h and ψ = ψ1 ∗ ψ2, then

Wψ ′ f ′(a, b) =
1

|a|
1
2

(Wψ1 g′
∗ Wψ ′

2
h)(a, b),
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where f ′ and ψ ′ denotes the Hilbert transform of f and ψ , respectively and ‘∗’ denotes a
convolution operator.

Proof. The continuous wavelet transform of f ′ with respect to ψ ′ may be written as

Wψ ′ f ′(a, b) =
1

|a|
1
2

∫
R

f ′(x) ψ ′

(
x − b

a

)
dx

=
1

|a|
1
2

∫
R

∫
R

g′(t) h(x − t) dt
∫
R
ψ1(y) ψ2

′

(
x − b

a
− y

)
dy dx .

Writing x − t = p and b + ay − t = q, we have

Wψ ′ f ′(a, b) =
1

|a|
3
2

∫
R

∫
R

g′(t) ψ1

(
t − (b − q)

a

)
dt

∫
R

h(p) ψ2
′

(
p − q

a

)
dp dq.

=
1

|a|
1
2

∫
R

Wψ1 g′(a, b − q) Wψ ′
2
h(a, q) dq

=
1

|a|
1
2

(Wψ1 g′
∗ Wψ ′

2
h)(a, b)

which is the convolution of wavelet transform of Hilbert transform of a signal g with a
wavelet ψ1 and the wavelet transform of the other signal h with Hilbert transform of other
wavelet ψ2. □

Theorem 4.2 (Hilbert Transform Wavelet Cross-Correlation Theorem). Let ψ1, ψ2 be two
wavelets such that ψ1, ψ̂1 ∈ L1(R) and ψ2 ∈ L2(R) and let Wψ1 g′ and Wψ ′

2
h be the

continuous wavelet transform of two functions g′
= Hg and h with wavelets ψ1 and

ψ ′

2 = Hψ2, respectively, where g ∈ L2(R) and h, ĥ ∈ L1(R). If f = g⊗h and ψ = ψ1⊗ψ2,
then

Wψ ′ f ′(a, b) =
1

|a|
1
2

(Wψ1 g′(a, b) ⊗ Wψ ′
2
h(a,−b)),

where f ′ and ψ ′ denotes the Hilbert transform of f and ψ , respectively and ‘ ⊗’ denotes a
cross-correlation operator.

Proof. The continuous wavelet transform of f ′ with respect to ψ ′ may be written as

Wψ ′ f ′(a, b) =
1

|a|
1
2

∫
R

f ′(x) ψ ′

(
x − b

a

)
dx

=
1

|a|
1
2

∫
R

∫
R

g′(t) h(t + x) dt
∫
R
ψ1(y) ψ2

′

(
y +

x − b
a

)
dy dx .

Writing t + x = p and b + t − ay = q, we have

Wψ ′ f ′(a, b) = −
1

|a|
3
2

∫
R

∫
R

g′(t) ψ1

(
t − (q − b)

a

)
dt

∫
R

h(p) ψ2
′

(
p − q

a

)
dp dq

=
1

|a|
1
2

∫
R

Wψ1 g′(a, q − b) Wψ ′

2
h(a, q) dq,

=
1

|a|
1
2

(Wψ1 g′
⊗ Wψ ′

2
h(a,−b))
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which is the cross-correlation of wavelet transform of Hilbert transform of a signal g with a
wavelet ψ1 and the wavelet transform of the other signal h with Hilbert transform of other
wavelet ψ2. □

Next, we prove that the number of vanishing moments of the Hilbert transform of
convolved (cross-correlated) wavelets is the sum of the number of vanishing moments of
wavelets involved.

Theorem 4.3. Let ψ1, ψ2 ∈ L1(R) ∩ L2(R) be two wavelets with m1 and m2 vanishing
moments, respectively and let ψ3 = (ψ1 ∗ ψ2) be the convolution of the wavelets ψ1 and ψ2.
Then, ψ3

′
= Hψ3 has m1 + m2 vanishing moments provided that tm2ψ2(t) ∈ L2(R).

Proof. Since ψ3
′ is an admissible wavelet, it follows that∫

R
tr ψ3

′(t) dt =

∫
R

tr (ψ1 ∗ ψ2
′)(t) dt

=

∫
R
ψ1(x) dx

∫
R

tr ψ2
′(t − x) dt.

Writing t − x = z, we have∫
R

tr ψ3
′(t) dt =

r∑
n=0

rCn

∫
R

xn ψ1(x) dx
∫
R

zr−nψ2
′(z) dz

=

r∑
n=0

rCn Momn(ψ1) Momr−n(ψ2
′).

Also, tm2ψ2(t) ∈ L2(R). Therefore, using moment formula for the Hilbert transform, we have∫
R

tnψ ′

2(t) dt = 0 for 0 ≤ n ≤ m2.

Let r ≤ m1 + m2 − 1. If r − n ≤ m2, then Momr−n(ψ2
′) = 0, otherwise n ≤ m1 − 1 which

gives Momn(ψ1) = 0.
Hence the number of vanishing moments of ψ3

′(t) is m1 + m2. □

Theorem 4.4. Let ψ1, ψ2 ∈ L1(R) ∩ L2(R) be two wavelets with m1 and m2 vanishing
moments, respectively and let ψ3 = (ψ1 ⊗ ψ2) be the convolution of the wavelets ψ1

and ψ2. Then, ψ3
′

= Hψ3 has m1 + m2 vanishing moments provided that tm2ψ2(t) ∈

L2(R).

Proof. The proof can be worked out on the lines of Theorem 4.3. □

5. MOMENTS OF TWO DIMENSIONAL WAVELETS

Consider two-dimensional spaces V j , j ∈ Z as the tensor product of two one dimensional
multiresolution analyses V j , j ∈ Z. Define V j , j ∈ Z by

V0 = V0 ⊗ V0 = span {U(x, y) = u(x)v(y) : u, v ∈ V0}.
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Then, V j forms a multiresolution analysis (MRA) of L2(R2) satisfying

(i) ... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ V2 ⊂ ...,

(ii)
⋂

j∈ZV j = {(0, 0)},
⋃

j∈ZV j = L2(R2),

(iii) U ∈ V0 ⇔ U(2 j
·, 2 j

·) ∈ V j+1.

(iv) The set {Φ0,k1,k2 (·, ·) : k1, k2 ∈ Z} forms an orthonormal basis for V0, where
Φ j,k1,k2 (x, y) = 2 j Φ(2 j x −k1, 2 j y −k2) = 2 j φ(2 j x −k1) φ(2 j y −k2), j, k1, k2 ∈ Z.

For each j ∈ Z, the complement space W j is the orthogonal complement of V j in V j+1 such
that

V j+1 = V j+1 ⊗ V j+1

= (V j ⊕ W j ) ⊗ (V j ⊕ W j )

= (V j ⊗ V j ) ⊕ [(W j ⊗ V j ) ⊕ (V j ⊗ W j ) ⊕ (W j ⊗ W j )]

= V j ⊕ W j .

The space W j called the “detail space” is itself made up of three orthogonal subspaces which
leads us to define three two-dimensional wavelets Ψ 1(x, y) = φ(x) ψ(y), Ψ 2(x, y) =

ψ(x) φ(y) and Ψ 3(x, y) = ψ(x) ψ(y). Then, {Ψm
j,k1,k2

: k1, k2 ∈ Z, m = 1, 2 or 3} is
an orthonormal basis for W j and {Ψm

j,k1,k2
: j, k1, k2 ∈ Z, m = 1, 2 or 3} is an orthonormal

basis for ⊕ j∈ZW j = L2(R2), where Ψm
j,k1,k2

(x, y) = 2 j Ψm
j,k1,k2

(2 j x − k1, 2 j x − k2). For
details see [1,5].

In the following result, we find the number of vanishing moments for two-dimensional
wavelets.

Theorem 5.1. Let φ be an orthogonal scaling function with m1 vanishing moments and ψ
be the corresponding wavelet with m2 vanishing moments. Then, the number of vanishing
moments of two dimensional scaling function Φ and the associated two-dimensional wavelet
Ψ 3 are 2m1 − 1 and 2m2 − 1 respectively, whereas the number of vanishing moments of the
associated two-dimensional wavelets Ψm for m = 1, 2 is m1 + m2 − 1.

Proof. Note that∫
R

∫
R

x p yq Ψ 1(x, y) dx dy =

∫
R

x p φ(x) dx
∫
R

yq ψ(y) dy

= Mom p(φ) Mom N−p(ψ), where p + q = N .

Let N ≤ m1+m2−2. If p ≤ m1−1, then Mom p(φ) = 0. If p ≥ m1−1, then N−p ≤ m2−1.
Thus Mom N−p(ψ) = 0. Therefore, we have

Mom p(φ) = Momq (ψ) = 0, for all p + q ≤ m1 + m2 − 2.

Hence the number of vanishing moments of Ψ 1(x, y) is given by m1 + m2 − 1.
Similarly, one can prove that the number of vanishing moments for Φ(x, y),Ψ 2(x, y) and
Ψ 3(x, y) can be evaluated as 2m1 − 1,m1 + m2 − 1 and 2m2 − 1 respectively. □

In the following two results, we give sufficient conditions for the two-dimensional scaling
function to be vanishing.
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Theorem 5.2. Let φ be an orthogonal scaling function having compact support and let the
first three moments of the wavelet ψ vanishes. Let Φ(x, y) = φ(x)φ(y) be a two dimensional
scaling function. Then Mom1,q (TkΦ(x, y)) and Mom p,1(TkΦ(x, y)), 0 ≤ p, q ≤ n, n ∈ N
vanishes if Mom1(φ) = −k, where k ∈ Z.

Proof. Note that

Mom1,q (TkΦ(x, y)) =

∫
R

x Tkφ(x) dx
∫
R

yq Tkφ(y) dy

= (k Mom0(φ) + Mom1(φ))
( q∑

i=0

q Ci kq−i Momi (φ)
)
.

Thus, for 0 ≤ q ≤ n, n ∈ N,Mom1,q (TkΦ(x, y)) vanishes if Mom1(φ) = −k, where k ∈ Z.
A similar argument can be given for Mom p,1(TkΦ(x, y)), 0 ≤ p ≤ n, n ∈ N. □

Theorem 5.3. Let φ be an orthogonal scaling function having compact support and suppose
that the first three moments of the wavelet ψ vanishes. If Φ(x, y) = φ(x)φ(y) be the two
dimensional scaling function then Mom2,q (TkΦ(x, y)) and Mom p,2(TkΦ(x, y)), 0 ≤ p, q ≤

n, n ∈ N vanishes if Mom1(φ) = −k, where k ∈ Z.

Proof. We have∫
R

∫
R

x2 yq TkΦ(x, y) dx dy =

∫
R

x2 Tkφ(x) dx
∫
R

yq Tkφ(y) dy

= (Mom2(φ) + 2k Mom1(φ) + k2 Mom0(φ))

× (
q∑

i=0

q Ci kq−i Momi (φ)).

In view of Theorem 1 in [21], (Mom1(φ))2
= Mom2(φ). Thus, Mom2,q (TkΦ(x, y)) vanishes

if Mom1(φ) = −k, where k ∈ Z.
A similar argument can be given for Mom p,2(TkΦ(x, y)), 0 ≤ p ≤ n, n ∈ N. □

Finally, we prove a result related to the number of vanishing moments of the convolution
of two wavelets in L2(R2).

Theorem 5.4. Let Ψ1(x, y) = ψ1(x) ψ1(y) and Ψ2(x, y) = ψ2(x) ψ2(y) be two admissible
wavelets in L2(R2), where ψ1, ψ2 ∈ L1(R) ∩ L2(R) with M1 and M2 vanishing moments,
respectively. Let Ψ3(x, y) = Ψ1(x, y)∗Ψ2(x, y). Then Ψ3(x, y) is an admissible wavelet and
has 2(M1 + M2) − 1 vanishing moments.

Proof. Note that

Ψ3(x, y) = Ψ1(x, y) ∗ Ψ2(x, y)

=

∫
R

∫
R
Ψ1(t1, t2) Ψ2(x − t1, y − t2)dt1 dt2

= (ψ1 ∗ ψ2)(x) (ψ1 ∗ ψ2)(y).
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Also, we have

CΨ3 = (2π )2
∫
R2

|Ψ̂3(γ )|
2

|γ |
dγ

≤ (2π )2
∫
R

|ψ̂1(γ1) ψ̂2(γ1)|2

|γ1|
dγ1

∫
R

|ψ̂1(γ2) ψ̂2(γ2)|2

|γ2|
dγ2.

Since ψ1 ∈ L1(R), ψ̂1 is a bounded function. So, there exists a positive real number K such
that |ψ̂1(α)| ≤ K , for all α ∈ R. This gives

CΨ3 ≤ (2πK 2)2
∫
R

|ψ̂2(γ1)|2

|γ1|
dγ1

∫
R

|ψ̂2(γ2)|2

|γ2|
dγ2

= (2πK 2)2 C2
ψ2
< ∞.

Now, we calculate the moments of Φ3. Note that∫
R2

x p yq Ψ3(x, y) dx dy =

∫
R

∫
R

x p yq Ψ3(x, y) dx dy

= Mom p(ψ1 ∗ ψ2) Momq (ψ1 ∗ ψ2)
= Mom p(ψ1 ∗ ψ2) Mom N−p(ψ1 ∗ ψ2),

where p+q = N . In view of Theorem 1 in [18], (ψ1∗ψ2) has (M1+M2) vanishing moments.
If p ≤ (M1 + M2 − 1), then Mom p(ψ1 ∗ ψ2) = 0. If not, then N − p ≤ M1 + M2 − 1.
Thus Mom N−p(ψ1 ∗ ψ2) = 0. Therefore, Mom p(ψ1 ∗ ψ2) = Momq (ψ1 ∗ ψ2) = 0, for all
p + q ≤ 2(M1 + M2 − 1).
Hence the number of vanishing moments of Ψ3(x, y) is given by 2(M1 + M2) − 1. □

CONCLUSION

We have seen that wavelets are usually designed with higher vanishing moments which
make them orthogonal to the low degree polynomials and therefore, they have the ability to
compress non-oscillatory functions. The smoother is wavelet ψ , the greater is the number
of vanishing moments. For any wavelet family, vanishing moments are necessary for the
smoothness of the wavelet functions. With the development of the formula for calculating the
number of vanishing moments for wavelet packets, we can thereby enhance our working
in this direction furthermore. Also, since convolution (cross-correlation) of two wavelets
meet the required regularity and admissibility conditions, we can use them to examine
the Hilbert transform of convolved and cross-correlated signals with the help of Hilbert
transform wavelet convolution (cross-correlation) theorems which have not been studied
earlier. Further, we develop a relationship between the vanishing moments of wavelets and
the Hilbert transform of convolved (cross-correlated) wavelets and with the knowledge of
vanishing moments for two dimensional wavelets, one may reinforce the scope of study in
this field of signals.
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