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Some results and examples of the biharmonic maps with potential
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Abstract. In this paper, we will study the class of biharmonic maps with potential, in the
particular case represented by conformal maps between equidimensional manifolds. Some
examples are constructed in particular cases (Euclidean space and sphere).

Keywords: Harmonic map with potential; Biharmonic map with potential; Conformal maps

Mathematics Subject Classification: 31B30; 53C25; S8E20; S8E30

1. INTRODUCTION

The notion of harmonic maps with potential was first suggested by A. Ratto and A.
Fardoun (see [5] and [9]). Let (M™, g) and (N", h) be Riemannian manifolds, H a smooth
function on N, and let ¢ : M — N be a smooth map. We consider the following energy
functional

EH(¢)=/ (e (@) — H (¢)) dvy ey
K
for any compact subset K C M. The Euler-Lagrange equation of Ey(¢) is

h(p) = 1(§) + (grad" H) o =0, 2
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where 1(¢) = Tr,Vde¢ is the tension field of ¢. The smooth solutions of (2) will be
called harmonic maps with potential H. One can refer to [3], [5] and [9] for background on
harmonic maps with potential. In [4], the authors calculate the second variation for harmonic
maps with potential and they introduce the notion of biharmonic maps with potential. In
this paper, we will recalculate the second variation of the H-energy and the first variation
of the H-bi-energy (Theorems 1 and 2). As the second result we give the relation between
2.5 (¢) and 12 (¢p) (Theorem 3) where we study the case of the identity map (Corollary 2
and Theorem 2) and we construct some examples of biharmonic with a potential. Finally, we
study the particular of the conformal maps between equidimensional manifolds (Theorems 5
and 6).

2. THE SECOND VARIATION OF THE H-ENERGY FUNCTIONAL

Let¢ : (M™, g) — (N", h) be a harmonic map with potential H between Riemannian
manifolds. By a two parameter variation we mean a smooth map & : M X (—e€,€) x
(—€,€) —> N defined by @ (x,?,5) = ¢ (x), such that ¢p o = ¢. Its variation vector
fields are the vector fields v, w along ¢ defined by

3,
ot t=s=0
and
g,
ds t=s=0'

Now suppose that M is compact and let V¢ denote the pull-back connection on ¢~!T N. By
the Leibniz rule,

2 ¢ o ¢
(V"’)X,yv = VyVyv — Vv’)‘{Yv
forany X,Y e '(TM)andv e I' (qﬁ’lTN) . On taking the trace we obtain
Trg(V¢)2v = Vf VZ’iv — V¢M v,

i Vel- e;

where {e;},<;<, is an orthonormal frame on M and where we sum over repeated indices.
Under the notation above we have the following :

Theorem 1 (The Second Variation Formula). Let ¢ : (M", g) — (N", h) be a harmonic map
with potential H and suppose that M is compact, we have

82
= n(J% ), w)dv,, 3
o . /M (78 @), w) dv, 3)

where J§) (v) € I' (¢~'T'N) is given by

En (¢1.5)

T8 () = =Tr(V9) v — TreRY (v, dg) dd — (VY grad" H) o . )

Proof of Theorem 1. Let & : M x (—€,¢) X (—€,€) —> N, (x,t,5) —> D (x,t,5) =
&5 (x) be a smooth variation of ¢ with variation vector fields v and w. Let V? denote the
pull-back connection on $~!T N, a vector bundle over M x (—e¢, €) x (—¢, €). Note that

0 ol 0 0
_,X == —,X = —_—, :0
i) =[] = [ o)
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for any vector field X on M considered as a vector field on M x (—¢, €) x (—¢, €). By Eq. (1),
we have

92 92
E s)=[] — s) — H (¢r5)) dvg. 5
g En 0) = [ 5o (e 60 = H (8.0) do ®
We evaluate this at (¢, s) = (0, 0). Calculating in a normal frame at x € M, we obtain
92 1 92
— ) == h(d®(e),dd (e
3105 ¢ (P) = 35,5, @2 () d @ (e)
2 (v%qﬁ(@) d@(e))
8[ % i) i ’
then
82
e (grs) =h (VEVEAD (). dD () +h (VEdD (), VEdD(e).  (©
atas a  Bs s 3s

For the first term A <Vf’ Vido(e),dd (ei)) of (6), we have

at as

3
h (vﬁvﬁd@ (e,-),d@(e,)) =h (v%vfd@ <£> ,dd (ei)>

at as at

_h (va%d@ <3) 4P (e,»>>
T as
+h (RN (d@ (3> ,do (e,-)> do (i) ,d@(e,)) )
ot as

,d¢(~)>-

Define a 1-form on M by

a()=nh (v%’dqs (3)
kn as

Then

3
diva = h (va%dqs (-)
T as

it follows that

t=5s=0

,do (e,-)> +h (v%d@ (3>
t=s=0 ar ds

— dive s 0(2
= diva — h (Vaatdép (8s> z:s:O’ T (¢>)> )
+h (RN (v.do () w,d¢ (e)) .

,T (¢>)> ,
t=5s=0

h (Vévﬁdé (e,-),d@(e,))

as

For the second term h (Vfd@ (ei), Vﬁd ¢ (ei)> of (6), we have

as as

) )
h (v%d@(ei) , v%dqﬁ(ei)) =h (vj?d@ (—) ,V2do (-))
3s a5 ! as i K
) > )
= €; h d@ - ’Ve-d@ —_—
as i as
3 9
—h(do|—).,vivZdo | —)).
( <8s> Ve Ve (as))
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Define a 1-formon M by S (-) = h (w Vf”v). By calculating the divergence of 8, we obtain
h(v4do e, vhdo )

as as

= divg —h (w, V4 V40),

t=5s=0
which gives us
82

3795 ¢ (¢1.5)

=~ (V480 w) — h (R (v, d¢ (€)) dg (e)  w)

)T (¢)> .
t=s=0

t=5s=0

®)

9

+ dive + divB — h (v%d@ (-)
ar as

Finally, a simple calculation gives

9 @ 9 N
5705 L =h (Vag,td@ <£> ,:3:0’ (grad H) o qb)
+h((V£VgradNH) oqb,w). ()

By replacing Eqgs. (8) and (9) in (5) and using the divergence theorem, we obtain

& =/Mh<]2(v),w>dvg,

0tds —s—0

where JZ (w)yer (¢’1TN) is given by

H (1)

Ey (¢1.5)

T8 () = —Tr(V9) v — TreRY (v, dg) ddp — (VY grad" H) o .

3. BIHARMONIC MAPS WITH POTENTIAL

Consider a smooth map ¢ : (M™, g) — (N", h) between Riemannian manifolds and let H
be a smooth function on N. A natural generalization of harmonic maps with potential is given
by integrating the square of the norm of t5(¢). More precisely, the H-bi-energy functional
of ¢ is defined by

Exn(¢) = /K Ity (¢)1*dvg (10)

for any compact subset K C M.

Definition 1. The map ¢ is said to be biharmonic with potential H if it is a critical point of
the H-bi-energy functional E; g(¢).

3.1. The first variation of the H-bi-energy functional

Theorem 2. Let ¢ : (M™, g) —> (N", h) be a smooth map between Riemannian manifolds
and H a smooth function on N, K a compact subset of M and let {¢;},c;, | = (—€,€) be a
smooth variation of ¢ with compact support in K. Then

d E
7 B (1)

where V denotes the variation vector field of {¢:},c; and

D (@) = —Trg(V0) ti (@) — TreRY (i1 (§) . d§) dp — (VY gradH) o .

_ _f h (tam (). V) v, (11)
t=0 K
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Proof of Theorem 2. Let {¢;},c;, I = (—¢€,€), be a smooth variation of ¢, i.e. a smooth
map @ : I x M — N, satisfying

O, x)=¢,(x),Y(t,x) el xM
D0, x)=¢p(x) =¢ (x),Vx € M.

The variation vector field V € I' ((]5’1 TN ) associated to the variation {¢,},.; is given by

d 0
\%4 = — =d®o | — ) €Ty yN,Vx € M.
(x) o t:()d)t (x) 0.x) <8t> B(x) X

We have

d

G @) = [ 0 (V@)1 @) du. (12

dt K ot
Let now {e;}72, be a local orthonormal frame field geodesic at x € K, i.e. {¢;}/_, is a local
orthonormal frame field with (Ve /)x = 0,Vi,j = 1,...,m. With respect to {e;}]_; we
have

v Tu (¢) = V' VEde: (e) + V', (gradH) o ¢,.
ot at at

For a given Z € I' (T M), since [% Z] =0, we get

v® d¢, (2) = vide (3)+d¢ ( 95 )=v¢d¢ <3>
A 57\ ot “\| oz’ 5%\ ot )

By definition of the curvature tensor of (N, /), we obtain
v”;% Vede, (er) =V v‘; dd, (e;) + RV (d¢> (%) s (e») déy (e;) .
by the compatibility of V¢ with i, we have
h (vz’: AR (¢,)> =e (h (vd’ dey (e1) . TH (@)))
—h (v"’ dey (er) . V2 ty (¢,>) .

Note that

a
h (v";a dg: (e1), Vi tu (¢,)> —e (h <d¢>, <5) Vet W))

o (d¢, (%) VOV (@))

a
h (Vq:a (gradH) o ¢;, 1y (¢t)> =h <<V‘fH(¢I)gradH) o¢y,do (5)) .

Then, by using the symmetries of the Riemann—Christoffel tensor and the Divergence
Theorem, we deduce that

- —/ h (v @) V) dvg.
t=0 K

and

d E
7 B (¢1)

where

it (@) = —Try(V) 't (¢) — TroRY (v () . dd) ddp — (VY grad H) o .




Some results and examples of the biharmonic maps with potential 187

Theorem 3. Let ¢ : (M™, g) —> (N, h) be a smooth map between Riemannian manifolds
and H a smooth function on N. Then ¢ is biharmonic with potential if and only if

i (@) = —Tro(V9) 1y (¢) — TroRY (zu (), dp) d
— (V',VH(¢)gradH) o¢p =0. (13)

If we consider ¢ : (M™, g) —> (N", h) be a smooth map between Riemannian manifolds
and let H € C* (N) be a smooth function, the relation between 7, g (¢) and 7, (¢) is given
by the following remark.

Remark 1. Let ¢ : (M™, g) —> (N", h) be a smooth map between Riemannian manifolds
and H a smooth function on N. Then

Tu (§) = 12 (9) — Jy (gradH) o ¢) — (Ve (gradH)) o ¢
~ (Vigraamep (gradH)) o , (14)
where
Js ((gradH) o ¢) = Trg(V¢)2 ((gradH) o ¢) + TryR" ((gradH) o ¢, d¢) d¢
=V V¢ (gradH) o ¢) — v@%ei (gradH) o ¢)
+ RY ((gradH) o ¢, d¢ (¢,)) d¢ (e;) ,

where we sum over repeated indices.

In the case where ¢ is a harmonic map, we obtain the following corollary.

Corollary 1. Let ¢ : (M™, g) —> (N", h) be a harmonic map and let H € C*® (N) be a
smooth function on N. Then ¢ is biharmonic with potential H if and only if

Jy ((gradH) o ¢) + (V(grady)o¢ (gradH)) o =0.
We apply this remark to construct some examples of biharmonic maps with potential.
Example 1. Let the projection ¢ : (R*, gg+) —> (R?, gps) defined by ¢ (7, x2, x3, x4) =

(t, x2, x3). Suppose that the function « = H o ¢ depends only on ¢, then by Corollary 1, the
projection ¢ is biharmonic with potential H if and only if

a”" +a'a” =0.
Let 8 = o/, then the last expression becomes
B" + BB = 0.
A particular solution is given by of the form § = H_ik (k € R) which gives us

a () =(Ho¢) () =2In[Cit + (5|, (Cy, C; € R).

In this case the projection ¢ is biharmonic with potential H, where (H o ¢) (t) =
2In|Cit + C;|.
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In particular, if we consider the identity map, we obtain the following result.

Corollary 2. The identity map Idy : (M™, g) —> (M™, g) is biharmonic with potential H
if and only if

grad AH + %grad (IgradH|*) + 2Ricci™ (grad H) = 0. 15)
Proof of Corollary 2. By Corollary 1, the identity map Idy : (M™,g) — (M™, g) is
biharmonic with potential H if and only if

Jray (gradH) + VergangradH = 0.

For the term J;4,, (grad H), by definition we have

J1ay (gradH) = TryV?grad H + Ricci (gradH) .
It is known that (see [6])

TrgVZgradH = grad AH + Ricci (gradH) ,
then

Jiay, (gradH) = grad AH + 2Ricci (gradH) .

Finally, it is easy to see that
VeraangradH = %grad (|gradH|2) .

We deduce that the identity map Idy : (M™, g) —> (M™, g) is biharmonic with potential
H if and only if the function H satisfies the following equation

1
grad AH + Egrad (Igradle) +2Ricci™ (gradH) = 0.

In the following we shall present an example of biharmonic with potential.

Example 2. We consider the identity map /d : R™ — R™ when we suppose that
H is radial (H = H (r),r = |x|). An orthonormal basis of R™ is given by ¢; = ;_r and
e =1(0,...,0,1,0,...,0) fori =2,...,m. We have (see [7])

m

—1) 0
E Veiei:_(m )—
i=2

r or’
A =n+ " Dy
and
—1 —1 9
grad (AH) = (074 "= Dy =Dy 9
r? or

Then by Corollary 2, we deduce that the identity map Id is biharmonic with potential if and
only if the function H satisfies the following differential equation
" m— 1 ” m — 1 ’ r oy
H™ + H ———H +HH =0.
r r
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Let 8 = H’, this equation becomes

, m—1_- m-1 ,
B+ B — "B+ BB =0.
Looking for particular solutions of type 8 =  (a € R¥), then /d is biharmonic with potential
if and only if a = 4 — 2m. We obtain H (r) = In (Cr4’2’”) (C > 0) and in this case the

identity map Id : R" —> R™ is proper biharmonic with potential H (r) = In(Cr*—>")
(C > 0).

Example 3. We consider M = S" with parameterization

x = (coss,sins - y),s € [0, 7],y e S

An orthonormal basis of S” is given by

d
e1=—,¢,=00,f),i=2,...,n
as

where the vectors f; are tangents to the sphere S"~!. We suppose that H = H (s). A direct
calculation gives

ad
gradH = H' —,

as
|gradH|* = (H’)z,

a
grad (IgradH|2) = 2H’H”8—,

s
AH =H" + (n — 1) (cots) H',

grad AH = (H" + (n — 1) (cots) H' — (n — 1) (1 + cot’s) H') aa_s

and
.oo.en ’ 0
Ricci® (gradH)=mn—1)H 35"
s

Then by Corollary 1, we deduce that the map /ds» is biharmonic with potential H if and only
if the function 8 = H' satisfies the following differential equation

B" + (n— 1) (cots) '+ (n — 1) (1 — cot’s) B + BB’ = 0.

For example, if n = 1 the map /d: is biharmonic with potential H if and only if
B+ BB =0.

A particular solution is given by of the form g = ﬁ (k € R) which gives us
H(s) =2In|Cis + C2|, (C1, C; € R).

In this case Idg: is biharmonic with potential H, where H (s) = 2In|C;s + C3|.

3.2. The case of conformal maps

We study conformal maps between equidimensional manifolds of the same dimension
n > 3. Note that by a result in [2], any such map can have no critical points and so is a
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local conformal diffeomorphism. Recall that a mapping ¢ : (M", g) — (N", h) is called
conformal if there exists a C* function A : M — R such that forany X, Y € I'(TM):

h(d¢(X). dp(Y)) = A2g(X, Y).
The function X is called the dilation for the map ¢. The tension field for the map ¢ is given
by (see [1]):

7(¢p) = 2 — n)dgp(gradIn ).

Note that the conformal map ¢ : (M", g) — (N", h) of dilation A is harmonic if and only if
n = 2 or the dilation A is constant. The bi-tension field of the conformal map is given by the
following theorem (see [8])

Theorem 4 ([8]). Let ¢ : (M",g) — (N", h), (n > 3) be a conformal map of dilation A,
then for any function y € C* (M), we have
2
Tr(V?) de (grady) = d¢ (grad Ay) + 4d¢ (Veraamsgrady)
+ do¢ (RicciM (grady))

+ (Alni)d¢ (grady) — 2 (Ay)de¢ (gradn i) (16)
— (n—2)dIni (grady)de¢ (gradIni),
TroRY (d¢ (grady).dp)d¢p = dp (Ricci™ (grady))
— (n—2)d¢ (VgraaygradIn i) an

— (Alnx+ (n —2) |grad InA*) d¢ (grady)
4+ (n—=2)dInk (grady)d¢ (gradln i)
and the bi-tension field of ¢ is given by
n(p) = (n—2)d¢ (Th)

where

-6
T, = gradAln ) — (n —6)

grad (|grad ln)»|2) + 2Ricci™ (gradln})
— (2(Alnx) + (n — 2) |grad InA|*) grad In i.

In the first, we calculate 7, g (¢) for a conformal map ¢.

Theorem 5. Let ¢ : (M", g) — (N", h), (n > 3) be a conformal map of dilation X, then
T2, u (@) is given by :
1 1
ou (9) = (n—2)d¢ (A) — ﬁd¢> (B) — Fdd) ),

where
(n—6)

A=gradAlni — grad (|grad lnklz) +2Ricci™ (gradIn))

— (2(Alnx) + (n —2) |grad InA|*) grad In A,

B=gradA(Ho¢)—2(Aln))grad (Ho¢) —2(A(H o ¢)) gradlni
— (0 = 2) VgraaHopy@rad Ink — (n — 2) Vgrgqmrgrad (H o @)
+2Ricci™ (grad (H o ¢))
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and
1
—|grad (H o ¢>)|2grad InA + —grad (Igrad (Ho ¢)|2) .

As a consequence to Theorem 5, we have the following result :

Corollary 3. Let ¢ : (M", g) — (N", h), (n > 3) be a conformal map of dilation ). = 1,
then ¢ is biharmonic with potential if and only if

1
gradA(H o ¢) + Egrad (|grad (H o ¢)|2) +2Ricci™ (grad (H o ¢)) = 0.
In particular if ¢ = Idy, we obtain Eq. (15) of Corollary 2.

To prove Theorem 5, we need two lemmas. In the first lemma, we give a simple formula
of the term Trg(V“’)2 (gradH) o ¢ for a conformal map ¢ : (M", g) — (N", h) (n > 3) of
dilation A and for any function H € C*° (N).

Lemma 1. Let ¢ : (M", g) — (N", h) (n > 3) be a conformal map of dilation A, then for
any function H € C* (N), we have

1
Tro(V?)’ (gradH) o ¢ = ¢ (Th),

where
Ty, =gradA(Ho¢) — (AlnA) grad (H o) — 2 (A (H o ¢)) gradIn A
— (n—2)dIni(grad (H o ¢)) gradIn i + Ricci™ (grad (H o ¢)) .

Proof of Lemma 1. Let (¢;);<;<, be an orthonormal frame on M, by definition, we have
Try(V?) (gradH) o = V¢ V? (gradH) o ¢ — VY, , (gradH) o ¢.

(Here henceforth we sum over repeated indices.) It is easy to see that

1
(gradH) o ¢ = —=dp (grad (H o)),

which gives us
Tro(V?)’ (gradH) o ¢ = Tr, (v¢)2id¢ (grad (H o ¢))

=viv? ﬁd¢> (grad (H o ¢)) (18)

- Vve d¢ (grad (H o ¢)).

€j )\‘2
We have

1 1
Ve ﬁd¢ (grad (H o ¢)) = ZV‘Z,’id¢ (grad (H o ¢)) +e; (ﬁ> d¢ (grad (H o ¢))

1
= 5Vid¢ (grad (H o $)

2
~ 2 (nr)d¢ (grad (H o ¢)),
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then

V4V4 3do (grad (H o 9) = VY, (A—ngdd) (grad (H o ¢>)>
vt <éei (In%) do (grad (H o ¢)>>
1 RV
= EVeiveidq& (grad (H o ¢))
1
+ e <ﬁ> Vi de¢ (grad (H o ¢))
2
— 3¢ (In2) V¢ d¢ (grad (H o ¢))
2
~ 2t (e; (In1)) d¢p (grad (H o ¢))
2
— ¢ <ﬁ) e; (InA)d¢ (grad (H o ¢))
Lp——
= ﬁvei Ve d¢ (grad (H o ¢))
- %ei (In1) V¢ d¢ (grad (H o ¢))
2
v (e; (InX)) dep (grad (H o ¢))
+ %ei (InX)e; InA)d¢ (grad (H o ¢)) .

It follows that

veve iahp (grad (H o ¢)) = ivg’i V¢ d¢ (grad (H o $))

¢ )LZ )LZ
4 o
_ ﬁvgmdlnkdqﬁ (grad (H o ¢))
5 (19)
~ 2¢ (e; (In2)) d¢ (grad (H o ¢))
+ %lgmd lnklqu& (grad (H o 9)).
For the term V‘ée_e[ ,\de¢ (grad (H o ¢)), we have
1 1
Ve 3% (grad (H 0 $)) = 5V5, d$ (grad (H o $))
1
+ Ve <ﬁ> d¢ (grad (H o ¢))
(20)

1
= ﬁv$9ieid¢ (grad (H o ¢))

— %Ve[e,- (InA)d¢ (grad (H o ¢)) .
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If we replace (19) and (20) in (18), we deduce that

1
Tro(V?)’ (gradH) o ¢ = ETrg(v¢>)2d¢> (grad (H o ¢))
4

- ﬁvﬁradlnkd(ﬁ (grad (H ° ¢)) (21)

-3 ((Alnk) —2|gradInr|*) d¢ (grad (H o ¢)).

For the term T'r, (V¢)2d¢ (grad (H o ¢)), we have by (16)

Tro(V?)’d (grad (H o $)) = d (grad A (H o $))
+ 4d¢ (Vgradlnkgrad (H o ¢))
— ((n—2)dInix (grad (H o ¢))

(22)
+2(A(H 0 ¢)))d¢ (gradIni)
+ (AlnA)de¢ (grad (H o ¢))
+ d¢ (Ricci™ (grad (H o ¢))).
For the last term V?mdlnldq) (grad (H o ¢)), it is known that (see [2])
Vﬁmdln,\d(p (grad (H o ¢)) = Vd¢ (gradln ), grad (H o ¢))
+ d¢ (Vgradln)ugrad (H o ¢)) (23)

= |grad In A|*d¢ (grad (H o ¢))
+ d¢ (Vgradln)ugrad (H o ¢)) .

Replacing (22) and (23) in (21), we conclude that
1 1
Try(V?)’ (gradH) o ¢ = 549 (grad A(H o)) = 5 (Alnk) do (grad (H o $))
- % ((n —2)dInx (grad (H o $))
+2(A(H o)) de (gradln i)
1
+ ﬁd¢> (Ricci™ (grad (H o $))).
Then
1
Tro(V?)’ (gradH) o ¢ = 54 (1)

where
T\ = grad A (H o ¢) — (Aln)) grad (H o ¢) + Ricci™ (grad (H o ¢))
— (mn—=2)dIni(grad (H o ¢)) +2(A(H o ¢))) grad Ini.

This completes the proof of Lemma 1. Now, in the second lemma, we prove other properties
for conformal maps.
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Lemma 2. Let ¢ : (M", g) — (N", h) (n > 3) be a conformal map of dilation A, then for
any function H € C*° (N) and for X € I' (T M), we have

(VapoxygradH) o ¢ = —%X (InA)d¢ (grad (H o ¢))
+ %d InA (grad (H o $)) dé (X) 24)
- A—tx (H o ¢)d¢ (gradn)) + %dq) (Vygrad (H o $))
and
(Varaanes (grad ) o § =~ lgrad (H o ) dg (gradIn 1)

1
+ 5349 (grad (Igrad (H o $)I%)). (25)

Proof of Lemma 2. For the term (quwo gradH ) o ¢, we have

(VapogradH) o p = V% (gradH o ¢)

1
= Vi3zd® (grad (H o 9))
1 1
= 3 Vidd (grad (H o ¢)) + X <ﬁ> do (grad (H o 9))
1 2
= ﬁvﬁd(/) (grad (H 0 $)) = =X (In2)d¢ (grad (H o ).

It is easy to see that (see [2])

Vﬁd(ﬁ (grad (H o ¢)) = Vdo (X, grad (H o ¢)) +d¢ (Vxgrad (H o ¢))
=X (nA)de¢ (grad (H o ¢)) +dIni (grad (H o ¢))de (X)

=—X(Ho¢)do (gradlni) + %d(ﬁ (Vxgrad (H o 9)).
Then
(Vd¢(x)gradH) o¢p = —A—12X (InA)d¢ (grad (H o ¢))
+ %d InA (grad (H o ¢))d¢ (X)
— %X (Ho@)dp (gradln)) + %dqb (Vxgrad (H o ¢)).
Now we will simplify the term (V(gqam)op (grad H)) o ¢, we have
(gradH) o ¢ = %M’ (grad (H o ¢)),
it follows that

1
(Vigraaop (gradH)) o ¢ = 2 (Vag(gradropy (gradH)) o ¢.
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If we replace X = grad (H o ¢) in (24), we obtain
(Vigraan (grad ) o § = —=zlgrad (H o p)dg (gradin2)
+ ﬁd(b (grad (Igrad (H o $)I%)).

Proof of Theorem 5. By definition, we have

Ton (@) = 12 (@) — Jp ((gradH) o ¢) — V(4 (gradH) o ¢
- (V(gradH)oqﬁ (gradH)) o (b (26)

We will study term by term the right-hand of this expression. For the first term 1, (¢), we
have by Theorem 4

(@) = (n —2)d¢ (T7) (27)
where

Ty = gradAlni —

-6
(n > )grad (|grad ln)\|2) + 2Ricci™ (gradln )

— (2 (Aln)) 4+ (n —2) |grad lnk|2) gradlnA.
Let us now simplify the term J, ((grad H) o ¢), we have by definition
Jy ((gradH) o ¢) = Trg(v¢)2 (gradH) o ¢ + TryRY ((gradH) o ¢, dp)d¢. (28)
Using Lemma 1, we obtain
1
Tro(V?)’ (gradH) o ¢ = 549 (T2) 29)
where
T, = grad A (H o ¢) — (Aln k) grad (H o ¢) + Ricci™ (grad (H o ¢))
— ((n—2)dInx(grad (H o ¢)) +2(A(H o ¢))) gradIn .

Since

(gradH) o ¢ = %dqﬁ (grad (H o ¢)),
it follows that
TreRN ((gradH) o ¢,d¢)d¢ = %TrgRN (d¢ (grad (H o ¢)),d¢) de.
Using Eq. (16), we get
TryR" (d¢ (grad (H o ¢)),d¢p)dp = d¢ (Ricci™ (grad (H o ¢)))
+ (n—2)dInA(grad (H o ¢))d¢ (gradIn i)
— (n—2)d¢ (Vg,ad(yo¢)grad In A)
— (Alnk +m—-2) |gradln)»|2)

X d¢ (grad (H o ¢)).
Then

1
TreRY (d¢ (grad (H o ¢)),d¢)dp = 349 (T3)
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where
T3 = Ricci (grad (Ho p))+ (n —2)dInk (grad (H o ¢)) gradIn X
— (n = 2) Vyraacropgradlnk — (Alnk + (n — 2) |grad In1|*) grad (H o ¢).

Finally, we conclude that

Jp (gradH) o ¢) = $d¢ (I + T3,
where
T+ T5 = grad A (H o ¢) — (2Alnk +(n—-2) |gradln)»|2) grad (H o ¢)
—2(A(Ho@))gradink — (n — 2) VgraaHop 87ad In k
+ 2Ricci™ (grad (H o ¢)) .
Now let us look at the last term V4 (grad H) o ¢, we have
T(p) =2 —n)do (gradlnli),
it follows that
(Ve (gradH)) o ¢ = (2 — n) (Vap(graainn) (gradH)) o ¢.
If we replace X = grad In A in (24), we obtain

1
(Vagx)gradH) o ¢ = —/\—2| gradIni|*d¢ (grad (H o ¢))

1
+ ﬁdd) (Veraamrgrad (H o §)) .

We conclude that

1
(Ve (gradH)) o = —d¢ (Ty),

22
where
Ty = (n —2) |grad InA|*grad (H o ¢) — (n — 2) Veradmrgrad (H o ¢).

To complete the proof, it remains to investigate the term (V(gmd Hyop (gradH )) o ¢, we have
by Lemma 2

1
(Vigraatnop (gradH)) o p = —glgrad (Ho ®)I’d¢ (gradIn i)

1
+ ——d¢ (grad (Igrad (H o $)|*)) .

224
then
1
(Vigraaryop (gradH)) o ¢ = Fdd) (Ts) ,
where

1
Ts = —|grad (H o ¢)|2grad Ink + Egrad (|grad (H o ¢)|2) .

Finally, we deduce that

1 1
.H () = (n—2)d¢ (A) — ﬁdqﬁ (B) — Fd(b ©),
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where

-6
A=gradAln\ — (n —©)

grad (|grad lnA|2) + 2RicciM (gradln))
— (2(AlnX) + (n —2) [grad InA|*) grad In A,
B =gradA(Ho¢)—2(Aln))grad (H o) —2(A(H o ¢)) gradlni
— (n = 2) Voraanop)§rad Inh — (n — 2) Vgraamagrad (H o )
+ 2Ricci™ (grad (H o ¢))
and
1
C = —|grad (H o ¢)*gradIn A + Egrad (Igrad (Ho ¢>)|2) .
An immediate consequence of Theorem 5 is given by the following theorem

Theorem 6. Let ¢ : (M", g) — (N", h), (n > 3) be a conformal map of dilation A. Then ¢
is biharmonic with potential if and only if

1 1
where
(” _6) 2 .M
A=gradAln) — > grad (|grad InA| ) 4+ 2Ricci™ (gradln))

— (2(AlnX) + (n —2) |grad InA|*) grad In A,

B =gradA(Ho¢)—2(Aln))grad (H o ¢) —2(A(H o ¢)) gradlni
— (n —=2) VgraaopgradInh — (n — 2) Vy,pgmargrad (H o @)
+ 2Ricci™ (grad (H o ¢))

and

1
C = —|grad (H o ¢)*gradInx + Egrad (Igrad (Ho ¢)|2) .
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