

Skew-signings of positive weighted digraphs

KAWTAR ATTAS, ABDERRAHIM BOUSSAÏRI^{*}, MOHAMED ZAIDI

Faculté des Sciences Aïn Chock, Département de Mathématiques et Informatique, Laboratoire de Topologie, Algèbre, Géométrie et Mathématiques discrètes, Km 8 route d'El Jadida, BP 5366 Maarif, Casablanca, Maroc

> Received 17 April 2017; revised 2 November 2017; accepted 17 January 2018 Available online 3 February 2018

Abstract. An *arc-weighted digraph* is a pair (D, ω) where *D* is a digraph and ω is an *arc-weight function* that assigns to each arc *uv* of *D* a nonzero real number $\omega(uv)$. Given an arc-weighted digraph (D, ω) with vertices v_1, \ldots, v_n , the *weighted adjacency matrix* of (D, ω) is defined as the $n \times n$ matrix $A(D, \omega) = [a_{ij}]$ where $a_{ij} = \omega(v_i v_j)$ if $v_i v_j$ is an arc of *D*, and 0 otherwise. Let (D, ω) be a positive arc-weighted digraph and assume that *D* is loopless and symmetric. A *skew-signing* of (D, ω) is an arc-weight function ω' such that $\omega'(uv) = \pm \omega(uv)$ and $\omega'(uv)\omega'(vu) < 0$ for every arc *uv* of *D*. In this paper, we give necessary and sufficient conditions under which the characteristic polynomial of $A(D, \omega')$ is the same for all skew-signings ω' of (D, ω) . Our main theorem generalizes a result of Cavers et al. (2012) about skew-adjacency matrices of graphs.

Keywords: Arc-weighted digraphs; Skew-signing of a digraph; Weighted adjacency matrix

Mathematics Subject Classification: 05C22; 05C31; 05C50

1. INTRODUCTION

A *directed graph* or, more simply, a *digraph* D is a pair D = (V, E) where V is a set of *vertices* and E is a set of ordered pairs of vertices called *arcs*. For $u, v \in V$, the arc a = (u, v)

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

https://doi.org/10.1016/j.ajmsc.2018.01.001

^{*} Corresponding author.

E-mail addresses: kawtar.attas@gmail.com (K. Attas), aboussairi@hotmail.com (A. Boussaïri), zaidi.fsac@gmail.com (M. Zaidi).

^{1319-5166 © 2018} The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

of *D* is denoted by *uv*. An arc of the form *uu* is called a *loop* of *D*. A *loopless digraph* is one containing no loops. A *symmetric* digraph is a digraph such that if *uv* is an arc then *vu* is also an arc. Given a symmetric digraph D = (V, E) and a subdigraph H = (W, F) of *D*, we denote by H^* the subdigraph of *D* whose vertex set is *W* and arc set is $\{vu : uv \in F\}$.

Let *G* be a simple undirected and finite graph. An *orientation* of *G* is an assignment of a direction to each edge of *G* so that we obtain a directed graph \overrightarrow{G} . Let \overrightarrow{G} be an orientation of *G*. With respect to a labeling v_1, \ldots, v_n of the vertices of *G*, the *skew-adjacency* matrix of \overrightarrow{G} is the $n \times n$ real skew-symmetric matrix $S(\overrightarrow{G}) = [s_{ij}]$, where $s_{ij} = 1$ and $s_{ji} = -1$ if $v_i v_j$ is an arc of \overrightarrow{G} , otherwise $s_{ij} = s_{ji} = 0$. The *skew-characteristic polynomial* of \overrightarrow{G} is defined as the characteristic polynomial of $S(\overrightarrow{G})$. This definition is correct because skew-adjacency matrices of \overrightarrow{G} with respect to different labelings are permutationally similar and so have the same characteristic polynomial.

There are several recent works about skew-characteristic polynomials of oriented graphs, one can see for example [1,3-6,10]. An open problem is to find the number of possible orientations with distinct skew-characteristic polynomials of a given graph *G*. In particular it is of interest to know whether all orientations of a graph *G* can have the same skew-characteristic polynomial. The following theorem, obtained by Cavers et al. [3] gives an answer to this question.

Theorem 1.1. The orientations of a graph G all have the same skew-characteristic polynomial if and only if G has no cycles of even length.

A similar result to this theorem was obtained by Liu and Zhang [7]. They proved that all orientations of a graph G have the same permanental polynomial if and only if G has no cycles of even length.

In this work, we will extend Theorem 1.1 to positive weighted loopless and symmetric digraphs (which we abbreviate to *pwls-digraphs*). An arc-weighted digraph or more simply a weighted digraph is a pair (D, ω) where D is a digraph and ω is a *arc-weight function* that assigns to each arc uv of D a nonzero real number $\omega(uv)$, called the weight of the arc uv. Let (D, ω) be a weighted digraph with vertices v_1, \ldots, v_n . The weighted adjacency matrix of (D, ω) is defined as the $n \times n$ matrix $A(D, \omega) = [a_{ij}]$ where $a_{ij} = \omega(v_i v_j)$, if $v_i v_j$ is an arc of D and 0 otherwise. Let (D, ω) be a pwls-digraph. A skew-signing of (D, ω) is an arc-weight function ω' such that $\omega'(uv) = \pm \omega'(uv)$ and $\omega'(uv)\omega'(vu) < 0$ for every arc uv of D.

Our aim is to characterize the pwls-digraphs (D, ω) for which the characteristic polynomial of $A(D, \omega')$ is the same for all skew-signings ω' of (D, ω) . This characterization involves directed cycles in D. Recall that a *directed cycle* of length t > 0 is a digraph with vertex set $\{v_1, v_2, \ldots, v_t\}$ and arcs $v_1v_2, \ldots, v_{t-1}v_t, v_tv_1$. Throughout this paper, we use the term "cycle" to refer to a "directed cycle" in a digraph. A cycle of length t = 2 is called a *digon*. A cycle is *odd* (resp. *even*) if its length is odd (resp. even). Our main result is the following theorem.

Theorem 1.2. Let (D, ω) be a pwls-digraph. Then the following statements are equivalent:

- (i) The characteristic polynomial of (D, ω') is the same for all skew-signings ω' of (D, ω) .
- (ii) *D* has no even cycles of length more than 2 and $A(D, \omega) = \Delta^{-1}S\Delta$ where *S* is a nonnegative symmetric matrix with zero diagonal and Δ is a diagonal matrix with positive diagonal entries.

Note that a graph G can be identified with the pwls-digraph obtained from G by replacing each edge joining two vertices u and v by the arcs uv and vu, both of them have weight 1. Moreover, every orientation of G can be identified with a skew-signing of this weighted digraph. Then, our main result is a generalization of Theorem 1.1.

2. CYCLE-SYMMETRIC DIGRAPHS

There is a natural correspondence between real matrices and weighted digraphs. Indeed, every $n \times n$ real matrix $M = [m_{ij}]$ is the weighted adjacency matrix of a unique weighted digraph (D_M, ω_M) with vertex set $\{1, \ldots, n\}$. This digraph, called the *weighted digraph associated* to M, is defined as follows: ij is an arc of D_M iff $m_{ij} \neq 0$, and the weight of an arc ij is $\omega_M(ij) = m_{ij}$.

We start with some formulas involving the characteristic polynomial of a matrix and its weighted associated digraph. For this, we need some notations and definitions. Let D be a digraph. A *linear subdigraph* L of D is a vertex disjoint union of some cycles in D. A linear subdigraph L of D is called *even linear* if L contains no odd cycles. Let $\overrightarrow{\mathcal{L}}_k(D)$ (resp. $\overrightarrow{\mathcal{L}}_k^e(D)$) denote the set of all linear (resp. even linear) subdigraphs of D that cover precisely k vertices of D. We usually write this as $\overrightarrow{\mathcal{L}}_k$ (resp. $\overrightarrow{\mathcal{L}}_k^e$) when no ambiguity can arise.

Let A be a real matrix and let (D, ω) be the weighted digraph associated to A. We denote by $p_A(x) = \det(xI - A) = x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n$ the characteristic polynomial of A. The Coates determinant formula (see [2] p. 65) can be stated as follows:

$$a_{k} = \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_{k}} (-1)^{\left|\overrightarrow{L}\right|} \omega(\overrightarrow{L})$$
(1)

where $|\vec{L}|$ denotes the number of cycles in \vec{L} and $\omega(\vec{L})$ is the product of all the weights of the arcs of \vec{L} .

In particular

$$\det(A) = (-1)^n a_n = (-1)^n \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_n} (-1)^{\left|\overrightarrow{L}\right|} \omega(\overrightarrow{L}).$$
⁽²⁾

We consider now the case where A is skew-symmetric. Let \overrightarrow{C} be a cycle of length k of D. Then

$$\omega(\overrightarrow{C}) = a_{i_1i_2}a_{i_2i_3}\dots a_{i_{k-1}i_k}a_{i_ki_1} = (-1)^k a_{i_1i_k}a_{i_ki_{k-1}}\dots a_{i_3i_2}a_{i_2i_1}$$
$$= (-1)^k \omega(\overrightarrow{C^*})$$
$$= \begin{cases} -\omega(\overrightarrow{C^*}) \text{ if } k \text{ is odd} \\ \omega(\overrightarrow{C^*}) \text{ if } k \text{ is even.} \end{cases}$$

Let $\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_k \setminus \overrightarrow{\mathcal{L}}_k^e$. By definition of $\overrightarrow{\mathcal{L}}_k$ and $\overrightarrow{\mathcal{L}}_k^e$, the linear subdigraph \overrightarrow{L} contains an odd cycle \overrightarrow{C} among its components. Let $\overrightarrow{L'}$ the linear subdigraph obtained from \overrightarrow{L} by replacing the cycle \overrightarrow{C} by $\overrightarrow{C^*}$. Since \overrightarrow{C} is odd, and then $\omega(\overrightarrow{C}) = -\omega(\overrightarrow{C^*}), \omega(\overrightarrow{L}) = -\omega(\overrightarrow{L'})$. Thus, linear subdigraphs of $\overrightarrow{\mathcal{L}}_k \setminus \overrightarrow{\mathcal{L}}_k^e$ contribute 0 to a_k .

It follows that

$$a_k = \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_k^e} (-1)^{\left| \overrightarrow{L} \right|} \omega(\overrightarrow{L}).$$

If *k* is odd, then $\overrightarrow{\mathcal{L}}_{k}^{e}$ is empty, and hence

$$a_{k} = \begin{cases} 0 \text{ if } k \text{ is odd} \\ \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_{k}^{e}} (-1)^{|\overrightarrow{L}|} \omega(\overrightarrow{L}) \text{ if } k \text{ is even.} \end{cases}$$
(3)

We introduce now a special class of weighted symmetric digraphs called cycle-symmetric digraphs. The characterization of these digraphs will be used in the proof of our main theorem.

Let ω be a positive arc-weight function of D and let q be a positive integer. We say that (D, ω) is $(\leq q)$ -cycle-symmetric if $\omega(\overrightarrow{C}) = \omega(\overrightarrow{C}^*)$ for every cycle \overrightarrow{C} of D of length at most q. If q = n then (D, ω) is said to be cycle-symmetric.

We borrowed the terminology "cycle-symmetric" from Shih and Weng [11]. Following this paper, an $n \times n$ real matrix $[a_{ij}]$ is called *cycle-symmetric* if the following two conditions hold:

(C1) for $i \neq j \in \{1, ..., n\}$, $a_{ij}a_{ji} > 0$ or $a_{ij} = a_{ji} = 0$;

(C2) For any sequence of distinct integers i_1, \ldots, i_k from the set $\{1, \ldots, n\}$, we have

 $a_{i_1i_2}a_{i_2i_3}\cdots a_{i_{k-1}i_k}a_{i_ki_1} = a_{i_1i_k}a_{i_ki_{k-1}}\cdots a_{i_3i_2}a_{i_2i_1}.$

Remark 1. Obviously, a pwls-digraph (D, ω) is always (≤ 2) -cycle-symmetric. Moreover, a pwls-digraph is cycle-symmetric if and only if its weighted adjacency matrix is cycle-symmetric.

The following theorem gives a characterization of cycle-symmetric matrices. For the proof, one can see [8,9,11].

Theorem 2.1. An $n \times n$ real matrix A is cycle-symmetric if and only if there exists an invertible diagonal matrix D such that $D^{-1}AD$ is symmetric.

It easy to see that if A is a nonnegative matrix, then the diagonal entries of D can be chosen positive. So by using Remark 1, we obtain the following corollary.

Corollary 2.2. Let (D, ω) be a pwls-digraph. Then, the following statements are equivalent:

- (i) (D, ω) is cycle-symmetric.
- (ii) $A(D, \omega) = \Delta^{-1}S\Delta$ where S is a nonnegative symmetric matrix with zero diagonal and Δ is a diagonal matrix with positive diagonal entries.

3. Skew-signings of cycle-symmetric digraphs

In this section, we will prove the following proposition, which is a special case of our main theorem for cycle-symmetric pwsl-digraphs.

Proposition 3.1. Let (D, ω) be a cycle-symmetric pwls-digraph. Then, the following statements are equivalent:

- (i) The characteristic polynomial of (D, ω') is the same for all skew-signings ω' of (D, ω) ;
- (ii) D contains no even cycles of length greater than 3.

We start with some preparatory results about skew-signings of pwls-digraphs. Let (D, ω) be an arbitrary pwls-digraph and let ω' be a skew-signing of (D, ω) . We consider the two arc-weight functions defined as follows: $\overline{\omega}(uv) = \sqrt{\omega(uv)\omega(vu)}$ and $\widehat{\omega'}(uv) = \frac{\omega'(uv)}{\omega(uv)}\sqrt{\omega(uv)\omega(vu)}$ for every arc uv of D. It is easy to check the following properties:

- **P1** The weighted adjacency matrix of $(D, \overline{\omega})$ is symmetric.
- **P2** $\widehat{\omega}'$ is a skew-signing of $(D, \overline{\omega})$ and the weighted adjacency matrix of $(D, \widehat{\omega}')$ is skew-symmetric.
- **P3** Let q be a positive integer such that $3 \le q \le n$. If (D, ω) is a $(\le q)$ -cycle-symmetric digraph, then for every cycle \vec{C} of D with length at most q we have $\omega(\vec{C}) = \overline{\omega}(\vec{C})$ and $\omega'(\vec{C}) = \widehat{\omega'}(\vec{C})$.

We denote by $p_{(D,\omega)}(x) := x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ the characteristic polynomial of (D, ω) . The characteristic polynomials of (D, ω') and $(D, \widehat{\omega'})$ are respectively denoted by $p_{(D,\omega')}(x) := x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n$ and $p_{(D,\widehat{\omega'})}(x) := x^n + c_1 x^{n-1} + \dots + c_{n-1} x + c_n$. From Formula (1), we have $b_1 = 0$ and $b_2 = -a_2$. In particular, b_1 and b_2 are independent

of ω' .

Lemma 3.2. Let q be a positive integer such that $3 \le q \le n$. If (D, ω) is $(\le q)$ -cycle-symmetric, then:

$$b_{k} = \begin{cases} 0 & \text{if } k \text{ is odd} \\ \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_{k}^{e}} (-1)^{\left|\overrightarrow{L}\right|} \omega'(\overrightarrow{L}) & \text{if } k \text{ is even} \end{cases}$$

for k = 1, ..., q.

Proof. Let $k \in \{1, ..., q\}$. From Property **P3**, we have $\omega'(\vec{L}) = \widehat{\omega'}(\vec{L})$ for every $\vec{L} \in \vec{\mathcal{L}}_k$. By using Formula (1), it follows that $b_k = c_k$. Moreover, from Property **P2**, $A(D, \widehat{\omega'})$ is a skew-symmetric matrix. Then by Formula (3) we have:

$$c_{k} = \begin{cases} 0 & \text{if } k \text{ is odd} \\ \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_{k}^{e}} (-1)^{\left|\overrightarrow{L}\right|} \widehat{\omega'}(\overrightarrow{L}) & \text{if } k \text{ is even.} \end{cases}$$

Now, by applying again **P3**, we obtain

$$b_k = c_k = \begin{cases} 0 & \text{if } k \text{ is odd} \\ \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_k^e} (-1)^{\left|\overrightarrow{L}\right|} \omega'(\overrightarrow{L}) & \text{if } k \text{ is even.} \quad \Box \end{cases}$$

We denote by \overrightarrow{C}_k the set of all cycles of length k in D. For a skew-signing ω' , this set can be partitioned into two subsets: $\overrightarrow{C}_{k,\omega'}^+$ and $\overrightarrow{C}_{k,\omega'}^-$ where $\overrightarrow{C}_{k,\omega'}^+$ (resp. $\overrightarrow{C}_{k,\omega'}^-$) is the set of

cycles \vec{C} with length k such that $\omega'(\vec{C}) > 0$ (resp. $\omega'(\vec{C}) < 0$). In the case when k is even, we denote by $\vec{\mathcal{D}}_k$ the set of all collections \vec{L} of vertex disjoint digons that cover precisely k vertices in D

Corollary 3.3. Assume that (D, ω) is $(\leq q-1)$ -cycle-symmetric for some $q \in \{4, \ldots, n+1\}$ and contains no even cycles of length $k \in \{3, ..., q-1\}$, then

$$b_{k} = \begin{cases} 0 & \text{if } k \text{ is odd} \\ \sum_{\vec{L} \in \vec{\mathcal{D}}_{k}} \omega(\vec{L}) & \text{if } k \text{ is even} \end{cases}$$

for $k = 1, \ldots, q - 1$ and if $q \leq n$, then

$$b_{q} = \begin{cases} -\sum_{\overrightarrow{C} \in \overrightarrow{C}^{+}_{q,\omega'}} \omega(\overrightarrow{C}) + \sum_{\overrightarrow{C} \in \overrightarrow{C}^{-}_{q,\omega'}} \omega(\overrightarrow{C}) & \text{if } q \text{ is odd} \\ -\sum_{\overrightarrow{C} \in \overrightarrow{C}^{+}_{q,\omega'}} \omega(\overrightarrow{C}) + \sum_{\overrightarrow{C} \in \overrightarrow{C}^{-}_{q,\omega'}} \omega(\overrightarrow{C}) + \sum_{\overrightarrow{L} \in \overrightarrow{D}_{q}} \omega(\overrightarrow{L}) \text{ if } q \text{ is even.} \end{cases}$$

Proof. The first equality follows from Lemma 3.2.

From Formula (1), we have

$$b_{q} = \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_{q}} (-1)^{\left|\overrightarrow{L}\right|} \omega'(\overrightarrow{L})$$

=
$$\sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_{q} \smallsetminus (\overrightarrow{\mathcal{L}}_{q}^{e} \cup \overrightarrow{\mathcal{C}}_{q})} (-1)^{\left|\overrightarrow{L}\right|} \omega'(\overrightarrow{L}) + \sum_{\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_{q}^{e} \land \overrightarrow{\mathcal{C}}_{q}} (-1)^{\left|\overrightarrow{L}\right|} \omega'(\overrightarrow{L}) - \sum_{\overrightarrow{C} \in \overrightarrow{\mathcal{C}}_{q}} \omega'(\overrightarrow{C}).$$

By definition of $\overrightarrow{C}_{q,\omega'}^+$ and $\overrightarrow{C}_{q,\omega'}^-$, we have

$$\sum_{\overrightarrow{C}\in\overrightarrow{C}_{q}}\omega'(\overrightarrow{C}) = \sum_{\overrightarrow{C}\in\overrightarrow{C}_{q,\omega'}^{+}}\omega(\overrightarrow{C}) - \sum_{\overrightarrow{C}\in\overrightarrow{C}_{q,\omega'}^{-}}\omega(\overrightarrow{C}).$$

Consider now $\overrightarrow{L} \in \overrightarrow{\mathcal{L}}_q \setminus (\overrightarrow{\mathcal{L}}_q^e \cup \overrightarrow{\mathcal{C}}_q)$. By definition of $\overrightarrow{\mathcal{L}}_q$ and $\overrightarrow{\mathcal{L}}_q^e$, the linear subdigraph \overrightarrow{L} contains an odd cycle \overrightarrow{C} among its components. Let \overrightarrow{L} the linear subdigraph obtained from \overrightarrow{L} by replacing the cycle \overrightarrow{C} by $\overrightarrow{C^*}$. Since \overrightarrow{C} is odd and $\omega(\overrightarrow{C}) = \omega(\overrightarrow{C^*}), \omega'(\overrightarrow{L}) = -\omega'(\overrightarrow{L'})$. Thus, linear subdigraphs of $\overrightarrow{\mathcal{L}}_q \setminus (\overrightarrow{\mathcal{L}}_q^e \cup \overrightarrow{\mathcal{C}}_q)$ contribute 0 to b_q .

Now, according to the parity of q, we will distinguish two cases:

Case 1: If q is odd, then
$$\overline{\mathcal{L}}_q^e = \emptyset$$
 and henc
 $b_q = -\sum_{\overrightarrow{C} \in \overrightarrow{\mathcal{C}}_{q,\omega'}^+} \omega(\overrightarrow{C}) + \sum_{\overrightarrow{C} \in \overrightarrow{\mathcal{C}}_{q,\omega'}^-} \omega(\overrightarrow{C}).$

Case 2: If q is even, then by hypothesis $\overrightarrow{\mathcal{L}_q^e} = \overrightarrow{\mathcal{D}_q}$ and hence $b_q = \sum_{\vec{L} \in \overrightarrow{\mathcal{D}_q}} (-1)^{\left| \vec{L} \right|} \omega'(\vec{L}) - \sum_{\vec{C} \in \vec{C}_{q,\omega'}^+} \omega(\vec{C}) + \sum_{\vec{C} \in \vec{C}_{q,\omega'}^-} \omega(\vec{C}).$ This completes the proof of the second equality. $\Box^{q,\omega}$

The implication $(ii) \Rightarrow (i)$ of Proposition 3.1 is deduced form Corollary 3.3 for q = n+1.

Before proving the implication $(i) \Rightarrow (ii)$, we introduce some notations and establish an intermediate result. Let (D, ω) be an arbitrary pwsl-digraph and consider an arbitrary cycle of D of length $q \ge 3$ whose vertices are v_1, \ldots, v_q and whose arcs are $e_1 := v_1v_2, \ldots, e_{q-1} := v_{q-1}v_q, e_q := v_qv_1$. Let ω' be a skew-signing of (D, ω) . Let $h \in C$ $\{1, \ldots, q\}$, we denote by $\eta_{\omega'}^+(e_1, \ldots, e_h)$ the sum of the weights of cycles \overrightarrow{C} of length qin D such that $\omega'(\vec{C}) > 0$ and contain arcs e_1, \ldots, e_h . Define $\eta_{\omega'}(e_1, \ldots, e_h)$ analogously. For r < h, we denote by $\eta_{\alpha'}^+(e_1, \ldots, e_r, \overline{e_{r+1}}, \ldots, \overline{e_h})$ the sum of the weights of cycles \overrightarrow{C} of length q in D such that $\omega'(\vec{C}) > 0$ and contain arcs e_1, \ldots, e_r but not arcs e_{r+1}, \ldots, e_h . Define $\eta_{\omega'}^{-}(e_1, \ldots, e_r, \overline{e_{r+1}}, \ldots, \overline{e_h})$ analogously.

Lemma 3.4. There exists a skew-signing ω'_0 of (D, ω) such that $\eta^+_{\omega'_0}(e_1) \neq \eta^-_{\omega'_0}(e_1)$.

Proof. Assume the contrary. We claim that for each $t \in \{1, ..., q\}$ and for all skew-signings ω' of (D, ω) , $\eta_{\omega'}^+(e_1, \ldots, e_t) = \eta_{\omega'}^-(e_1, \ldots, e_t)$. For this, we proceed by induction on *t*. The case t = 1 is assumed. Let $t \in \{1, \ldots, q-1\}$ and suppose that the claim is true for *t*. Then

$$\begin{cases} \eta_{\omega'}^+(e_1,\ldots,e_t) = \eta_{\omega'}^+(e_1,e_2,\ldots,e_t,e_{t+1}) + \eta_{\omega'}^+(e_1,e_2,\ldots,e_t,\overline{e_{t+1}}) \\ \eta_{\omega'}^-(e_1,\ldots,e_t) = \eta_{\omega'}^-(e_1,e_2,\ldots,e_t,e_{t+1}) + \eta_{\omega'}^-(e_1,e_2,\ldots,e_t,\overline{e_{t+1}}). \end{cases}$$

Consider now the skew-signing ω'' that coincides with ω' outside $\{e_{t+1}, e_{t+1}^*\}$ and such that $\omega''(e) = -\omega'(e)$ for $e \in \{e_{t+1}, e_{t+1}^*\}$.

Then, we have

$$\begin{cases} \eta_{\omega''}^+(e_1,\ldots,e_t) = \eta_{\omega'}^-(e_1,e_2,\ldots,e_t,e_{t+1}) + \eta_{\omega'}^+(e_1,e_2,\ldots,e_t,\overline{e_{t+1}}) \\ \eta_{\omega''}^-(e_1,\ldots,e_t) = \eta_{\omega'}^+(e_1,e_2,\ldots,e_t,e_{t+1}) + \eta_{\omega'}^-(e_1,e_2,\ldots,e_t,\overline{e_{t+1}}). \end{cases}$$

But by induction hypothesis, we have $\eta^+_{\omega''}(e_1, \ldots, e_t) = \eta^-_{\omega''}(e_1, \ldots, e_t)$ and $\eta^+_{\omega'}(e_1, \ldots, e_t)$ $e_t) = \eta_{\omega'}^-(e_1,\ldots,e_t).$

Then

$$\eta_{\omega'}^+(e_1,\ldots,e_t,\overline{e_{t+1}}) - \eta_{\omega'}^-(e_1,\ldots,e_t,\overline{e_{t+1}}) = \eta_{\omega'}^-(e_1,\ldots,e_{t+1}) - \eta_{\omega'}^+(e_1,\ldots,e_{t+1}) \\ = \eta_{\omega'}^+(e_1,\ldots,e_{t+1}) - \eta_{\omega'}^-(e_1,\ldots,e_{t+1}).$$

Thus $\eta_{\omega'}^+(e_1, \ldots, e_t, e_{t+1}) = \eta_{\omega'}^-(e_1, e_2, \ldots, e_t, e_{t+1}).$ This completes the induction proof. For t = q we have, $\eta_{\omega'}^+(e_1, \ldots, e_q) = \eta_{\omega'}^-(e_1, \ldots, e_q).$ Now, choose a skew-signing ω'_{a} of (D, ω) such that $\omega'(e_1) = \omega(e_1), \ldots, \omega'(e_q) = \omega(e_q).$ Then, we have $\eta_{\omega'}^+(e_1, \ldots, e_q) = \prod_{i=1}^q \omega(e_i)$ and $\eta_{\omega'}^-(e_1, \ldots, e_q) = 0$, a contradiction. It follows that there exists a skew-signing ω_0' such that $\eta_{\omega_0'}^+(e_1) \neq \eta_{\omega_0'}^-(e_1)$. \Box

The proof of $(i) \Rightarrow (ii)$ in Proposition 3.1 follows from the following more general result.

Lemma 3.5. Let (D, ω) be an $(\leq l)$ -cycle-symmetric pwsl-digraph where $l \geq 3$. If the characteristic polynomial of (D, ω') is the same for all skew-signings ω' of (D, ω) , then every cycle of length at most l is an odd cycle or a digon.

Proof. Assume for contradiction that D contains an even cycle of length $q \in \{4, \ldots, l\}$ and choose such a cycle with q as small as possible. We will use the notations of the previous

K. Attas et al.

lemma. Let ω'' be the skew-signing of (D, ω) that coincides with ω'_0 outside $\{e_1, e_1^*\}$ and such that $\omega''(e) = -\omega'_0(e)$ for $e \in \{e_1, e_1^*\}$. The characteristic polynomials of (D, ω'_0) and (D, ω'') are respectively denoted by $p_{(D,\omega'_0)}(x) := x^n + b_1 x^{n-1} + \cdots + b_{n-1} x + b_n$ and $p_{(D,\omega'')}(x) := x^n + c_1 x^{n-1} + \cdots + c_{n-1} x + c_n$.

By the choice of q and from the second equality of Corollary 3.3, we have $b_q - c_q = -\sum_{\vec{C} \in \vec{C}^+_{q,\omega'_0}} \omega(\vec{C}) + \sum_{\vec{C} \in \vec{C}^-_{q,\omega'_0}} \omega(\vec{C}) + \sum_{\vec{C} \in \vec{C}^+_{q,\omega''}} \omega(\vec{C}) - \sum_{\vec{C} \in \vec{C}^-_{q,\omega''}} \omega(\vec{C}).$

Every cycle \vec{C} of length q that contains neither e_1 nor e_1^* contributes 0 to $b_q - c_q$. It follows that:

$$b_q - c_q = -\eta^+_{\omega'_0}(e_1) - \eta^+_{\omega'_0}(e_1^*) + \eta^-_{\omega'_0}(e_1) + \eta^-_{\omega'_0}(e_1^*) + \eta^+_{\omega''}(e_1) + \eta^+_{\omega''}(e_1^*) - \eta^-_{\omega''}(e_1) - \eta^-_{\omega''}(e_1^*).$$

By construction of ω'' , we have $\eta_{\omega''}^+(e_1) = \eta_{\omega'_0}^-(e_1)$, $\eta_{\omega''}^-(e_1) = \eta_{\omega'_0}^+(e_1)$, $\eta_{\omega''}^+(e_1^*) = \eta_{\omega'_0}^-(e_1^*)$, $\eta_{\omega''}^-(e_1^*) = \eta_{\omega'_0}^+(e_1^*)$.

Then
$$b_q - c_q = -2(\eta^+_{\omega'_0}(e_1) + \eta^+_{\omega'_0}(e_1^*)) + 2(\eta^-_{\omega'_0}(e_1) + \eta^-_{\omega'_0}(e_1^*))$$

As (D, ω) is $(\leq l)$ -cycle-symmetric, we have $\eta_{\omega_0'}^+(e_1) = \eta_{\omega_0'}^+(e_1^*), \ \eta_{\omega_0'}^-(e_1^*) = \eta_{\omega_0'}^-(e_1)$ and then $b_q - c_q = -4(\eta_{\omega_0'}^+(e_1) - \eta_{\omega_0'}^-(e_1)) \neq 0$, a contradiction. \Box

4. PROOF OF THE MAIN THEOREM

The implication $(ii) \implies (i)$ follows easily from Corollary 2.2 and Proposition 3.1. To prove $(i) \implies (ii)$ it suffices to use Proposition 3.1 and the next lemma.

Lemma 4.1. Let (D, ω) be a pwls-digraph. If the characteristic polynomial of (D, ω') is the same for all skew-signings ω' of (D, ω) , then (D, ω) is cycle-symmetric.

Proof. Assume for a contradiction that (D, ω) is not cycle-symmetric and let \overrightarrow{C}_0 be a shortest cycle of D such that $\omega(\overrightarrow{C}_0) \neq \omega(\overrightarrow{C}_0)$. We denote by v_1, \ldots, v_q the vertices of \overrightarrow{C}_0 and $e_1 \coloneqq v_1v_2, \ldots, e_{q-1} \coloneqq v_{q-1}v_q$, $e_q \coloneqq v_qv_1$ its arcs. Let $h \in \{1, \ldots, q\}$ and $r \in \{1, \ldots, h\}$. For every skew-signing ω' of (D, ω) , we set:

$$N_{\omega'}^+(e_1,\ldots,e_r,\overline{e_{r+1}},\ldots,\overline{e_h}) = \eta_{\omega'}^+(e_1,\ldots,e_r,\overline{e_{r+1}},\ldots,\overline{e_h}) + \eta_{\omega'}^+(e_1^*,\ldots,e_r^*,\overline{e_{r+1}^*},\ldots,\overline{e_h^*}) N_{\omega'}^-(e_1,\ldots,e_r,\overline{e_{r+1}},\ldots,\overline{e_h}) = \eta_{\omega'}^-(e_1,\ldots,e_r,\overline{e_{r+1}},\ldots,\overline{e_h}) + \eta_{\omega'}^-(e_1^*,\ldots,e_r^*,\overline{e_{r+1}^*},\ldots,\overline{e_h^*}).$$

Step 1 There exists a skew-signing ω'_0 of (D, ω) such that $N^+_{\omega'_0}(e_1) \neq N^-_{\omega'_0}(e_1)$.

Assume by contradiction that $N_{\omega'}^+(e_1) = N_{\omega'}^-(e_1)$ for every skew-signing ω' of (D, ω) . By using an induction process, we can deduce, as in the proof of Lemma 3.4, that $N_{\omega'}^+(e_1, \ldots, e_q) = N_{\omega'}^-(e_1, \ldots, e_q)$ for all skew-signings ω' of (D, ω) . However,

$$N_{\omega'}^{+}(e_{1},\ldots,e_{q}) = \begin{cases} \omega(\overrightarrow{C}_{0}) + \omega(\overrightarrow{C}_{0}^{*}) & \text{if } q \text{ is even and } \omega'(\overrightarrow{C}_{0}) > 0\\ 0 & \text{if } q \text{ is even and } \omega'(\overrightarrow{C}_{0}) < 0\\ \omega(\overrightarrow{C}_{0}) & \text{if } q \text{ is odd and } \omega'(\overrightarrow{C}_{0}) > 0\\ \omega(\overrightarrow{C}_{0}^{*}) & \text{if } q \text{ is odd and } \omega'(\overrightarrow{C}_{0}) < 0 \end{cases}$$

and

$$N_{\omega'}^{-}(e_1,\ldots,e_q) = \begin{cases} 0 & \text{if } q \text{ is even and } \omega'(\overrightarrow{C}_0) > 0\\ \omega(\overrightarrow{C}_0) + \omega(\overrightarrow{C}_0^*) & \text{if } q \text{ is even and } \omega'(\overrightarrow{C}_0) < 0\\ \omega(\overrightarrow{C}_0) & \text{if } q \text{ is odd and } \omega'(\overrightarrow{C}_0) > 0\\ \omega(\overrightarrow{C}_0) & \text{if } q \text{ is odd and } \omega'(\overrightarrow{C}_0) < 0 \end{cases}$$

which contradicts our assumption on \overrightarrow{C}_0 . This completes the proof of Step 1.

Step 2. (D, ω) is $(\leq q - 1)$ -cycle-symmetric and contains no even cycles of length $k \in \{3, \ldots, q - 1\}$.

This follows from the choice of q and Lemma 3.5.

Consider now the skew-signing ω'' of (D, ω) that coincides with ω'_0 outside $\{e_1, e_1^*\}$ and such that $\omega''(e) = -\omega'_0(e)$ for $e \in \{e_1, e_1^*\}$. Let $p_{(D,\omega'_0)}(x) := x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n$ and $p_{(D,\omega'')}(x) := x^n + c_1 x^{n-1} + \dots + c_{n-1} x + c_n$ be the characteristic polynomials of (D, ω'_0) and (D, ω'') respectively.

As in the proof of Lemma 3.5, we have

$$b_q - c_q = -2(\eta_{\omega_0'}^+(e_1) + \eta_{\omega_0'}^+(e_1^*)) + 2(\eta_{\omega_0'}^-(e_1) + \eta_{\omega_0'}^-(e_1^*))$$

= $-2(N_{\omega_0'}^+(e_1) - N_{\omega_0'}^-(e_1)) \neq 0$

which contradicts Step 1. This ends the proof of lemma. \Box

REFERENCES

- A. Anuradha, R. Balakrishnan, Wasin So, Skew spectra of graphs without even cycles, Linear Algebra Appl. 444 (2014) 67–80.
- [2] R.A. Brualdi, D. Cvetkovič, A Combinatorial Approach to Matrix Theory and its Applications, CRC Press, 2008.
- [3] M. Cavers, S.M. Cioabă, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald, M. Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra Appl. 436 (2012) 4512–4529.
- [4] D. Cui, Y. Hou, On the skew spectra of cartesian products of graphs, Electron. J. Combin. 20 (2) (2013) #P19.
- [5] Shi-Cai Gong, Guang-Hui Xu, The characteristic polynomial and the matchings polynomial of a weighted digraph, Linear Algebra Appl. 436 (2012) 3597–3607.
- [6] Yaoping Hou, Tiangang Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, Elec. J. Comb. 18 (2011) #p156.
- [7] S. Liu, H. Zhang, Permanental polynomials of skew adjacency matrices of oriented graphs, arXiv:1409.3036 [math.CO].
- [8] J.S. Maybee, Combinatorially symmetric matrices, Linear Algebra Appl. 8 (1974) 529–537.
- [9] Seymour V. Parter, J.W.T. Youngs, The symmetrization of matrices by diagonal matrices, J. Math. Anal. Appl. 4 (1962) 102–110.
- [10] B. Shader, Wasin So, Skew spectra of oriented graphs, Electron. J. Combin. 16 (2009) #N32.
- [11] C.W. Shih, C.W. Weng, Cycle-symmetric matrices and convergent neural networks, Physica D 146 (2000) 213–220.