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Abstract. The rings considered in this article are commutative with identity. Modules
are assumed to be unitary. Let R be a ring and let S be a multiplicatively closed subset
of R. We say that a module M over R satisfies S- strong accr∗ if for every submodule
N of M and for every sequence < rn > of elements of R, the ascending sequence of
submodules (N :M r1) ⊆ (N :M r1r2) ⊆ (N :M r1r2r3) ⊆ · · · is S-stationary. That is,
there exist k ∈ N and s ∈ S such that s(N :M r1 · · · rn) ⊆ (N :M r1 · · · rk ) for all n ≥ k.
We say that a ring R satisfies S- strong accr∗ if R regarded as a module over R satisfies
S-strong accr∗. The aim of this article is to study some basic properties of rings and
modules satisfying S-strong accr∗.
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1. INTRODUCTION

The rings considered in this article are commutative with identity. Modules are assumed
to be unitary. Let R be a ring. If S is a multiplicatively closed subset of R , then we assume
that 0 /∈ S and 1 ∈ S. We use m.c. set to denote multiplicatively closed set. We use the
abbreviation f.g. for finitely generated. Let M be a module over a ring R and let S be a
m.c. subset of R. Recall from [2] that M is said to be S-finite if there exist s ∈ S and
a f.g. submodule N of M such that s M ⊆ N and M is said to be S-Noetherian if any
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submodule of M is S-finite. A ring R is said to be S-Noetherian if R regarded as a module
over R is S-Noetherian. A very interesting and inspiring investigation on S-Noetherian
rings and S-Noetherian modules has been carried out in [2] and the article [2] contains S-
variant of several properties of Noetherian modules to S-Noetherian modules. This article is
motivated by the interesting theorems proved by D.D. Anderson and T. Dumitrescu in [2].
To justify this statement, we mention some results that were proved in [2]. Let S be a
m.c. subset of a ring R and let M be a module over R. Let ψ : M → S−1 M denote the
usual R-homomorphism defined by ψ(m) =

m
1 . For any submodule N of M , ψ−1(S−1 N )

is called the saturation of N with respect to S and is denoted by SatS(N ). It was shown in
[2, Proposition 2(f)] that a ring R is S-Noetherian if and only if S−1 R is Noetherian and for
every f.g. ideal I of R, SatS(I ) = (I :R s) for some s ∈ S. Let M be a S-finite module over
R. In [2, Proposition 4], it was proved that M is S-Noetherian if and only if the submodules
of the form P M are S-finite for each prime ideal P of R disjoint from S and it was deduced
in [2, Corollary 5] that a ring R is S-Noetherian if and only if every prime ideal of R
disjoint from S is S-finite and this is the S-variant of Cohen’s Theorem. Let A ⊆ B be
a ring extension and S ⊆ A be a m.c. subset such that B is a S-finite A-module. It was
shown in [2, Corollary 7] that if B is S-Noetherian, then so is A and this is the S-variant
of Eakin–Nagata Theorem. Recall from [2, page 4411] that a m.c. subset S of R is said to
be anti-Archimedean if (∩∞

n=1sn R) ∩ S ̸= ∅ for every s ∈ S. Let S be an anti-Archimedean
m.c. subset of a ring R. It was proved in [2, Proposition 9] that if R is S-Noetherian, then
so is the polynomial ring R[X1, . . . , Xn] and this is the S-variant of Hilbert Basis Theorem
and it was shown in [2, Proposition 10] that if S consists of nonzero-divisors and if R is
S-Noetherian, then so is the power series ring R[[X1, . . . , Xn]].

Let M be a module over a ring R. Recall from [7] that M satisfies accr (respectively,
satisfies accr∗) if the ascending chain of submodules of the form (N :M B) ⊆ (N :M B2) ⊆

(N :M B3) ⊆ · · · terminates for every submodule N of M and every f.g. (respectively,
principal) ideal B of R. A ring R is said to satisfy accr (respectively, satisfy accr∗) if R
regarded as a module over R satisfies accr (respectively, accr∗). It is known that a module
M over a ring R satisfies accr if and only if M satisfies accr∗ [7, Theorem 1]. In [7,8],
Chin-Pi Lu has shown that many important properties of Noetherian modules are possessed
by modules satisfying accr.

Let R be a ring and let S be a m.c. subset of R. Inspired by the articles [2,7,8], H.
Ahmed and H. Sana introduced and investigated the concept of modules satisfying S-accr
and S-accr∗ in [1]. Let M be a module over R. Recall from [1] that an ascending sequence
of submodules N1 ⊆ N2 ⊆ N3 ⊆ · · · of M is S-stationary if there exist k ∈ N and
s ∈ S such that s Nn ⊆ Nk for all n ≥ k. Recall from [1, Definition 3.1] that M satisfies
S-accr (respectively, satisfies S-accr∗) if the ascending sequence of submodules of the
form (N :M B) ⊆ (N :M B2) ⊆ (N :M B3) ⊆ · · · is S-stationary for any submodule
N of M and any f.g. (respectively, principal) ideal B of R. A ring R is said to satisfy
S-accr (respectively, satisfy S-accr∗) if R regarded as a module over R satisfies S-accr
(respectively, S-accr∗). Several results from [7,8] on modules satisfying accr have been
extended in [1] to modules satisfying S-accr.

Let M be a module over a ring R. We say that M satisfies (C) if the ascending sequence
of submodules of the form (N :M r1) ⊆ (N :M r1r2) ⊆ (N :M r1r2r3) ⊆ · · · terminates for
any submodule N of M and for any sequence ⟨rn⟩ of elements of R [12]. It is clear that
if a module M over a ring R satisfies (C), then M satisfies accr∗. Hence, it is convenient
to replace the condition (C) by strong-accr∗. We say that M satisfies strong accr∗ if M
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satisfies (C). We say that R satisfies strong accr∗ if R regarded as a module over R satisfies
strong accr∗. A study was carried out on rings and modules satisfying strong accr∗ in [12].

Let S be a m.c. subset of a ring R. It was shown in [1, Proposition 3.1] that for any
R-module M , the properties S-accr and S-accr∗ are equivalent. It was proved in [1, Lemma
3.6] that R satisfies S-accr if and only if the R-module Rn satisfies S-accr for each n ∈ N.
Let M be a f.g. module over R. In [1, Theorem 3.3], it was shown that if R satisfies S-accr,
then so does M . We denote the polynomial ring in one variable X over a ring R by R[X ].
If S is finite, then it was proved in [1, Theorem 3.4] that R[X ] satisfies S-accr if and only
if R is S-Noetherian. Motivated by the work on S-accr modules in [1], in this article, we
introduce the concept of modules satisfying S-strong accr∗ and try to investigate some
properties of modules satisfying S-strong accr∗. Let R be a ring and let S be a m.c. subset
of R. We say that a module M over R satisfies S-strong accr∗ if for any submodule N of
M and for any sequence ⟨rn⟩ of elements of R, the ascending sequence of submodules of
the form (N :M r1) ⊆ (N :M r1r2) ⊆ (N :M r1r2r3) ⊆ · · · is S-stationary. We say that R
satisfies S-strong accr∗ if R regarded as a module over R satisfies S-strong accr∗.

In Section 2 of this article, we prove some basic properties of modules satisfying S-
strong accr∗. Let S be a m.c. subset of a ring R and let M be a module over R. The main
result proved in Section 2 is Theorem 2.7 in which necessary and sufficient conditions are
determined for a module M over a ring R to satisfy S-strong accr∗, where S is a countable
m.c. subset of R. For a countable m.c. subset S of R, in Theorem 2.8, the question of when
every module over R satisfies S-strong accr∗ is answered. Let n ≥ 1. Inspired by the work
on rings and modules satisfying n-acc and pan-acc by W. Heinzer and D. Lantz in [6] and
by G. Renault in [9], the concept of S-n-acc and S-pan-acc are introduced and it is shown
that for a countable m.c. subset S of a ring R, if every module over R satisfies S-strong
accr∗, then every module over R satisfies S-pan-acc. Examples are given to illustrate some
of the results proved in Section 2 (see Examples 2.3, 2.5, 2.9, 2.11, and 2.13).

In Section 3 of this article, some more properties of modules satisfying S-strong accr∗

are proved. Let S be a m.c. subset of an integral domain R such that R satisfies S-strong
accr∗. In Proposition 3.4, the problem of when a free module F over R satisfies S-strong
accr∗ is answered. Let S be a countable m.c. subset of R. It is shown in Theorem 3.6 that
the polynomial ring R[X ] satisfies S-strong accr∗ if and only if R[X ] is S-Noetherian.

Let R be a ring. The Krull dimension of R is simply referred to as the dimension of
R and is denoted by the notation dim R. We denote the set of all units of R by U (R).
Whenever a set A is a subset of a set B and A ̸= B, we denote it symbolically by the
notation A ⊂ B.

2. SOME BASIC PROPERTIES OF MODULES SATISFYING S-STRONG accr∗

Let M be a module over a ring R. If M satisfies strong accr∗, then it is clear that M
satisfies accr∗ and so, M satisfies accr [7, Theorem 1]. In Remark 2.1(i), we mention an
example of a module M over Z such that M satisfies accr but M does not satisfy strong
accr∗.

Remark 2.1. (i) Let us denote the set of all prime numbers by P. Let M =
⨁

p∈P
Z
pZ . We

know from [7, Example 1] that the Z-module M satisfies accr. It was shown in [12, see
page 164] that M does not satisfy strong accr∗.
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(i i) Let M be a module over a ring R. Let S be a m.c. subset of R. If M satisfies
strong accr∗, then M satisfies S-strong accr∗. In Example 2.13, we provide an example of
a domain R and a m.c. subset S of R such that R satisfies S-strong accr∗ but R does not
satisfy strong accr∗. □

Let M be a module over a ring R and let S be a m.c. subset of R. If M is S- Noetherian,
then it is not hard to show that any ascending sequence of submodules of M is S-stationary.
Hence, we obtain that M satisfies S-strong accr∗. We provide Example 2.3 to illustrate that
a module satisfying S-strong accr∗ can fail to be S-Noetherian.

Lemma 2.2. Let V be a vector space over a field K . Then V satisfies strong accr∗.

Proof. Let W be any subspace of V and let α ∈ K . Note that (W :V α) = V if α = 0
and it is equal to W if α ̸= 0. Let ⟨αn⟩ be any sequence of elements of K . If αk = 0 for
some k ∈ N, then for all n ≥ k, (W :V α1 · · ·αn) = (W :V α1 · · ·αk) = V . If αi ̸= 0 for all
i ∈ N, then (W :V α1 · · ·αi ) = (W :V α1 · · ·α j ) = W for all i, j ∈ N. This shows that V
satisfies strong accr∗. □

Example 2.3. Let V be an infinite dimensional vector space over a field K . Then for any
m.c. subset S of K , V satisfies S-strong accr∗ but V is not S-Noetherian.

Proof. We know from Lemma 2.2 that V satisfies strong accr∗ and so, V satisfies S-
strong accr∗ for any m.c. subset S of K . Let S be any m.c. subset of K . Note that
S ⊆ K\{0} = U (K ). Hence, for any subspace W of V and for any s ∈ S, sW = W .
Since we are assuming that dimK V is infinite, there exists a strictly ascending sequence
of subspaces W1 ⊂ W2 ⊂ W3 ⊂ · · · of V . It is clear that there exist no k ∈ N and s ∈ S
such that sWn ⊆ Wk for all n ≥ k. Therefore, V is not S-Noetherian for any m.c. subset S
of K . □

Lemma 2.4. Let M be a module over a ring R and let S be a m.c. subset of R. If M
satisfies S- strong accr∗, then the S−1 R-module S−1 M satisfies strong accr∗.

Proof. Let W be any S−1 R-submodule of S−1 M . Let ⟨xn⟩ be e sequence of elements of
S−1 R. Note that W = S−1 N for some R-submodule N of M and for each n ∈ N, let xn =

rn
sn

for some rn ∈ R and sn ∈ S. Since M satisfies S-strong accr∗ by hypothesis, we obtain that
the ascending sequence of submodules (N :M r1) ⊆ (N :M r1r2) ⊆ (N :M r1r2r3) ⊆ · · · of
M is S-stationary. Hence, there exist s ∈ S and k ∈ N such that s(N :M r1 · · · rn) ⊆ (N :M

r1 · · · rk) for all n ≥ k. This implies that S−1(s(N :M r1 · · · rn)) ⊆ S−1(N :M r1 · · · rk) ⊆

S−1(N :M r1 · · · rn) for all n ≥ k and so, (S−1 N :S−1 M
r1
s1

· · ·
rn
sn

) = (S−1 N :S−1 M
r1
s1

· · ·
rk
sk

)
for all n ≥ k. Thus there exists k ∈ N such that (W :S−1 M x1 · · · xn) = (W :S−1 M x1 · · · xk)
for all n ≥ k. This shows that the S−1 R-module S−1 M satisfies strong accr∗. □

We provide Example 2.5 to illustrate that the converse of Lemma 2.4 can fail to hold.

Example 2.5. Let us denote the set of all prime numbers by P. Let P = {p1 = 2 < p2 =

3 < p3 < p4 < · · · }. Let M be the Z-module given by M =
⨁

p∈P
Z
pZ . Let S = Z\2Z.

Then the S−1Z-module S−1 M satisfies strong accr∗ but M does not satisfy S-strong accr∗.
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Proof. Let p ∈ P. It is not hard to verify that MpZ ∼=
ZpZ
pZpZ

as ZpZ-modules. Let
S = Z\2Z. Note that S is a m.c. subset of Z and as M2Z is a finite Z2Z-module, we
obtain that the Z2Z-module S−1 M = M2Z satisfies strong accr∗. We now verify that
the Z-module M does not satisfy S-strong accr∗. Let us denote the zero submodule of
M simply by (0, 0, 0, . . .). We know from [12, page 164] that ((0, 0, 0, . . .) :M p1) ⊂

((0, 0, 0, . . .) :M p1 p2) ⊂ ((0, 0, 0, . . .) :M p1 p2 p3) ⊂ · · · is a strictly ascending sequence
of submodules of M . We claim that this sequence is not S-stationary. Suppose that the
above sequence of submodules of M is S-stationary. Then there exist k ∈ N and s ∈ S
such that s((0, 0, 0, . . .) :M p1 . . . pn) ⊆ ((0, 0, 0, . . .) :M p1 · · · pk) for all n ≥ k.
We can assume that s > 0. It is clear that s ̸= 1. As s ∈ S = Z\2Z, it follows
that there exist distinct pi1 , . . . , pit ∈ P\{2} and positive integers n1, . . . , nt such that
s =

∏t
j=1 p

n j
i j

. Observe that s((0, 0, 0, . . . , ) :M p1 p2 · · · pk+i1+···+it ) =
⨁

j∈T
Z

p jZ
, where

T = {1, 2, . . . , k + i1 + · · · + it }\{i1, . . . , it }, ((0, 0, 0, . . .) :M p1 · · · pk) =
Z

p1Z
⊕ · · · ⊕

Z
pkZ

and so, we get that Z
pk+i1+···+it Z

⊆
Z

p1Z
⊕ · · · ⊕

Z
pkZ

. This is impossible. Therefore, the

ascending sequence of submodules ((0, 0, 0, . . .) :M p1) ⊂ ((0, 0, 0, . . .) :M p1 p2) ⊂

((0, 0, 0, . . .) :M p1 p2 p3) ⊂ · · · is not S-stationary. This shows that the Z-module M does
not satisfy S-strong accr∗. □

In Lemma 2.6, we provide a sufficient condition on a module M over a ring R under
which the converse of Lemma 2.4 holds.

Lemma 2.6. Let M be a module over a ring R and let S be a m.c. subset of R. If the
S−1 R-module S−1 M satisfies strong accr∗ and if for any submodule N of M, there exists
s ∈ S (depending on N) such that SatS(N ) = (N :M s), then M satisfies S-strong accr∗.

Proof. Let N be a submodule of M and let ⟨rn⟩ be a sequence of elements of R. We
prove that the ascending sequence (N :M r1) ⊆ (N :M r1r2) ⊆ (N :M r1r2r3) ⊆ · · · of
submodules of M is S-stationary. For each n ∈ N, let us denote rn

1 by xn . Then ⟨xn⟩ is a
sequence of elements of S−1 R. Consider the ascending sequence of submodules of S−1 M
given by (S−1 N :S−1 M x1) ⊆ (S−1 N :S−1 M x1x2) ⊆ (S−1 N :S−1 M x1x2x3) ⊆ · · · . Since
the S−1 R-module S−1 M satisfies strong accr∗, there exists k ∈ N such that for all n ≥ k,
(S−1 N :S−1 M x1 · · · xn) = (S−1 N :S−1 M x1 · · · xk). By hypothesis, there exists s ∈ S such
that SatS(N ) = (N :M s). Let n ≥ k. Let m ∈ (N :M r1 · · · rn). Then m

1 ∈ (S−1 N :S−1 M
x1 · · · xn) = (S−1 N :S−1 M x1 · · · xk). This implies that s ′m ∈ (N :M r1 · · · rk) for some
s ′

∈ S and so, s ′r1 · · · rkm ∈ N . Therefore, r1 · · · rkm ∈ SatS(N ) = (N :M s). This proves
that s(N :M r1 · · · rn) ⊆ (N :M r1 · · · rk) for all n ≥ k. Therefore, we obtain that M satisfies
S-strong accr∗. □

Let S be a countable m.c. subset of a ring R. With the help of Lemmas 2.4 and 2.6,
in Theorem 2.7, we provide a necessary and sufficient condition in order that a module M
over R satisfies S-strong accr∗.

Theorem 2.7. Let M be a module over a ring R. Let S be a countable m.c. subset of R.
The following statements are equivalent:

(i) M satisfies S-strong accr∗.
(i i) The S−1 R-module S−1 M satisfies strong accr∗ and for any submodule N of M,

there exists s ∈ S(depending on N) such that SatS(N ) = (N :M s).
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Proof. (i) ⇒ (i i) Assume that M satisfies S-strong accr∗. Then we know from Lemma 2.4
that the S−1 R-module S−1 M satisfies strong accr∗ (for the proof of this assertion, we do
not need the assumption that S is countable). Assume that S is countable. Let N be any
submodule of M . Suppose that S is finite. Let S = {s1, . . . , st }. Let s =

∏t
i=1 si . Then it is

clear that s ∈ S and SatS(N ) = (N :M s). Hence, we can assume that S is denumerable. Let
S = {sn|n ∈ N}. Since M satisfies S-strong accr∗, the ascending sequence of submodules
(N :M s1) ⊆ (N :M s1s2) ⊆ (N :M s1s2s3) ⊆ · · · is S-stationary. Therefore, there exist
si ∈ S and k ∈ N such that si (N :M s1 · · · sn) ⊆ (N :M s1 · · · sk) for all n ≥ k. Let
m ∈ SatS(N ). Then s j m ∈ N for some j ∈ N. Hence, m ∈ (N :M s1s2 · · · sk+ j ). Therefore,
si m ∈ si (N :M s1s2 · · · sk+ j ) ⊆ (N :M s1 · · · sk). This implies that si s1 · · · skm ∈ N . Let
s = si s1 · · · sk . Then s ∈ S and sm ∈ N . This proves that SatS(N ) ⊆ (N :M s) and it is
clear that (N :M s) ⊆ SatS(N ). Therefore, we get that SatS(N ) = (N :M s).
(i i) ⇒ (i) This follows from Lemma 2.6 (for this part of the proof, we do not need the
assumption that S is countable). □

Let R be a ring. Recall from [3, page 321] that R is said to be perfect if every R-module
has a projective cover. A pioneering work on perfect rings was done by Hyman Bass and
there are several characterizations of perfect rings due to him [3, Theorem 28.4]. It was
proved in [12, Proposition 1.1] that every R-module satisfies strong accr∗ if and only if
R satisfies strong accr∗ and dim R = 0 which is equivalent to the statement that R is a
perfect ring. Let S be a countable m.c. subset of R. As an application of [12, Proposition
1.1] and Theorem 2.7, in Theorem 2.8, we characterize rings R such that every module
over R satisfies S-strong accr∗.

Theorem 2.8. Let R be a ring. Let S be a countable m.c. subset of R. Suppose that for
any module M over R and for any submodule N of M, there exists s ∈ S (depending on
N) such that SatS(N ) = (N :M s). Then the following statements are equivalent:

(i) Every module over R satisfies S-strong accr∗.
(i i) Every module over S−1 R satisfies strong accr∗.
(i i i) S−1 R satisfies strong accr∗ and dim (S−1 R) = 0.
(iv) S−1 R is a perfect ring.

Proof. (i) ⇒ (i i) Let V be any module over S−1 R. Observe that V can be regarded as a
module over R and hence by (i), V satisfies S-strong accr∗ regarded as a module over R.
We know from Lemma 2.4 that the S−1 R-module S−1V = V satisfies strong accr∗. This
shows that any S−1 R-module satisfies strong accr∗.
(i i) ⇒ (i i i) As any S−1 R-module satisfies strong accr∗, it follows that S−1 R satisfies
strong accr∗ and any S−1 R-module satisfies accr∗. Therefore, we obtain from (i i) ⇒ (i)
of [10, Proposition 2.4] that dim (S−1 R) = 0.
(i i i) ⇒ (iv) It follows from (i i) ⇒ (i i i) of [12, Proposition 1.1] that S−1 R is a perfect
ring.
(iv) ⇒ (i) It follows from (i i i) ⇒ (i) of [12, Proposition 1.1] that any module over S−1 R
satisfies strong accr∗. Let M be a module over R. Now, the S−1 R-module S−1 M satisfies
strong accr∗. We are assuming that given any submodule N of M , there exists s ∈ S
(depending on N ) such that SatS(N ) = (N :M s). Therefore, we obtain from (i i) ⇒ (i) of
Theorem 2.7 that M satisfies S-strong accr∗. This proves that any module over R satisfies
S-strong accr∗. □
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We provide Example 2.9 to illustrate that S−1 R is a perfect ring is not sufficient to imply
that any module over R satisfies S-strong accr∗.

Example 2.9. Let us denote the set of all prime numbers by P. Consider the Z-module M
given by M = Z+

∑
p∈P Z

1
p . Let S = Z\{0}. Then S−1Z is a perfect ring and M does not

satisfy S-strong accr∗.

Proof. Let P = {p1 = 2 < p2 = 3 < p3 < · · · }. Note that S−1Z = Q is the
field of rational numbers and so, S−1Z is a perfect ring. It is not hard to verify that
(Z :M p1 · · · pn) = Z + Z 1

p1
+ · · · + Z 1

pn
. Hence, the ascending sequence of submodules

(Z :M p1) ⊂ (Z :M p1 p2) ⊂ (Z :M p1 p2 p3) ⊂ · · · of M is strictly ascending.
We claim that the above ascending sequence of submodules of M is not S-stationary.
Suppose that the above ascending sequence of submodules of M is S-stationary. Then
there exist s ∈ S and k ∈ N such that s(Z :M p1 · · · pn) ⊆ (Z :M p1 · · · pk) for all
n ≥ k. We can assume that s > 0. It is clear that s ̸= 1. Note that there exist distinct
pi1 , . . . , pit ∈ P and positive integers n1, . . . , nt such that s =

∏t
j=1 p

n j
i j

. Observe that
s(Z :M p1 p2 · · · pk+i1+···+it ) ⊆ Z + Z 1

p1
+ · · · + Z 1

pk
. This implies that s

pk+i1+···+it
=

m
p1···pk

for some m ∈ Z. This is impossible since pk+i1+···+it does not divide sp1 · · · pk in Z. This
proves that the sequence of submodules (Z :M p1) ⊂ (Z :M p1 p2) ⊂ (Z :M p1 p2 p3) ⊂ · · ·

is not S-stationary. This shows that M does not satisfy S-strong accr∗. □

Let M be a module over a ring R. Let n ∈ N. Recall from [6] that M is said to satisfy
n-acc if every ascending sequence of submodules of M , each of which is generated by n
elements stabilizes. Recall from [6] that M is said to satisfy pan-acc if M satisfies n-acc
for all n ≥ 1. We say that R satisfies n-acc (respectively, satisfies pan-acc) if R regarded
as a module over R satisfies n-acc (respectively, pan-acc). It is known that every module
over a ring R satisfies pan-acc if and only if R is a perfect ring [9, Proposition 1.2].

Let S be a m.c. subset of a ring R. Let M be a module over R. Let n ≥ 1. We say
that M satisfies S-n-acc if any ascending sequence of submodules of M , each of which is
generated by n elements is S-stationary. We say that M satisfies S-pan-acc if M satisfies
S-n-acc for all n ≥ 1. We say that R satisfies S-n-acc (respectively, satisfies S-pan-acc) if
R regarded as a module over R satisfies S-n-acc (respectively, S-pan-acc).

We know from [6, Example pages 275–276] that there exist a domain D and a m.c.
subset S of D such that D has pan-acc but S−1 D does not have 1-acc. Let n ≥ 1. The
above mentioned example illustrates that if a module M over a ring R satisfies S- n-acc (S
is a m.c. subset of R), then it need not imply that the S−1 R -module S−1 M has n-acc.

Lemma 2.10. Let S be a m.c. subset of a ring R. Let n ∈ N. Let M be a module over
R. Suppose that for each submodule N of M generated by n elements, there exists s ∈ S
(depending on N) such that SatS(N ) = (N :M s). If the S−1 R-module S−1 M satisfies
n-acc, then M satisfies S-n-acc.

Proof. Let N1 ⊆ N2 ⊆ N3 ⊆ · · · be an ascending sequence of submodules of M such
that Ni is generated by n elements for each i ∈ N. Observe that S−1 N1 ⊆ S−1 N2 ⊆

S−1 N3 ⊆ · · · is an ascending sequence of n-generated submodules of S−1 M . Since S−1 M
satisfies n-acc by hypothesis, we obtain that there exists k ∈ N such that S−1 Nn = S−1 Nk
for all n ≥ k. Hence, SatS(Nn) = SatS(Nk) for all n ≥ k. Moreover, by assumption,
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SatS(Nk) = (Nk :M s) for some s ∈ S. Let n ≥ k and let x ∈ Nn . Then x ∈ SatS(Nn) =

SatS(Nk) = (Nk :M s) and so, sx ∈ Nk . This shows that s Nn ⊆ Nk for all n ≥ k. This
proves that any ascending sequence of submodules of M , each of which is n-generated is
S-stationary. Therefore, we obtain that M satisfies S-n-acc. □

We provide Example 2.11 to illustrate that the hypothesis, for any submodule N of M
generated by n elements, there exists s ∈ S (depending on N ) such that SatS(N ) = (N :M s)
in Lemma 2.10 cannot be omitted.

Example 2.11. Let P,M be as in Example 2.9. Let S = Z\2Z. Then the S−1Z-module
S−1 M satisfies pan-acc but M does not satisfy S-1-acc.

Proof. Now, M = Z+
∑

p∈P Z
1
p . It is not hard to verify that M2Z = Z2Z +Z2Z

1
2 . Observe

that M2Z is a Noetherian Z2Z-module and so, M2Z satisfies pan-acc. We next verify that
M does not satisfy S-1-acc. Let P = {p1 = 2 < p2 = 3 < p3 < · · · }. Let n ≥ 1. It is
convenient to denote 1

p1···pn
by qn and Zqn by Mn . It is clear that Mn ⊂ M . Observe that

qn = pn+1qn+1 and so, Mn ⊆ Mn+1. From 1
pn+1

∈ Mn+1\Mn , it follows that Mn ⊂ Mn+1.
Hence, M! ⊂ M2 ⊂ M3 ⊂ · · · is a strictly ascending sequence of 1-generated submodules
of M . We claim that this sequence of cyclic submodules of M is not S-stationary. Suppose
that this sequence of submodules of M is S-stationary. Then there exist s ∈ S and k ∈ N
such that s Mn ⊆ Mk for all n ≥ k. We can assume without loss of generality that s > 0. It is
clear that s ̸= 1. Observe that there exist pi1 , . . . , pit ∈ P\{2} and n1, . . . , nt ∈ N such that
s =

∏t
j=1 p

n j
i j

. Note that s Mk+i1+···+it ⊆ Mk . This implies that s
p1 p2···pk+i1+···+it

=
y

p1···pk
for

some y ∈ Z. This is impossible, since pk+i1+···+it does not divide sp1 · · · pk in Z. Therefore,
the sequence M1 ⊂ M2 ⊂ M3 ⊂ · · · of 1-generated submodules of M is not S-stationary
and so, M does not satisfy S-1-acc. □

Corollary 2.12. Let S be a countable m.c. subset of a ring R. Suppose that for any module
M over R, and any submodule N of M, there exists s ∈ S (depending on N) such that
SatS(N ) = (N :M s). Consider the following statements.

(i) Every module over R satisfies S-strong accr∗.
(i i) S−1 R is a perfect ring.
(i i i) Every module over R satisfies S-pan-acc.
Then (i) ⇔ (i i) and (i i) ⇒ (i i i).

Proof. (i) ⇔ (i i) This is (i) ⇔ (iv) of Theorem 2.8.
(i i) ⇒ (i i i) Let M be a module over R. Let n ≥ 1. Since S−1 R is a perfect ring, we obtain
from [9, Proposition 1.2] that the S−1 R-module S−1 M satisfies n-acc. Now, it follows from
Lemma 2.10 that M satisfies S-n-acc. This is true for any n ≥ 1. This proves that any
R-module M satisfies S-pan-acc. □

It was shown in [12, Proposition 2.2] that if a domain R satisfies strong accr∗, then R
satisfies 1-acc. In Example 2.13, we provide a domain R and a m.c. subset S of R such
that R satisfies S-strong accr∗ but R does not satisfy strong accr∗.

Example 2.13. Let p be a prime number and let F =
Z
pZ . Let X be an indeterminate over

F . For each n ≥ 1, let X
1

pn denote the pn-th root of X in an algebraic closure of F(X ).
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Let R = ∪
∞

n=1 F[X
1

pn ]. Let S = R\{0}. Then R satisfies S-strong accr∗ but R does not
satisfy strong accr∗.

Proof. The domain R was considered by D.E. Dobbs in [5]. Let us denote the quotient field
of R by K . Observe that S−1 R = K is a Noetherian ring. Let I be any nonzero ideal of R.
Then S−1 I = K and so, SatS(I ) = K ∩ R = R = (I :R s) for any s ∈ I\{0}. Hence, we
obtain from [2, Proposition 2(f)] that R is S-Noetherian. Therefore, any increasing sequence
of ideals of R is S-stationary and so, we get that R satisfies S-strong accr∗. Also, R

satisfies S-pan-acc. Observe that R X ⊂ R X
1
p ⊂ R X

1
p2

⊂ · · · is a strictly ascending
sequence of principal ideals of R and so, R does not satisfy 1-acc. Hence, it follows from
[12, Proposition 2.2] that R does not satisfy strong accr∗. □

3. SOME MORE RESULTS ON MODULES SATISFYING S-STRONG accr∗

Let R be a ring and let S be a m.c. subset of R. The aim of this section is to discuss
some more results on modules M over R satisfying S-strong accr∗.

Remark 3.1. Let R be a ring and let S be a m.c. subset of R. Let M be a module over
R. If M satisfies S-strong accr∗, then it is not hard to show that for any submodule N of
M , both N and M

N satisfy S-strong accr∗. We verify in Lemma 3.2 that if both N and M
N

satisfy S-strong accr∗, then M satisfies S-strong accr∗.

Lemma 3.2. Let S be a m.c. subset of a ring R. Let M be a module over R and let N be a
submodule of M. If both N and M

N satisfy S-strong accr∗, then M satisfies S-strong accr∗.

Proof. Let L be a submodule of M and let ⟨rn⟩ be a sequence of elements of R. We verify
that the ascending sequence (L :M r1) ⊆ (L :M r1r2) ⊆ (L :M r1r2r3) ⊆ · · · of M is
S-stationary. Since M

N satisfies S-strong accr∗, there exist s ∈ S and k1 ∈ N such that
for all n ≥ k1, s( L+N

N : M
N

r1 · · · rn) ⊆ ( L+N
N : M

N
r1 · · · rk1 ). This implies that s(L + N :M

r1 · · · rn) ⊆ (L + N :M r1 · · · rk1 ) for all n ≥ k1. As N satisfies S-strong accr∗, it follows
that the ascending sequence of submodules (N ∩ L :N rk1+1) ⊆ (N ∩ L :N rk1+1rk1+2) ⊆

(N ∩ L :N rk1+1rk1+2rk1+3) ⊆ · · · of N is S-stationary. Hence, there exist s ′
∈ S and

k2 ∈ N such that for all j ≥ 1, s ′(N ∩ L :N rk1+1 · · · rk1+k2+ j ) ⊆ (N ∩ L :N rk1+1 · · · rk1+k2 ).
We verify that ss ′(L :M r1r2 · · · rn) ⊆ (L :M r1r2 · · · rk1+k2 ) for all n ≥ k1 + k2. Let
n ≥ k1 + k2. Then n = k1 + k2 + j for some j ≥ 0. Let m ∈ (L :M r1r2 · · · rn).
Now, r1r2 · · · rnm ∈ L ⊆ L + N . Hence, sr1 · · · rk1m ∈ L + N . This implies that
sr1 · · · rk1 m = y + z for some y ∈ L and z ∈ N . Therefore, sr1 · · · rk1rk1+1 · · · rnm =

rk1+1 · · · rn y + rk1+1 · · · rnz. Hence, rk1+1 · · · rnz ∈ N ∩ L . So, s ′rk1+1 · · · rk1+k2 z ∈ L ∩ N .
Therefore, ss ′r1r2 · · · rk1+k2m = s ′rk1+1 · · · rk1+k2 y + s ′rk1+1 · · · rk1+k2 z ∈ L . This proves
that for all n ≥ k1 + k2, ss ′(L :M r1 · · · rn) ⊆ (L :M r1 · · · rk1+k2 ). Therefore, M satisfies
S-strong accr∗. □

Let S be a m.c. subset of a ring R. As an application of Lemma 3.2, we verify in
Remark 3.3 that if R satisfies S-strong accr∗, then M satisfies S-strong accr∗ for any f.g.
R-module M .
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Remark 3.3. Let S be a m.c. subset of a ring R. If (0) → M ′
→ M → M ′′

→ (0)
is a short exact sequence of R-modules, then using standard arguments, it follows from
Remark 3.1 and Lemma 3.2 that M satisfies S-strong accr∗ if and only if both M ′ and
M ′′ satisfy S-strong accr∗. If R satisfies S-strong accr∗, then for any n ≥ 1, the free
R-module Rn satisfies S-strong accr∗. If M is a f.g. module over a ring R, then M is a
homomorphic image of a f.g. free R-module F . Thus if R satisfies S-strong accr∗, then
M satisfies S-strong accr∗. □

Let R be an integral domain with dim R > 0. It was shown in [11, Result 12] that
if a free R-module F satisfies accr∗, then F is f.g. As a consequence of this result and
Remark 3.3, we prove in Proposition 3.4 that a free R-module F satisfies S-strong accr∗ if
and only if F is f.g., where S is a m.c. subset of an integral domain R such that R satisfies
S-strong accr∗ and S−1 R is not a field.

Proposition 3.4. Let R be an integral domain. Let S be a m.c. subset of R such that S−1 R
is not a field. Suppose that R satisfies S-strong accr∗. Let F be a free R-module. Then the
following statements are equivalent:

(i) F satisfies S-strong accr∗.
(i i) F satisfies S- accr∗.
(i i i) F is finitely generated.

Proof. (i) ⇒ (i i) This follows immediately from the fact that if a module M over a ring
R satisfies S-strong accr∗, then M satisfies S-accr∗.
(i i) ⇒ (i i i) Let {eα}α∈Λ be a basis of F as a free R-module. Then S−1 F is a free S−1 R-
module with basis {

eα
1 }α∈Λ. We are assuming that F satisfies S-accr∗. It can be shown as

in Lemma 2.4 that the S−1 R-module S−1 F satisfies accr∗. Since S−1 R is not a field by
assumption, we obtain from [11, Result 12] that Λ is a finite set. Therefore, it follows that
F is finitely generated.
(i i i) ⇒ (i) By hypothesis, R satisfies S-strong accr∗. Since F is a f.g. module over R, we
obtain from Remark 3.3 that F satisfies S-strong accr∗. □

We provide Example 3.5 to illustrate that the hypothesis F is a free module cannot be
omitted in Proposition 3.4.

Example 3.5. Let p be a prime number and R = ZpZ. It is well-known that R is a rank
one discrete valuation domain with m = pR as its unique maximal ideal. For each n ∈ N,
let Mn be the R-module given by Mn =

R
m

. Let M =
⨁

n∈N Mn . Then M satisfies strong
accr∗.

Proof. Since R is Noetherian, R satisfies S-strong accr∗ for any m.c. subset S of R. Let
S = 1 + m. Then S is a m.c. subset of R and as S ⊆ U (R), we obtain that S−1 R = R.
As mM is the zero submodule of M , M can be made into a module over R

m
by defining

(r + m)x = r x for any r + m ∈
R
m

and for any x ∈ M . Observe that a nonempty subset
N of M is an R-submodule of M if and only if N is an R

m
-submodule of M . As M is a

vector space over the field R
m

, we know from Lemma 2.2 that M regarded as a module over
R
m

satisfies strong accr∗ and so, M satisfies strong accr∗ as a module over R. Hence, M
satisfies S-strong accr∗. But M is not a f.g. module over R.
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Theorem 3.6. Let S be a countable m.c. subset of a ring R. Then the following statements
are equivalent:

(i) R[X ] satisfies S-strong accr∗.
(i i) R[X ] satisfies S-accr∗ and for any ideal A of R[X ], SatS(A) = (A :R[X ] s) for

some s ∈ S.
(i i i) R[X ] is S-Noetherian.

Proof. (i) ⇒ (i i) As R[X ] satisfies S-strong accr∗, it is clear that R[X ] satisfies S-accr∗.
Since S is a countable m.c. subset of R and R[X ] satisfies S-strong accr∗, it follows from
(i) ⇒ (i i) of Theorem 2.7 that if A is any ideal of R[X ], then SatS(A) = (A :R[X ] s) for
some s ∈ S.
(i i) ⇒ (i i i) As R[X ] satisfies S-accr∗, it follows as in Lemma 2.4 that S−1(R[X ]) satisfies
accr∗. Observe that S−1(R[X ]) = (S−1 R)[X ] is the polynomial ring in one variable over
S−1 R. Hence, we obtain from [8, Theorem 2] that S−1 R is Noetherian. Therefore, it follows
from Hilbert Basis Theorem [4, Theorem 7.5] that (S−1 R)[X ] = S−1(R[X ]) is Noetherian.
Thus S−1(R[X ]) is Noetherian and for any ideal A of R[X ], there exists s ∈ S such
that SatS(A) = (A :R[X ] s). Hence, we obtain from [2, Proposition 2(f)] that R[X ] is
S-Noetherian.
(i i i) ⇒ (i) Since R[X ] is S-Noetherian, any ascending sequence of ideals of R[X ] is
S-stationary and so, R[X ] satisfies S-strong accr∗. □
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