

Some results on modules satisfying S-strong accr*

S. VISWESWARAN*, PREMKUMAR T. LALCHANDANI

Department of Mathematics, Saurashtra University, Rajkot, 360 005, India

Received 16 December 2017; revised 23 February 2019; accepted 24 February 2019 Available online 5 March 2019

Abstract. The rings considered in this article are commutative with identity. Modules are assumed to be unitary. Let *R* be a ring and let *S* be a multiplicatively closed subset of *R*. We say that a module *M* over *R* satisfies *S*-strong $accr^*$ if for every submodule *N* of *M* and for every sequence $\langle r_n \rangle$ of elements of *R*, the ascending sequence of submodules $(N :_M r_1) \subseteq (N :_M r_1 r_2) \subseteq (N :_M r_1 r_2 r_3) \subseteq \cdots$ is *S*-stationary. That is, there exist $k \in \mathbb{N}$ and $s \in S$ such that $s(N :_M r_1 \cdots r_n) \subseteq (N :_M r_1 \cdots r_k)$ for all $n \geq k$. We say that a ring *R* satisfies *S*-strong $accr^*$ if *R* regarded as a module over *R* satisfies *S*-strong accr^{*}. The aim of this article is to study some basic properties of rings and modules satisfying *S*-strong $accr^*$.

Keywords: Strong accr*; S-strong accr*; Perfect ring; S-n-acc

Mathematics Subject Classification: 13A15

1. INTRODUCTION

The rings considered in this article are commutative with identity. Modules are assumed to be unitary. Let *R* be a ring. If *S* is a multiplicatively closed subset of *R*, then we assume that $0 \notin S$ and $1 \in S$. We use m.c. set to denote multiplicatively closed set. We use the abbreviation f.g. for finitely generated. Let *M* be a module over a ring *R* and let *S* be a m.c. subset of *R*. Recall from [2] that *M* is said to be *S*-finite if there exist $s \in S$ and a f.g. submodule *N* of *M* such that $sM \subseteq N$ and *M* is said to be *S*-Noetherian if any

E-mail address: s_visweswaran2006@yahoo.co.in (S. Visweswaran). Peer review under responsibility of King Saud University.

https://doi.org/10.1016/j.ajmsc.2019.02.004

^{*} Corresponding author.

^{1319-5166 © 2019} The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

submodule of M is S-finite. A ring R is said to be S-Noetherian if R regarded as a module over R is S-Noetherian. A very interesting and inspiring investigation on S-Noetherian rings and S-Noetherian modules has been carried out in [2] and the article [2] contains Svariant of several properties of Noetherian modules to S-Noetherian modules. This article is motivated by the interesting theorems proved by D.D. Anderson and T. Dumitrescu in [2]. To justify this statement, we mention some results that were proved in [2]. Let S be a m.c. subset of a ring R and let M be a module over R. Let $\psi: M \to S^{-1}M$ denote the usual *R*-homomorphism defined by $\psi(m) = \frac{m}{1}$. For any submodule *N* of *M*, $\psi^{-1}(S^{-1}N)$ is called the saturation of N with respect to S and is denoted by $Sat_S(N)$. It was shown in [2, Proposition 2(f)] that a ring R is S-Noetherian if and only if $S^{-1}R$ is Noetherian and for every f.g. ideal I of R, $Sat_S(I) = (I :_R s)$ for some $s \in S$. Let M be a S-finite module over R. In [2, Proposition 4], it was proved that M is S-Noetherian if and only if the submodules of the form *PM* are *S*-finite for each prime ideal *P* of *R* disjoint from *S* and it was deduced in [2, Corollary 5] that a ring R is S-Noetherian if and only if every prime ideal of R disjoint from S is S-finite and this is the S-variant of Cohen's Theorem. Let $A \subseteq B$ be a ring extension and $S \subseteq A$ be a m.c. subset such that B is a S-finite A-module. It was shown in [2, Corollary 7] that if B is S-Noetherian, then so is A and this is the S-variant of Eakin–Nagata Theorem. Recall from [2, page 4411] that a m.c. subset S of R is said to be anti-Archimedean if $(\bigcap_{n=1}^{\infty} s^n R) \cap S \neq \emptyset$ for every $s \in S$. Let S be an anti-Archimedean m.c. subset of a ring R. It was proved in [2, Proposition 9] that if R is S-Noetherian, then so is the polynomial ring $R[X_1, \ldots, X_n]$ and this is the S-variant of Hilbert Basis Theorem and it was shown in [2, Proposition 10] that if S consists of nonzero-divisors and if R is S-Noetherian, then so is the power series ring $R[[X_1, \ldots, X_n]]$.

Let *M* be a module over a ring *R*. Recall from [7] that *M* satisfies accr (respectively, satisfies accr^{*}) if the ascending chain of submodules of the form $(N :_M B) \subseteq (N :_M B^2) \subseteq (N :_M B^3) \subseteq \cdots$ terminates for every submodule *N* of *M* and every f.g. (respectively, principal) ideal *B* of *R*. A ring *R* is said to satisfy accr (respectively, satisfy accr^{*}) if *R* regarded as a module over *R* satisfies accr (respectively, accr^{*}). It is known that a module *M* over a ring *R* satisfies accr if and only if *M* satisfies accr^{*} [7, Theorem 1]. In [7,8], Chin-Pi Lu has shown that many important properties of Noetherian modules are possessed by modules satisfying accr.

Let *R* be a ring and let *S* be a m.c. subset of *R*. Inspired by the articles [2,7,8], H. Ahmed and H. Sana introduced and investigated the concept of modules satisfying *S*-accr and *S*-accr^{*} in [1]. Let *M* be a module over *R*. Recall from [1] that an ascending sequence of submodules $N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$ of *M* is *S*-stationary if there exist $k \in \mathbb{N}$ and $s \in S$ such that $sN_n \subseteq N_k$ for all $n \ge k$. Recall from [1, Definition 3.1] that *M* satisfies *S*-accr (respectively, satisfies *S*-accr^{*}) if the ascending sequence of submodules of the form $(N :_M B) \subseteq (N :_M B^2) \subseteq (N :_M B^3) \subseteq \cdots$ is *S*-stationary for any submodule *N* of *M* and any f.g. (respectively, principal) ideal *B* of *R*. A ring *R* is said to satisfy *S*-accr (respectively, satisfy *S*-accr^{*}) if *R* regarded as a module over *R* satisfies *S*-accr (respectively, *S*-accr^{*}). Several results from [7,8] on modules satisfying accr have been extended in [1] to modules satisfying *S*-accr.

Let *M* be a module over a ring *R*. We say that *M* satisfies (*C*) if the ascending sequence of submodules of the form $(N :_M r_1) \subseteq (N :_M r_1 r_2) \subseteq (N :_M r_1 r_2 r_3) \subseteq \cdots$ terminates for any submodule *N* of *M* and for any sequence $\langle r_n \rangle$ of elements of *R* [12]. It is clear that if a module *M* over a ring *R* satisfies (*C*), then *M* satisfies *accr*^{*}. Hence, it is convenient to replace the condition (*C*) by strong-*accr*^{*}. We say that *M* satisfies strong *accr*^{*} if *M* satisfies (C). We say that R satisfies strong $accr^*$ if R regarded as a module over R satisfies strong $accr^*$. A study was carried out on rings and modules satisfying strong $accr^*$ in [12].

Let *S* be a m.c. subset of a ring *R*. It was shown in [1, Proposition 3.1] that for any *R*-module *M*, the properties *S*-accr and *S*-accr^{*} are equivalent. It was proved in [1, Lemma 3.6] that *R* satisfies *S*-accr if and only if the *R*-module R^n satisfies *S*-accr for each $n \in \mathbb{N}$. Let *M* be a f.g. module over *R*. In [1, Theorem 3.3], it was shown that if *R* satisfies *S*-accr, then so does *M*. We denote the polynomial ring in one variable *X* over a ring *R* by *R*[*X*]. If *S* is finite, then it was proved in [1, Theorem 3.4] that *R*[*X*] satisfies *S*-accr if and only if *R* is *S*-Noetherian. Motivated by the work on *S*-accr modules in [1], in this article, we introduce the concept of modules satisfying *S*-strong accr^{*} and try to investigate some properties of modules satisfying *S*-strong accr^{*} if for any submodule *N* of *M* and for any sequence $\langle r_n \rangle$ of elements of *R*, the ascending sequence of submodules of the form $(N :_M r_1) \subseteq (N :_M r_1 r_2) \subseteq (N :_M r_1 r_2 r_3) \subseteq \cdots$ is *S*-stationary. We say that *R* satisfies *S*-strong accr^{*}.

In Section 2 of this article, we prove some basic properties of modules satisfying Sstrong $accr^*$. Let S be a m.c. subset of a ring R and let M be a module over R. The main result proved in Section 2 is Theorem 2.7 in which necessary and sufficient conditions are determined for a module M over a ring R to satisfy S-strong $accr^*$, where S is a countable m.c. subset of R. For a countable m.c. subset S of R, in Theorem 2.8, the question of when every module over R satisfies S-strong $accr^*$ is answered. Let $n \ge 1$. Inspired by the work on rings and modules satisfying n-acc and pan-acc by W. Heinzer and D. Lantz in [6] and by G. Renault in [9], the concept of S-n-acc and S-pan-acc are introduced and it is shown that for a countable m.c. subset S of a ring R, if every module over R satisfies S-strong $accr^*$, then every module over R satisfies S-pan-acc. Examples are given to illustrate some of the results proved in Section 2 (see Examples 2.3, 2.5, 2.9, 2.11, and 2.13).

In Section 3 of this article, some more properties of modules satisfying S-strong accr^{*} are proved. Let S be a m.c. subset of an integral domain R such that R satisfies S-strong accr^{*}. In Proposition 3.4, the problem of when a free module F over R satisfies S-strong accr^{*} is answered. Let S be a countable m.c. subset of R. It is shown in Theorem 3.6 that the polynomial ring R[X] satisfies S-strong accr^{*} if and only if R[X] is S-Noetherian.

Let R be a ring. The Krull dimension of R is simply referred to as the dimension of R and is denoted by the notation $\dim R$. We denote the set of all units of R by U(R). Whenever a set A is a subset of a set B and $A \neq B$, we denote it symbolically by the notation $A \subset B$.

2. Some basic properties of modules satisfying S-strong accr^{*}

Let *M* be a module over a ring *R*. If *M* satisfies strong *accr*^{*}, then it is clear that *M* satisfies *accr*^{*} and so, *M* satisfies accr [7, Theorem 1]. In Remark 2.1(*i*), we mention an example of a module *M* over \mathbb{Z} such that *M* satisfies *accr* but *M* does not satisfy strong *accr*^{*}.

Remark 2.1. (*i*) Let us denote the set of all prime numbers by \mathbb{P} . Let $M = \bigoplus_{p \in \mathbb{P}} \frac{\mathbb{Z}}{p\mathbb{Z}}$. We know from [7, Example 1] that the \mathbb{Z} -module M satisfies accr. It was shown in [12, see page 164] that M does not satisfy strong *accr*^{*}.

(*ii*) Let M be a module over a ring R. Let S be a m.c. subset of R. If M satisfies strong $accr^*$, then M satisfies S-strong $accr^*$. In Example 2.13, we provide an example of a domain R and a m.c. subset S of R such that R satisfies S-strong $accr^*$ but R does not satisfy strong $accr^*$. \Box

Let M be a module over a ring R and let S be a m.c. subset of R. If M is S-Noetherian, then it is not hard to show that any ascending sequence of submodules of M is S-stationary. Hence, we obtain that M satisfies S-strong $accr^*$. We provide Example 2.3 to illustrate that a module satisfying S-strong $accr^*$ can fail to be S-Noetherian.

Lemma 2.2. Let V be a vector space over a field K. Then V satisfies strong accr^{*}.

Proof. Let *W* be any subspace of *V* and let $\alpha \in K$. Note that $(W :_V \alpha) = V$ if $\alpha = 0$ and it is equal to *W* if $\alpha \neq 0$. Let $\langle \alpha_n \rangle$ be any sequence of elements of *K*. If $\alpha_k = 0$ for some $k \in \mathbb{N}$, then for all $n \ge k$, $(W :_V \alpha_1 \cdots \alpha_n) = (W :_V \alpha_1 \cdots \alpha_k) = V$. If $\alpha_i \neq 0$ for all $i \in \mathbb{N}$, then $(W :_V \alpha_1 \cdots \alpha_i) = (W :_V \alpha_1 \cdots \alpha_j) = W$ for all $i, j \in \mathbb{N}$. This shows that *V* satisfies strong *accr*^{*}. \Box

Example 2.3. Let V be an infinite dimensional vector space over a field K. Then for any m.c. subset S of K, V satisfies S-strong $accr^*$ but V is not S-Noetherian.

Proof. We know from Lemma 2.2 that V satisfies strong $accr^*$ and so, V satisfies Sstrong $accr^*$ for any m.c. subset S of K. Let S be any m.c. subset of K. Note that $S \subseteq K \setminus \{0\} = U(K)$. Hence, for any subspace W of V and for any $s \in S$, sW = W. Since we are assuming that $dim_K V$ is infinite, there exists a strictly ascending sequence of subspaces $W_1 \subset W_2 \subset W_3 \subset \cdots$ of V. It is clear that there exist no $k \in \mathbb{N}$ and $s \in S$ such that $sW_n \subseteq W_k$ for all $n \ge k$. Therefore, V is not S-Noetherian for any m.c. subset S of K. \Box

Lemma 2.4. Let M be a module over a ring R and let S be a m.c. subset of R. If M satisfies S- strong accr^{*}, then the $S^{-1}R$ -module $S^{-1}M$ satisfies strong accr^{*}.

Proof. Let *W* be any $S^{-1}R$ -submodule of $S^{-1}M$. Let $\langle x_n \rangle$ be e sequence of elements of $S^{-1}R$. Note that $W = S^{-1}N$ for some *R*-submodule *N* of *M* and for each $n \in \mathbb{N}$, let $x_n = \frac{r_n}{s_n}$ for some $r_n \in R$ and $s_n \in S$. Since *M* satisfies *S*-strong *accr*^{*} by hypothesis, we obtain that the ascending sequence of submodules $(N :_M r_1) \subseteq (N :_M r_1 r_2) \subseteq (N :_M r_1 r_2 r_3) \subseteq \cdots$ of *M* is *S*-stationary. Hence, there exist $s \in S$ and $k \in \mathbb{N}$ such that $s(N :_M r_1 \cdots r_n) \subseteq (N :_M r_1 \cdots r_n) \subseteq (N :_M r_1 \cdots r_k)$ for all $n \geq k$. This implies that $S^{-1}(s(N :_M r_1 \cdots r_n)) \subseteq S^{-1}(N :_M r_1 \cdots r_k) \subseteq S^{-1}(N :_M r_1 \cdots r_n)$ for all $n \geq k$ and so, $(S^{-1}N :_{S^{-1}M} \frac{r_1}{s_1} \cdots \frac{r_n}{s_n}) = (S^{-1}N :_{S^{-1}M} \frac{r_1}{s_1} \cdots \frac{r_k}{s_k})$ for all $n \geq k$. Thus there exists $k \in \mathbb{N}$ such that $(W :_{S^{-1}M} x_1 \cdots x_n) = (W :_{S^{-1}M} x_1 \cdots x_k)$ for all $n \geq k$. This shows that the $S^{-1}R$ -module $S^{-1}M$ satisfies strong *accr*^{*}.

We provide Example 2.5 to illustrate that the converse of Lemma 2.4 can fail to hold.

Example 2.5. Let us denote the set of all prime numbers by \mathbb{P} . Let $\mathbb{P} = \{p_1 = 2 < p_2 = 3 < p_3 < p_4 < \cdots\}$. Let *M* be the \mathbb{Z} -module given by $M = \bigoplus_{p \in \mathbb{P}} \frac{\mathbb{Z}}{p\mathbb{Z}}$. Let $S = \mathbb{Z} \setminus 2\mathbb{Z}$. Then the $S^{-1}\mathbb{Z}$ -module $S^{-1}M$ satisfies strong *accr*^{*} but *M* does not satisfy *S*-strong *accr*^{*}.

Proof. Let $p \in \mathbb{P}$. It is not hard to verify that $M_{p\mathbb{Z}} \cong \frac{\mathbb{Z}_{p\mathbb{Z}}}{p\mathbb{Z}_{p\mathbb{Z}}}$ as $\mathbb{Z}_{p\mathbb{Z}}$ -modules. Let $S = \mathbb{Z} \setminus 2\mathbb{Z}$. Note that S is a m.c. subset of \mathbb{Z} and as $M_{2\mathbb{Z}}$ is a finite $\mathbb{Z}_{2\mathbb{Z}}$ -module, we obtain that the $\mathbb{Z}_{2\mathbb{Z}}$ -module $S^{-1}M = M_{2\mathbb{Z}}$ satisfies strong $accr^*$. We now verify that the \mathbb{Z} -module M does not satisfy S-strong $accr^*$. Let us denote the zero submodule of M simply by $(\overline{0}, \overline{0}, \overline{0}, \ldots)$. We know from [12, page 164] that $((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1) \subset ((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1 p_2) \subset ((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1 p_2 p_3) \subset \cdots$ is a strictly ascending sequence of submodules of M. We claim that this sequence is not S-stationary. Suppose that the above sequence of submodules of M is S-stationary. Then there exist $k \in \mathbb{N}$ and $s \in S$ such that $s((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1 \ldots p_n) \subseteq ((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1 \cdots p_k)$ for all $n \geq k$. We can assume that s > 0. It is clear that $s \neq 1$. As $s \in S = \mathbb{Z} \setminus 2\mathbb{Z}$, it follows that there exist distinct $p_{i_1}, \ldots, p_{i_l} \in \mathbb{P} \setminus \{2\}$ and positive integers n_1, \ldots, n_t such that $s = \prod_{j=1}^{t} p_{i_j}^{n_j}$. Observe that $s((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1 p_2 \cdots p_{k+i_1+\cdots+i_t}) = \bigoplus_{j\in T} \frac{\mathbb{Z}}{p_j\mathbb{Z}}$ where $T = \{1, 2, \ldots, k + i_1 + \cdots + i_t\} \setminus \{i_1, \ldots, i_t\}, ((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1 \cdots p_k) = \frac{\mathbb{Z}}{p_1\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p_k\mathbb{Z}}$ and so, we get that $\frac{\mathbb{Z}}{p_{k+i_1+\cdots+i_t\mathbb{Z}}} \subseteq \frac{\mathbb{Z}}{p_1\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p_k\mathbb{Z}}$. This is impossible. Therefore, the ascending sequence of submodules $((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1) \subset ((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1 p_2) \subset ((\overline{0}, \overline{0}, \overline{0}, \ldots) :_M p_1 p_2 p_3) \subset \cdots$ is not S-stationary. This shows that the \mathbb{Z} -module M does not satisfy S-strong $accr^*$. \Box

In Lemma 2.6, we provide a sufficient condition on a module M over a ring R under which the converse of Lemma 2.4 holds.

Lemma 2.6. Let M be a module over a ring R and let S be a m.c. subset of R. If the $S^{-1}R$ -module $S^{-1}M$ satisfies strong accr^{*} and if for any submodule N of M, there exists $s \in S$ (depending on N) such that $Sat_S(N) = (N :_M s)$, then M satisfies S-strong accr^{*}.

Proof. Let *N* be a submodule of *M* and let $\langle r_n \rangle$ be a sequence of elements of *R*. We prove that the ascending sequence $(N :_M r_1) \subseteq (N :_M r_1 r_2) \subseteq (N :_M r_1 r_2 r_3) \subseteq \cdots$ of submodules of *M* is *S*-stationary. For each $n \in \mathbb{N}$, let us denote $\frac{r_n}{1}$ by x_n . Then $\langle x_n \rangle$ is a sequence of elements of $S^{-1}R$. Consider the ascending sequence of submodules of $S^{-1}N$ are $(S^{-1}N :_{S^{-1}M} x_1) \subseteq (S^{-1}N :_{S^{-1}M} x_1 x_2) \subseteq (S^{-1}N :_{S^{-1}M} x_1 x_2 x_3) \subseteq \cdots$. Since the $S^{-1}R$ -module $S^{-1}M$ satisfies strong $accr^*$, there exists $k \in \mathbb{N}$ such that for all $n \ge k$, $(S^{-1}N :_{S^{-1}M} x_1 \cdots x_n) = (S^{-1}N :_{S^{-1}M} x_1 \cdots x_k)$. By hypothesis, there exists $s \in S$ such that $Sat_S(N) = (N :_M s)$. Let $n \ge k$. Let $m \in (N :_M r_1 \cdots r_n)$. Then $\frac{m}{1} \in (S^{-1}N :_{S^{-1}M} x_1 \cdots x_k)$ for some $s' \in S$ and so, $s'r_1 \cdots r_k m \in N$. Therefore, $r_1 \cdots r_k m \in Sat_S(N) = (N :_M s)$. This proves that $s(N :_M r_1 \cdots r_n) \subseteq (N :_M r_1 \cdots r_k)$ for all $n \ge k$. Therefore, we obtain that *M* satisfies S-strong $accr^*$. \Box

Let S be a countable m.c. subset of a ring R. With the help of Lemmas 2.4 and 2.6, in Theorem 2.7, we provide a necessary and sufficient condition in order that a module M over R satisfies S-strong accr^{*}.

Theorem 2.7. Let *M* be a module over a ring *R*. Let *S* be a countable m.c. subset of *R*. The following statements are equivalent:

(i) M satisfies S-strong accr^{*}.

(ii) The $S^{-1}R$ -module $S^{-1}M$ satisfies strong $accr^*$ and for any submodule N of M, there exists $s \in S(depending \text{ on } N)$ such that $Sat_S(N) = (N :_M s)$.

Proof. $(i) \Rightarrow (ii)$ Assume that M satisfies S-strong $accr^*$. Then we know from Lemma 2.4 that the $S^{-1}R$ -module $S^{-1}M$ satisfies strong $accr^*$ (for the proof of this assertion, we do not need the assumption that S is countable). Assume that S is countable. Let N be any submodule of M. Suppose that S is finite. Let $S = \{s_1, \ldots, s_t\}$. Let $s = \prod_{i=1}^t s_i$. Then it is clear that $s \in S$ and $Sat_S(N) = (N :_M s)$. Hence, we can assume that S is denumerable. Let $S = \{s_n | n \in \mathbb{N}\}$. Since M satisfies S-strong $accr^*$, the ascending sequence of submodules $(N :_M s_1) \subseteq (N :_M s_1s_2) \subseteq (N :_M s_1s_2s_3) \subseteq \cdots$ is S-stationary. Therefore, there exist $s_i \in S$ and $k \in \mathbb{N}$ such that $s_i(N :_M s_1 \cdots s_n) \subseteq (N :_M s_1 \cdots s_k)$ for all $n \ge k$. Let $m \in Sat_S(N)$. Then $s_jm \in N$ for some $j \in \mathbb{N}$. Hence, $m \in (N :_M s_1s_2 \cdots s_{k+j})$. Therefore, $s_im \in s_i(N :_M s_1s_2 \cdots s_{k+j}) \subseteq (N :_M s_1 \cdots s_k)$. This implies that $s_is_1 \cdots s_k m \in N$. Let $s = s_is_1 \cdots s_k$. Then $s \in S$ and $sm \in N$. This proves that $Sat_S(N) \subseteq (N :_M s)$ and it is clear that $(N :_M s) \subseteq Sat_S(N)$. Therefore, we get that $Sat_S(N) = (N :_M s)$.

assumption that S is countable). \Box

Let *R* be a ring. Recall from [3, page 321] that *R* is said to be *perfect* if every *R*-module has a projective cover. A pioneering work on perfect rings was done by Hyman Bass and there are several characterizations of perfect rings due to him [3, Theorem 28.4]. It was proved in [12, Proposition 1.1] that every *R*-module satisfies strong *accr*^{*} if and only if *R* satisfies strong *accr*^{*} and *dim R* = 0 which is equivalent to the statement that *R* is a perfect ring. Let *S* be a countable m.c. subset of *R*. As an application of [12, Proposition 1.1] and Theorem 2.7, in Theorem 2.8, we characterize rings *R* such that every module over *R* satisfies *S*-strong *accr*^{*}.

Theorem 2.8. Let R be a ring. Let S be a countable m.c. subset of R. Suppose that for any module M over R and for any submodule N of M, there exists $s \in S$ (depending on N) such that $Sat_S(N) = (N :_M s)$. Then the following statements are equivalent:

(i) Every module over R satisfies S-strong accr^{*}.

(ii) Every module over $S^{-1}R$ satisfies strong accr^{*}.

(iii) $S^{-1}R$ satisfies strong accr^{*} and $dim(S^{-1}R) = 0$.

(iv) $S^{-1}R$ is a perfect ring.

Proof. (*i*) \Rightarrow (*ii*) Let V be any module over $S^{-1}R$. Observe that V can be regarded as a module over R and hence by (*i*), V satisfies S-strong *accr*^{*} regarded as a module over R. We know from Lemma 2.4 that the $S^{-1}R$ -module $S^{-1}V = V$ satisfies strong *accr*^{*}. This shows that any $S^{-1}R$ -module satisfies strong *accr*^{*}.

 $(ii) \Rightarrow (iii)$ As any $S^{-1}R$ -module satisfies strong $accr^*$, it follows that $S^{-1}R$ satisfies strong $accr^*$ and any $S^{-1}R$ -module satisfies $accr^*$. Therefore, we obtain from $(ii) \Rightarrow (i)$ of [10, Proposition 2.4] that $dim(S^{-1}R) = 0$.

 $(iii) \Rightarrow (iv)$ It follows from $(ii) \Rightarrow (iii)$ of [12, Proposition 1.1] that $S^{-1}R$ is a perfect ring.

 $(iv) \Rightarrow (i)$ It follows from $(iii) \Rightarrow (i)$ of [12, Proposition 1.1] that any module over $S^{-1}R$ satisfies strong *accr*^{*}. Let *M* be a module over *R*. Now, the $S^{-1}R$ -module $S^{-1}M$ satisfies strong *accr*^{*}. We are assuming that given any submodule *N* of *M*, there exists $s \in S$ (depending on *N*) such that $Sat_S(N) = (N :_M s)$. Therefore, we obtain from $(ii) \Rightarrow (i)$ of Theorem 2.7 that *M* satisfies *S*-strong *accr*^{*}. This proves that any module over *R* satisfies *S*-strong *accr*^{*}.

We provide Example 2.9 to illustrate that $S^{-1}R$ is a perfect ring is not sufficient to imply that any module over R satisfies S-strong *accr*^{*}.

Example 2.9. Let us denote the set of all prime numbers by \mathbb{P} . Consider the \mathbb{Z} -module M given by $M = \mathbb{Z} + \sum_{p \in \mathbb{P}} \mathbb{Z}_p^{\frac{1}{p}}$. Let $S = \mathbb{Z} \setminus \{0\}$. Then $S^{-1}\mathbb{Z}$ is a perfect ring and M does not satisfy *S*-strong *accr*^{*}.

Proof. Let $\mathbb{P} = \{p_1 = 2 < p_2 = 3 < p_3 < \cdots\}$. Note that $S^{-1}\mathbb{Z} = \mathbb{Q}$ is the field of rational numbers and so, $S^{-1}\mathbb{Z}$ is a perfect ring. It is not hard to verify that $(\mathbb{Z} :_M p_1 \cdots p_n) = \mathbb{Z} + \mathbb{Z} \frac{1}{p_1} + \cdots + \mathbb{Z} \frac{1}{p_n}$. Hence, the ascending sequence of submodules $(\mathbb{Z} :_M p_1) \subset (\mathbb{Z} :_M p_1 p_2) \subset (\mathbb{Z} :_M p_1 p_2 p_3) \subset \cdots$ of M is strictly ascending. We claim that the above ascending sequence of submodules of M is not S-stationary. Suppose that the above ascending sequence of submodules of M is S-stationary. Then there exist $s \in S$ and $k \in \mathbb{N}$ such that $s(\mathbb{Z} :_M p_1 \cdots p_n) \subseteq (\mathbb{Z} :_M p_1 \cdots p_k)$ for all $n \geq k$. We can assume that s > 0. It is clear that $s \neq 1$. Note that there exist distinct $p_{i_1}, \ldots, p_{i_t} \in \mathbb{P}$ and positive integers n_1, \ldots, n_t such that $s = \prod_{j=1}^t p_{i_j}^{n_j}$. Observe that $s(\mathbb{Z} :_M p_1 p_2 \cdots p_{k+i_1+\cdots+i_t}) \subseteq \mathbb{Z} + \mathbb{Z} \frac{1}{p_1} + \cdots + \mathbb{Z} \frac{1}{p_k}$. This implies that $\frac{s}{p_{k+i_1+\cdots+i_t}} = \frac{m}{p_1\cdots p_k}$ for some $m \in \mathbb{Z}$. This is impossible since $p_{k+i_1+\cdots+i_t}$ does not divide $sp_1 \cdots p_k$ in \mathbb{Z} . This proves that the sequence of submodules $(\mathbb{Z} :_M p_1) \subset (\mathbb{Z} :_M p_1 p_2 p_3) \subset \cdots$ is not S-stationary. This shows that M does not satisfy S-strong $accr^*$.

Let *M* be a module over a ring *R*. Let $n \in \mathbb{N}$. Recall from [6] that *M* is said to *satisfy n*-*acc* if every ascending sequence of submodules of *M*, each of which is generated by *n* elements stabilizes. Recall from [6] that *M* is said to *satisfy pan-acc* if *M* satisfies *n*-acc for all $n \ge 1$. We say that *R* satisfies *n*-acc (respectively, satisfies pan-acc) if *R* regarded as a module over *R* satisfies *n*-acc (respectively, pan-acc). It is known that every module over a ring *R* satisfies pan-acc if and only if *R* is a perfect ring [9, Proposition 1.2].

Let S be a m.c. subset of a ring R. Let M be a module over R. Let $n \ge 1$. We say that M satisfies S-n-acc if any ascending sequence of submodules of M, each of which is generated by n elements is S-stationary. We say that M satisfies S-pan-acc if M satisfies S-n-acc for all $n \ge 1$. We say that R satisfies S-n-acc (respectively, satisfies S-pan-acc) if R regarded as a module over R satisfies S-n-acc (respectively, S-pan-acc).

We know from [6, Example pages 275–276] that there exist a domain D and a m.c. subset S of D such that D has pan-acc but $S^{-1}D$ does not have 1-acc. Let $n \ge 1$. The above mentioned example illustrates that if a module M over a ring R satisfies S-n-acc (S is a m.c. subset of R), then it need not imply that the $S^{-1}R$ -module $S^{-1}M$ has n-acc.

Lemma 2.10. Let S be a m.c. subset of a ring R. Let $n \in \mathbb{N}$. Let M be a module over R. Suppose that for each submodule N of M generated by n elements, there exists $s \in S$ (depending on N) such that $Sat_S(N) = (N :_M s)$. If the $S^{-1}R$ -module $S^{-1}M$ satisfies n-acc, then M satisfies S-n-acc.

Proof. Let $N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$ be an ascending sequence of submodules of M such that N_i is generated by n elements for each $i \in \mathbb{N}$. Observe that $S^{-1}N_1 \subseteq S^{-1}N_2 \subseteq S^{-1}N_3 \subseteq \cdots$ is an ascending sequence of n-generated submodules of $S^{-1}M$. Since $S^{-1}M$ satisfies n-acc by hypothesis, we obtain that there exists $k \in \mathbb{N}$ such that $S^{-1}N_n = S^{-1}N_k$ for all $n \geq k$. Hence, $Sat_S(N_n) = Sat_S(N_k)$ for all $n \geq k$. Moreover, by assumption,

 $Sat_S(N_k) = (N_k :_M s)$ for some $s \in S$. Let $n \ge k$ and let $x \in N_n$. Then $x \in Sat_S(N_n) = Sat_S(N_k) = (N_k :_M s)$ and so, $sx \in N_k$. This shows that $sN_n \subseteq N_k$ for all $n \ge k$. This proves that any ascending sequence of submodules of M, each of which is *n*-generated is *S*-stationary. Therefore, we obtain that M satisfies *S*-*n*-acc. \Box

We provide Example 2.11 to illustrate that the hypothesis, for any submodule N of M generated by n elements, there exists $s \in S$ (depending on N) such that $Sat_S(N) = (N :_M s)$ in Lemma 2.10 cannot be omitted.

Example 2.11. Let \mathbb{P} , M be as in Example 2.9. Let $S = \mathbb{Z} \setminus 2\mathbb{Z}$. Then the $S^{-1}\mathbb{Z}$ -module $S^{-1}M$ satisfies pan-acc but M does not satisfy S-1-acc.

Proof. Now, $M = \mathbb{Z} + \sum_{p \in \mathbb{P}} \mathbb{Z}_p^1$. It is not hard to verify that $M_{2\mathbb{Z}} = \mathbb{Z}_{2\mathbb{Z}} + \mathbb{Z}_{2\mathbb{Z}}^1$. Observe that $M_{2\mathbb{Z}}$ is a Noetherian $\mathbb{Z}_{2\mathbb{Z}}$ -module and so, $M_{2\mathbb{Z}}$ satisfies pan-acc. We next verify that M does not satisfy S-1-acc. Let $\mathbb{P} = \{p_1 = 2 < p_2 = 3 < p_3 < \cdots\}$. Let $n \ge 1$. It is convenient to denote $\frac{1}{p_1 \cdots p_n}$ by q_n and $\mathbb{Z}q_n$ by M_n . It is clear that $M_n \subset M$. Observe that $q_n = p_{n+1}q_{n+1}$ and so, $M_n \subseteq M_{n+1}$. From $\frac{1}{p_{n+1}} \in M_{n+1} \setminus M_n$, it follows that $M_n \subset M_{n+1}$. Hence, $M_! \subset M_2 \subset M_3 \subset \cdots$ is a strictly ascending sequence of 1-generated submodules of M. We claim that this sequence of cyclic submodules of M is not S-stationary. Suppose that this sequence of submodules of M is S-stationary. Then there exist $s \in S$ and $k \in \mathbb{N}$ such that $sM_n \subseteq M_k$ for all $n \ge k$. We can assume without loss of generality that s > 0. It is clear that $s \neq 1$. Observe that there exist $p_{i_1}, \ldots, p_{i_t} \in \mathbb{P} \setminus \{2\}$ and $n_1, \ldots, n_t \in \mathbb{N}$ such that $s = \prod_{j=1}^t p_{i_j}^{n_j}$. Note that $sM_{k+i_1+\dots+i_t} \subseteq M_k$. This implies that $\frac{s}{p_1p_2\cdots p_k+i_1+\dots+i_t} = \frac{y}{p_1\cdots p_k}$ for some $y \in \mathbb{Z}$. This is impossible, since $p_{k+i_1+\dots+i_t}$ does not divide $sp_1\cdots p_k$ in \mathbb{Z} . Therefore, the sequence $M_1 \subset M_2 \subset M_3 \subset \cdots$ of 1-generated submodules of M is not S-stationary and so, M does not satisfy S-1-acc.

Corollary 2.12. Let S be a countable m.c. subset of a ring R. Suppose that for any module M over R, and any submodule N of M, there exists $s \in S$ (depending on N) such that $Sat_S(N) = (N :_M s)$. Consider the following statements.

(i) Every module over R satisfies S-strong accr^{*}.

(*ii*) $S^{-1}R$ is a perfect ring.

(iii) Every module over R satisfies S-pan-acc.

Then $(i) \Leftrightarrow (ii)$ and $(ii) \Rightarrow (iii)$.

Proof. (*i*) \Leftrightarrow (*ii*) This is (*i*) \Leftrightarrow (*iv*) of Theorem 2.8.

 $(ii) \Rightarrow (iii)$ Let *M* be a module over *R*. Let $n \ge 1$. Since $S^{-1}R$ is a perfect ring, we obtain from [9, Proposition 1.2] that the $S^{-1}R$ -module $S^{-1}M$ satisfies *n*-acc. Now, it follows from Lemma 2.10 that *M* satisfies *S*-*n*-acc. This is true for any $n \ge 1$. This proves that any *R*-module *M* satisfies *S*-pan-acc. \Box

It was shown in [12, Proposition 2.2] that if a domain R satisfies strong $accr^*$, then R satisfies 1-acc. In Example 2.13, we provide a domain R and a m.c. subset S of R such that R satisfies S-strong $accr^*$ but R does not satisfy strong $accr^*$.

Example 2.13. Let p be a prime number and let $F = \frac{Z}{pZ}$. Let X be an indeterminate over F. For each $n \ge 1$, let $X^{\frac{1}{p^n}}$ denote the p^n -th root of X in an algebraic closure of F(X).

Let $R = \bigcup_{n=1}^{\infty} F[X^{\frac{1}{p^n}}]$. Let $S = R \setminus \{0\}$. Then R satisfies S-strong *accr*^{*} but R does not satisfy strong *accr*^{*}.

Proof. The domain *R* was considered by D.E. Dobbs in [5]. Let us denote the quotient field of *R* by *K*. Observe that $S^{-1}R = K$ is a Noetherian ring. Let *I* be any nonzero ideal of *R*. Then $S^{-1}I = K$ and so, $Sat_S(I) = K \cap R = R = (I :_R s)$ for any $s \in I \setminus \{0\}$. Hence, we obtain from [2, Proposition 2(f)] that *R* is *S*-Noetherian. Therefore, any increasing sequence of ideals of *R* is *S*-stationary and so, we get that *R* satisfies *S*-strong *accr*^{*}. Also, *R* satisfies *S*-pan-acc. Observe that $RX \subset RX^{\frac{1}{p}} \subset RX^{\frac{1}{p^2}} \subset \cdots$ is a strictly ascending sequence of principal ideals of *R* and so, *R* does not satisfy 1-acc. Hence, it follows from [12, Proposition 2.2] that *R* does not satisfy strong *accr*^{*}.

3. SOME MORE RESULTS ON MODULES SATISFYING S-STRONG accr^{*}

Let R be a ring and let S be a m.c. subset of R. The aim of this section is to discuss some more results on modules M over R satisfying S-strong $accr^*$.

Remark 3.1. Let *R* be a ring and let *S* be a m.c. subset of *R*. Let *M* be a module over *R*. If *M* satisfies *S*-strong *accr*^{*}, then it is not hard to show that for any submodule *N* of *M*, both *N* and $\frac{M}{N}$ satisfy *S*-strong *accr*^{*}. We verify in Lemma 3.2 that if both *N* and $\frac{M}{N}$ satisfy *S*-strong *accr*^{*}, then *M* satisfies *S*-strong *accr*^{*}.

Lemma 3.2. Let S be a m.c. subset of a ring R. Let M be a module over R and let N be a submodule of M. If both N and $\frac{M}{N}$ satisfy S-strong accr^{*}, then M satisfies S-strong accr^{*}.

Proof. Let *L* be a submodule of *M* and let $\langle r_n \rangle$ be a sequence of elements of *R*. We verify that the ascending sequence $(L :_M r_1) \subseteq (L :_M r_1r_2) \subseteq (L :_M r_1r_2r_3) \subseteq \cdots$ of *M* is *S*-stationary. Since $\frac{M}{N}$ satisfies *S*-strong *accr*^{*}, there exist $s \in S$ and $k_1 \in \mathbb{N}$ such that for all $n \ge k_1$, $s(\frac{L+N}{N} :_M r_1 \cdots r_n) \subseteq (\frac{L+N}{N} :_M r_1 \cdots r_n)$. This implies that $s(L+N :_M r_1 \cdots r_n) \subseteq (L+N :_M r_1 \cdots r_{k_1})$ for all $n \ge k_1$. As *N* satisfies *S*-strong *accr*^{*}, it follows that the ascending sequence of submodules $(N \cap L :_N r_{k_1+1}) \subseteq (N \cap L :_N r_{k_1+1}r_{k_1+2}r_{k_1+3}) \subseteq \cdots$ of *N* is *S*-stationary. Hence, there exist $s' \in S$ and $k_2 \in \mathbb{N}$ such that for all $j \ge 1$, $s'(N \cap L :_N r_{k_1+1} \cdots r_{k_1+k_2}) \subseteq (N \cap L :_N r_{k_1+1}r_{k_1+2}r_{k_1+3}) \subseteq \cdots$ of *N* is *S*-stationary. Hence, there exist $s' \in S$ and $k_2 \in \mathbb{N}$ such that for all $j \ge 1$, $s'(N \cap L :_N r_{k_1+1} \cdots r_{k_1+k_2+j}) \subseteq (N \cap L :_N r_{k_1+1} \cdots r_{k_1+k_2})$. We verify that $ss'(L :_M r_1r_2 \cdots r_n) \subseteq (L :_M r_1r_2 \cdots r_{k_1+k_2})$ for all $n \ge k_1 + k_2$. Let $n \ge k_1 + k_2$. Then $n = k_1 + k_2 + j$ for some $j \ge 0$. Let $m \in (L :_M r_1r_2 \cdots r_n)$. Now, $r_1r_2 \cdots r_nm \in L \subseteq L + N$. Hence, $sr_1 \cdots r_{k_1}m \in L + N$. This implies that $sr_1 \cdots r_{k_1}m = y + z$ for some $y \in L$ and $z \in N \cap L$. So, $s'r_{k_1+1} \cdots r_{k_1+k_2}z \in L \cap N$. Therefore, $ss'r_1r_2 \cdots r_{k_1+k_2}m = s'r_{k_1+1} \cdots r_{k_1+k_2}y + s'r_{k_1+1} \cdots r_{k_1+k_2}z \in L \cap N$. Therefore, $ss'r_1r_2 \cdots r_{k_1+k_2}m = s'r_{k_1+1} \cdots r_{k_1+k_2}y + s'r_{k_1+1} \cdots r_{k_1+k_2}z \in L \cap N$. Therefore, $ss'r_1r_2 \cdots r_{k_1+k_2}m = s'r_{k_1+1} \cdots r_{k_1+k_2}y + s'r_{k_1+1} \cdots r_{k_1+k_2}z \in L \cap N$. Therefore, $ss'r_1r_2 \cdots r_{k_1+k_2}m = s'r_{k_1+1} \cdots r_{k_1+k_2}y + s'r_{k_1+1} \cdots r_{k_1+k_2}z \in L \cap N$. Therefore, $ss'r_1r_2 \cdots r_{k_1+k_2}m = s'r_{k_1+1} \cdots r_{k_1+k_2}y + s'r_{k_1+1} \cdots r_{k_1+k_2}y$. Therefore, *M* satisfies *S*-strong *accr*^{*}. \Box

Let S be a m.c. subset of a ring R. As an application of Lemma 3.2, we verify in Remark 3.3 that if R satisfies S-strong $accr^*$, then M satisfies S-strong $accr^*$ for any f.g. R-module M.

Remark 3.3. Let S be a m.c. subset of a ring R. If $(0) \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow (0)$ is a short exact sequence of R-modules, then using standard arguments, it follows from Remark 3.1 and Lemma 3.2 that M satisfies S-strong $accr^*$ if and only if both M' and M'' satisfy S-strong $accr^*$. If R satisfies S-strong $accr^*$, then for any $n \ge 1$, the free R-module R^n satisfies S-strong $accr^*$. If M is a f.g. module over a ring R, then M is a homomorphic image of a f.g. free R-module F. Thus if R satisfies S-strong $accr^*$, then M satisfies S-strong $accr^*$.

Let *R* be an integral domain with $\dim R > 0$. It was shown in [11, Result 12] that if a free *R*-module *F* satisfies $accr^*$, then *F* is f.g. As a consequence of this result and Remark 3.3, we prove in Proposition 3.4 that a free *R*-module *F* satisfies *S*-strong $accr^*$ if and only if *F* is f.g., where *S* is a m.c. subset of an integral domain *R* such that *R* satisfies *S*-strong $accr^*$ and $S^{-1}R$ is not a field.

Proposition 3.4. Let R be an integral domain. Let S be a m.c. subset of R such that $S^{-1}R$ is not a field. Suppose that R satisfies S-strong accr^{*}. Let F be a free R-module. Then the following statements are equivalent:

(i) F satisfies S-strong accr^{*}.

(ii) F satisfies S- accr^{*}.

(*iii*) F is finitely generated.

Proof. (*i*) \Rightarrow (*ii*) This follows immediately from the fact that if a module *M* over a ring *R* satisfies *S*-strong *accr*^{*}, then *M* satisfies *S*-*accr*^{*}.

 $(ii) \Rightarrow (iii)$ Let $\{e_{\alpha}\}_{\alpha \in \Lambda}$ be a basis of F as a free R-module. Then $S^{-1}F$ is a free $S^{-1}R$ -module with basis $\{\frac{e_{\alpha}}{1}\}_{\alpha \in \Lambda}$. We are assuming that F satisfies S-accr^{*}. It can be shown as in Lemma 2.4 that the $S^{-1}R$ -module $S^{-1}F$ satisfies $accr^*$. Since $S^{-1}R$ is not a field by assumption, we obtain from [11, Result 12] that Λ is a finite set. Therefore, it follows that F is finitely generated.

 $(iii) \Rightarrow (i)$ By hypothesis, *R* satisfies *S*-strong *accr*^{*}. Since *F* is a f.g. module over *R*, we obtain from Remark 3.3 that *F* satisfies *S*-strong *accr*^{*}.

We provide Example 3.5 to illustrate that the hypothesis F is a free module cannot be omitted in Proposition 3.4.

Example 3.5. Let *p* be a prime number and $R = \mathbb{Z}_{p\mathbb{Z}}$. It is well-known that *R* is a rank one discrete valuation domain with $\mathfrak{m} = pR$ as its unique maximal ideal. For each $n \in \mathbb{N}$, let M_n be the *R*-module given by $M_n = \frac{R}{\mathfrak{m}}$. Let $M = \bigoplus_{n \in \mathbb{N}} M_n$. Then *M* satisfies strong *accr*^{*}.

Proof. Since *R* is Noetherian, *R* satisfies *S*-strong *accr*^{*} for any m.c. subset *S* of *R*. Let S = 1 + m. Then *S* is a m.c. subset of *R* and as $S \subseteq U(R)$, we obtain that $S^{-1}R = R$. As m*M* is the zero submodule of *M*, *M* can be made into a module over $\frac{R}{m}$ by defining (r + m)x = rx for any $r + m \in \frac{R}{m}$ and for any $x \in M$. Observe that a nonempty subset *N* of *M* is an *R*-submodule of *M* if and only if *N* is an $\frac{R}{m}$ -submodule of *M*. As *M* is a vector space over the field $\frac{R}{m}$, we know from Lemma 2.2 that *M* regarded as a module over $\frac{R}{m}$ satisfies strong *accr*^{*} and so, *M* satisfies strong *accr*^{*} as a module over *R*. Hence, *M* satisfies *S*-strong *accr*^{*}. But *M* is not a f.g. module over *R*.

Theorem 3.6. Let *S* be a countable m.c. subset of a ring *R*. Then the following statements are equivalent:

(i) R[X] satisfies S-strong accr^{*}.

(*ii*) R[X] satisfies S-accr^{*} and for any ideal A of R[X], $Sat_S(A) = (A :_{R[X]} s)$ for some $s \in S$.

(*iii*) *R*[*X*] *is S-Noetherian*.

Proof. (*i*) \Rightarrow (*ii*) As R[X] satisfies *S*-strong *accr*^{*}, it is clear that R[X] satisfies *S*-accr^{*}. Since *S* is a countable m.c. subset of *R* and R[X] satisfies *S*-strong *accr*^{*}, it follows from (*i*) \Rightarrow (*ii*) of Theorem 2.7 that if *A* is any ideal of R[X], then $Sat_S(A) = (A :_{R[X]} s)$ for some $s \in S$.

 $(ii) \Rightarrow (iii)$ As R[X] satisfies S-accr^{*}, it follows as in Lemma 2.4 that $S^{-1}(R[X])$ satisfies accr^{*}. Observe that $S^{-1}(R[X]) = (S^{-1}R)[X]$ is the polynomial ring in one variable over $S^{-1}R$. Hence, we obtain from [8, Theorem 2] that $S^{-1}R$ is Noetherian. Therefore, it follows from Hilbert Basis Theorem [4, Theorem 7.5] that $(S^{-1}R)[X] = S^{-1}(R[X])$ is Noetherian. Thus $S^{-1}(R[X])$ is Noetherian and for any ideal A of R[X], there exists $s \in S$ such that $Sat_S(A) = (A :_{R[X]} s)$. Hence, we obtain from [2, Proposition 2(f)] that R[X] is S-Noetherian.

 $(iii) \Rightarrow (i)$ Since R[X] is S-Noetherian, any ascending sequence of ideals of R[X] is S-stationary and so, R[X] satisfies S-strong accr^{*}. \Box

ACKNOWLEDGMENTS

We are very much thankful to the referee for very carefully reading this article and for many useful and valuable suggestions. We are very much thankful to Professor M.A. Al-Gwaiz and Professor Yousef Alkhamees for their support.

REFERENCES

- H. Ahmed, H. Sana, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra 44 (2016) 1941–1951.
- [2] D.D. Anderson, T. Dumitrescu, S-Noetherian Rings, Comm. Algebra 30 (9) (2002) 4407-4416.
- [3] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, in: Graduate Texts in Mathematics, Springer-Verlag, New York, 1974.
- [4] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.
- [5] D.E. Dobbs, Lying over pairs of commutative rings, Canad. J. Math. XXXIII (2) (1981) 454-475.
- [6] W. Heinzer, D. Lantz, Commutative rings with ACC on *n*-generated ideals, J. Algebra 80 (1983) 261–278.
- [7] C.P. Lu, Modules satisfying ACC on a certain type of colons, Pacific J. Math. 131 (2) (1988) 303–318.
- [8] C.P. Lu, Modules and rings satisfying (accr), Proc. Amer. Math. Soc. 117 (1) (1993) 5-10.
- [9] G. Renault, Sur des conditions de chaines ascendantes dans des modules libres, J. Algebra 47 (1977) 268–275.
- [10] S. Visweswaran, ACCR Pairs, J. Pure Appl. Algebra 81 (1992) 313-334.
- [11] S. Visweswaran, Some results on modules satisfying ACCR, J. Ramanujan Math. Soc. 10 (1) (1995) 79–91.
- [12] S. Visweswaran, Some results on modules satisfying (C), J. Ramanujan Math. Soc. 11 (2) (1996) 161–174.