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Abstract. An arc-weighted digraph is a pair (D, w) where D is a digraph and o is an
arc-weight function that assigns to each arc uv of D a nonzero real number w(uv). Given
an arc-weighted digraph (D, w) with vertices vy, ..., v,, the weighted adjacency matrix of
(D, w) is defined as the n x n matrix A(D, w) = [a;;] where a;; = w(v;v;) if v;v; is an
arc of D, and 0 otherwise. Let (D, w) be a positive arc-weighted digraph and assume that
D is loopless and symmetric. A skew-signing of (D, w) is an arc-weight function o’ such
that o'(uv) = +w(uv) and o' (uv)w’ (vu) < 0 for every arc uv of D. In this paper, we give
necessary and sufficient conditions under which the characteristic polynomial of A(D, &) is
the same for all skew-signings @’ of (D, w). Our main theorem generalizes a result of Cavers
et al. (2012) about skew-adjacency matrices of graphs.
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1. INTRODUCTION

A directed graph or, more simply, a digraph D is a pair D = (V, E) where V is a set of
vertices and E is a set of ordered pairs of vertices called arcs. Foru, v € V, the arca = (u, v)
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of D is denoted by uv. An arc of the form uu is called a loop of D. A loopless digraph is
one containing no loops. A symmetric digraph is a digraph such that if «v is an arc then vu is
also an arc. Given a symmetric digraph D = (V, E) and a subdigraph H = (W, F) of D, we
denote by H* the subdigraph of D whose vertex set is W and arc set is {vu : uv € F}.

Let G be a simple undirected and finite graph. An onenmtwn of Gi 7 is an assignment of a
direction to each edge of G so that we obtain a directed graph G Let G be an orientation of
G. With respect to a labeling vy, .. ., v, of the vertices of G, the skew-adjacency matrix of G
is the n x n real skew- symmetrlc matrix S( G) = [s,j] where 5;; = 1 and s;; = —1 if v;v;
is an arc of G , otherwise s;; = 5;; = 0. The skew-characteristic polynomial of G) is defined
as the characteristic polynomial of S(G ). This definition is correct because skew-adjacency
matrices of G with respect to different labelings are permutationally similar and so have the
same characteristic polynomial.

There are several recent works about skew-characteristic polynomials of oriented graphs,
one can see for example [1,3-6,10]. An open problem is to find the number of possible
orientations with distinct skew-characteristic polynomials of a given graph G. In particular
it is of interest to know whether all orientations of a graph G can have the same skew-
characteristic polynomial. The following theorem, obtained by Cavers et al. [3] gives an
answer to this question.

Theorem 1.1. The orientations of a graph G all have the same skew-characteristic
polynomial if and only if G has no cycles of even length.

A similar result to this theorem was obtained by Liu and Zhang [7]. They proved that all
orientations of a graph G have the same permanental polynomial if and only if G has no
cycles of even length.

In this work, we will extend Theorem 1.1 to positive weighted loopless and symmetric
digraphs (which we abbreviate to pwlis-digraphs). An arc-weighted digraph or more simply
a weighted digraph is a pair (D, w) where D is a digraph and w is a arc-weight function that
assigns to each arc uv of D a nonzero real number w(uv), called the weight of the arc uv.
Let (D, w) be a weighted digraph with vertices vy, ..., v,. The weighted adjacency matrix
of (D, w) is defined as the n x n matrix A(D, w) = [a;;] where a;; = w(v;v;), if v;v; is
an arc of D and 0 otherwise. Let (D, w) be a pwls-digraph. A skew-signing of (D, w) is an
arc-weight function «’ such that o'(uv) = +w'(uv) and o' (uv)w’ (vu) < 0 for every arc uv
of D.

Our aim is to characterize the pwls-digraphs (D, w) for which the characteristic poly-
nomial of A(D, ') is the same for all skew-signings " of (D, w). This characterization
involves directed cycles in D. Recall that a directed cycle of length t > 0 is a digraph with
vertex set {vy, vz, ..., v} and arcs vivy, ..., Us—1 Vs, U;v1. Throughout this paper, we use the
term “cycle” to refer to a “directed cycle” in a digraph. A cycle of length ¢+ = 2 is called
a digon. A cycle is odd (resp. even) if its length is odd (resp. even). Our main result is the
following theorem.

Theorem 1.2. Let (D, w) be a pwls-digraph. Then the following statements are equivalent:
(1) The characteristic polynomial of (D, o') is the same for all skew-signings o' of (D, ).
(ii) D has no even cycles of length more than 2 and A(D,w) = A™'SA where S is a

nonnegative symmetric matrix with zero diagonal and A is a diagonal matrix with positive
diagonal entries.
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Note that a graph G can be identified with the pwls-digraph obtained from G by replacing
each edge joining two vertices u and v by the arcs uv and vu, both of them have weight 1.
Moreover, every orientation of G can be identified with a skew-signing of this weighted
digraph. Then, our main result is a generalization of Theorem 1.1.

2. CYCLE-SYMMETRIC DIGRAPHS

There is a natural correspondence between real matrices and weighted digraphs. Indeed,
every n x n real matrix M = [m,- j] is the weighted adjacency matrix of a unique weighted
digraph (D, wy) with vertex set {1, ..., n}. This digraph, called the weighted digraph
associated to M, is defined as follows: ij is an arc of Dy, iff m;; # 0, and the weight of
an arc ij is w,,(ij) = m;;.

We start with some formulas involving the characteristic polynomial of a matrix and its
weighted associated digraph. For this, we need some notations and definitions. Let D be
a digraph. A linear subdigraph L of D is a vertex disjoint union of some cycles in D. A
linear subdigraph L of D is called even linear if L contains no odd cycles. Let ? (D) (resp.

+(D)) denote the set of all linear (respf)ven linear) subdigraphs of D that cover precisely
k vertices of D. We usually write this as £ (resp. £ {) when no ambiguity can arise.

Let A be a real matrix and let (D, w) be the weighted digraph associated to A. We denote
by pa(x) =det(x] — A) =x" + ax™ '+ ... +a,_x + a, the characteristic polynomial of
A. The Coates determinant formula (see [2] p. 65) can be stated as follows:

a= 3 nFlu@) (1)

Tezk

where ’73 ‘ denotes the number of cycles in 7 and w(z)) is the product of all the weights of

—
the arcs of L.
In particular
det(4) = (—1)'a, = (17" 3 (=) Fla(D). )
TeL,
We consider now the case where A is skew-symmetric. Let E‘) be a cycle of length k of
D. Then

= k
w(C)=a =(—D"a

ilfzaf2i3 o 'aik—lfk aik"l ilik afkik—l B 'ai3fza"2i1
k%

= (—1)'w(C7)
ﬁ . .

{—a)(C*) if k is odd

% . .
w(C*) if k is even.

- = = . — — . ) - )
Let L e L£; ~ L. By definition of £; and L}, the linear subdigraph L contains an odd
— - —
cycle C among its components. Let L’ the linear subdigraph obtained from L by replacing
- T — — — —
the cycle C by C*. SE)ICC g is odd, and then w(C) = —w(C*), (L) = —w(L’). Thus,
linear subdigraphs of £; . L contribute 0 to ay.
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It follows that
=3 =)/ Fla(D).
eri
. =
If k is odd, then Lj is empty, and hence

0if k is odd
@=1 %" ()| Zlo(T ) itk is even, 3)

—
L

ez)z

We introduce now a special class of weighted symmetric digraphs called cycle-symmetric
digraphs. The characterization of these digraphs will be used in the proof of our main
theorem.

Let w be a positive arc-weight fungt)ion of D_) ind let g be a positive integer. We say that
(D, w)is (£ q)-cycle-symmetric if o( C ) = w(C ) forevery cycle C of D of length at most
q.If ¢ = n then (D, w) is said to be cycle-symmetric.

We borrowed the terminology “cycle-symmetric” from Shih and Weng [11]. Following

this paper, an n x n real matrix [a,- j] is called cycle-symmetric if the following two conditions
hold:

(Cl) fori #jef{l,...,n},a;ja;; >0o0ra; =aj;; =0;

(C2) For any sequence of distinct integers iy, ..., iy from the set {1, ..., n}, we have
a. . ad. . ---d. .a... =da. . a. . ceed. . A. ..
iy i3 e—1k kU1 Nl lelg—1 131 1l

Remark 1. Obviously, a pwls-digraph (D, ) is always (< 2)-cycle-symmetric. Moreover,
a pwls-digraph is cycle-symmetric if and only if its weighted adjacency matrix is cycle-
symmetric.

The following theorem gives a characterization of cycle-symmetric matrices. For the
proof, one can see [8,9,11].

Theorem 2.1. An n X n real matrix A is cycle-symmetric if and only if there exists an
invertible diagonal matrix D such that D™'AD is symmetric.

It easy to see that if A is a nonnegative matrix, then the diagonal entries of D can be
chosen positive. So by using Remark 1, we obtain the following corollary.

Corollary 2.2. Let (D, w) be a pwlis-digraph. Then, the following statements are equivalent:

(1) (D, w) is cycle-symmetric.
(i) A(D,w) = A™'SA where S is a nonnegative symmetric matrix with zero diagonal and
A is a diagonal matrix with positive diagonal entries.

3. SKEW-SIGNINGS OF CYCLE-SYMMETRIC DIGRAPHS

In this section, we will prove the following proposition, which is a special case of our
main theorem for cycle-symmetric pwsl-digraphs.
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Proposition 3.1. Let (D, w) be a cycle-symmetric pwls-digraph. Then, the following
statements are equivalent:

(i) The characteristic polynomial of (D, ') is the same for all skew-signings ' of (D, w);
(ii) D contains no even cycles of length greater than 3.

We start with some preparatory results about skew-signings of pwls-digraphs. Let (D, w)
be an arbitrary pwls-digraph and let o’ be a skew-signing of (D, w). We consider the
two arc-weight functions defined as follows: w(uv) = +/w(uv)w(vu) and a/(u v) =
%\/ w(uv)w(vu) for every arc uv of D. It is easy to check the following properties:

P1 The weighted adjacency matrix of (D, @) is symmetric.
P2 o is a skew- signing of (D, ) and the weighted adjacency matrix of (D, w’) is skew-
symmetric.

P3 Let g be a positive integer such that 3 < g <n.If (D, w)is a (< g)- cycle symmetric

d1g1£1)ph then for every cycle C of D with length at most g we have w( C ) = o( C ) and
W'(C) = Iel ).

We denote by p(p o) (x) == x" + ax" '+ ta,x+ aﬁ,\the characteristic polynomial
of (D, w). The characteristic polynomials of (D, ") and (D, w') are respectively denoted by
Do) (X) = x"+bx" "4 4b,_x+b, and Pp.oy(x) = x" +ox" e x ey

From Formula (1), we have b; = 0 and b, = —a,. In particular, b; and b, are independent
of w'.

Lemma 3.2. Let g be a positive integer such that 3 < q < n. If (D, w) is (< q)-cycle-
symmetric, then:

0 if k is odd
bi = Z (—1)|L‘a)/(f) if k is even
_L)ez,‘(
fork=1,...,q

Proof. Letk € {1, ..., q}. From Property P3, we have o'( L )= a)’( L ) for every L € L k-
By using Formula (1), it follows that by = c¢;. Moreover, from Property P2, A(D, w/) is a
skew-symmetric matrix. Then by Formula (3) we have:

0 if k is odd
= Z|~ 7 cep s
k= Z (D" lw/(L) if k is even.
?ezi
Now, by applying again P3, we obtain
0 if k is odd
bo=c =13 DTy ifkis even. O
fezi

We denote by ? « the set of all cycles of length k in D. For a skew-s%ning o', this set

can be partitioned into two subsets: ,:'w, and C, where Zw/ (resp. C, ) is the set of
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- — — .
cycles C W1th_1>ength k such that ' (C) >_0) (resp. @' (C) < 0). In the case when k is even,
we denote by D the set of all collections L of vertex disjoint digons that cover precisely k

vertices in D.

Corollary 3.3. Assume that (D, w) is (< g — 1)-cycle-symmetric for some q € {4, ..., n + 1}

and contains no even cycles of length k € {3,...,q — 1}, then
0 if k is odd
b, = Z a)(z)) if k is even
Z)EB](

fork=1,...,q —1andif g <n, then

— — o
- ) w(O)+ ) w(C) if q is odd
?E?;d 363;4
b — , .
! — Z o(C)+ Z a)(E'))—i— Za)(L)lfqlseven
?e?ld ?e?;d fqu

Proof. The first equality follows from Lemma 3.2.
From Formula (1), we have

S 0/l (D)

- =
LeLy

bq

@+ Y @ - 3w @),
‘?Ugﬂ TéZﬁgq ?egq

|
™

By definition of Nk , and T- ,, we have
g q.0

Yo = Y o@)- Y w0

?eﬁq ?e?*, ?e?’,
S R

Consider now L. € ﬁ ~ (ﬁe U 7 ¢)- By definition of E and ﬁ the linear subdigraph T
contams an odd cycle C egnong it)s components Let L the llnear subdlgraph obtained from
L by replacing the cycle C by Cc*. Slnce C is odd and w( C) = w(C*), v'( L )= —w (L ).
Thus, linear subdigraphs of E N (EE U C 4) contribute 0 to b,,.
Now, according to the pagty of ¢,we will distinguish two cases:
Case 1: If g is odd then £ =0 and hence
bg=—- ) o(C)+ Z (C).
gegzd CeC;d
Case 2: If g is even, then by hypothesis £ = D, and hence
— —
= > W@ - Y ot T W@

Lqu CEEUr Cec~ ,

q.0

This completes the proof of the second equality. O
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The implication (ii) = (i) of Proposition 3.1 is deduced form Corollary 3.3 forg = n+1.

Before proving the implication (i) = (ii), we introduce some notations and establish

an intermediate result. Let (D, w) be an arbitrary pwsl-digraph and consider an arbitrary

cycle of D of length ¢ > 3 whose vertices are vy, ..., v, and whose arcs are e; =

VIV, ..., €q—1 = VUg_1Vq, € = U,v;. Let @ be a skew-signing of (D, w). Let h €

{1,...,q}, we denote by n:g,(el, ..., ep) the sum of the weights of cycles C of length ¢

—

in D such that '(C) > 0 and contain arcs ey, ..., e,. Define n.(e1, ..., e;) analogously.

=

For r < h, we denote by n:g,(el, . s€r,611,...,ey) the sum of the weights of cycles C

%

of length ¢ in D such that «’'( C) > 0 and contain arcs ey, ..., e, but not arcs ¢, 1, ..., ep,.

Define n_,(e1, ..., er, €11, - . ., €;) analogously.

Lemma 3.4. There exists a skew-signing w, of (D, w) such that n::/ (er) #n_, (er).
0 0

Proof. Assume the contrary. We claim that for each ¢ € {1, ..., ¢} and for all skew-signings
o' of (D, w), 77:,(91, ....e) =mn_/ei,...,e). For this, we proceed by induction on ¢. The
case t = l is assumed. Let s € {1, ..., g — 1} and suppose that the claim is true for #. Then
’7::/(611 ceey et) = ’7::/(31’ €2, ..., et+1) + 77;/(917 €2, ..., 6, et+1)
nyen,...,e)=mn_(e, e, ...,e,eq1)+n (e, e, ...,e,e51).
Consider now the skew-signing «” that coincides with o’ outside { ert1, € +1} and such
that w”(e) = —w'(e) fore € {e,+1, e/ }
Then, we have
7]:,/(6], ceey el) = 77;/(617 €2, ...,6€;, ef+]) + n:)_/(ely €2, ...,6€;, et+])
nler,....e)=nl(er,er, ... e e0) 0 (e1, e, ..., €, Eq0).
But Izy induction hypothesis, we have n:,,(el, coove) =1 (e, ..., e)and nz,(el, e,
et) = nw/(elv L] et)~
Then
nier, ... eneq) —n(er, ... e &) =1 (er, ... e) —nl(er, ..., eq1)
= T}Z/(el, N €z+1) - 77;/(6‘1, cees €t+l)-
Thus 0 (e1, ..., e, eq1) =1 (€1, €2, ..., e, €41).
This completes the induction proof. For ¢t = ¢ we have, nz,(el, e eg)=mn_ (e, ..., ey).
Now, choose a skew-signing o’ of (D, w) such that w’'(e;) = w(ey), ..., '(e;) = w(e,).
q
Then, we have n;(el, N [Jw(e;) and n(e1, ..., eq) = 0,acontradiction. It follows

i=1
that there exists a skew-signing wy, such that nZ, (er) #n,(er). U
0 0

The proof of (i) = (ii) in Proposition 3.1 follows from the following more general result.
Lemma 3.5. Let (D, w) be an (< 1)-cycle-symmetric pwsl-digraph where | > 3. If the

characteristic polynomial of (D, ') is the same for all skew-signings o' of (D, w), then
every cycle of length at most [ is an odd cycle or a digon.

Proof. Assume for contradiction that D contains an even cycle of length ¢ € {4, ...,/} and
choose such a cycle with g as small as possible. We will use the notations of the previous



132 K. Attas et al.

lemma. Let o” be the skew-signing of (D, w) that coincides with w(/) outside {el, ef} and
such that o”(e) = —wj(e) for e € {e;, e}}. The characteristic polynomials of (D, w/) and
(D, ") are respectively denoted by p(D,%)(x) = x"+bx" '+ ...+ b,_1x + b, and

P, a)”)(x) =x"+ Clxn71 + -+ 1X FCp.
By the ch01ce of ¢ and from the second equallty of Corolldry 3.3, we have b, — ¢, =

- X a)(C)—l- > w(C)+ > a)(C)— > a)(C)
Teclt Tel—, Telt , Teé— ,
q,a)o q,wo q,0 q,0

Every cycle E') of length ¢ that contains neither e; nor e] contributes 0 to b, — ¢ . It

follows that:
by —cqg = —7726(61) - 77::6(61‘) 0, () + 77;6(61‘)
+n(en) + 0 (€)= 1(e) = n(e)).

By construction of w”, we have 1}, (e;) = n_, (e1), 1, (e1) = n!, (en), . (e}) = n_, (e}),
T (ed) = 0 ). ’ ’ ’

Then b, — ¢q = —2(7726(61) + nafé(e’f)) +20,, () +11,, (€1)

As (D, w) is (< )-cycle-symmetric, we have 1", (e1) = 1, (¢}), n_, (e}) = n_, (e) and
then b, — ¢, = _4(77:6(81) - ’7;6(61)) #0,a contradiction. [J ’ ’

4. PROOF OF THE MAIN THEOREM

The implication (ii) = (i) follows easily from Corollary 2.2 and Proposition 3.1. To
prove (i) = (ii) it suffices to use Proposition 3.1 and the next lemma.

Lemma 4.1. Let (D, w) be a pwls-digraph. If the characteristic polynomial of (D, ') is the
same for all skew-signings o' of (D, w), then (D, w) is cycle-symmetric.

Proof. Assume for a contrad1ct10n that (D, a)) is not cycle-symmetric and let C o be a

shortest cycle of D such that o( C 0) # o(C ) We denote by vy, ..., v, the vertices of
C() and e; = ViV, ..., €41 = Vy_1Vy, €4 = V4 its arcs. Leth e {l,...,q} and
r € {1, ..., h}. For every skew-signing ' of (D, w),we set:
N:;/(el""7eryer+]y""a) = n:)_/(eh"' er,er-H,“ 7e_h)
N _
+n) (e, ..., e erH,...,e,*;)
N_(er;....er 1., ep) =1n (€1,....€,€11,...,€)
+n;,(e’f,...,er,er+1,...,eZ).

Step 1 There exists a skew-signing w;, of (D, w) such that N;/ (e1) #N_, (e1).
0 0

Assume by contradiction that N;,(el) = N_,(e1) for every skew-signing o’ of (D, w).
By using an induction process, we can deduce, as in the proof of Lemma 3.4, that
N;;(el, R Nc;(el, ..., eq) for all skew-signings o’ of (D, w). However,

— —x , =
w(Co)+w(C) ifgisevenand w'(Co) >0

if ¢ is even and a)/(go) <0

— . . ;=
w(C o) if gisodd and ' (C o) > 0

—>* . ;=
o(C ) if gisodd and w'(C o) < 0

N;r,(el,...,eq) =
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and
. . =
0 ifgisevenand o'(Cg) > 0
— —x L=
_ w(Co)+ao(C,) ifgisevenand w'(Co) <0
N_(er,....e)) = — T L=
w(Cy) if g is odd and '(C o) > 0
o(Co) if ¢ is odd and &/(C ¢) < 0

which contradicts our assumption on E‘)o. This completes the proof of Step 1.

Step 2. (D, w) is (< g — 1)-cycle-symmetric and contains no even cycles of length k €
{3,....q — 1}.

This follows from the choice of g and Lemma 3.5.

Consider now the skew-signing " of (D, ) that coincides with w;, outside {el, e}‘} and
such that 0" (e) = —wj(e) fore € {el, e’f}. Let p(D,wé)(x) =x"+bx" b x+b,
and pp,m(x) = x"+ c1x" ' 4. 4 ¢, 1x +c, be the characteristic polynomials of (D, w;)
and (D, ") respectively.

As in the proof of Lemma 3.5, we have

by — cqg = =20}, (1) + 1) (1)) + 201, (1) + 1, (¢])
0 0 0 0
= —2(N(j(,)(el) - N{;{)(ﬁ)) #0

which contradicts Step 1. This ends the proof of lemma. [

REFERENCES

[1] A. Anuradha, R. Balakrishnan, Wasin So, Skew spectra of graphs without even cycles, Linear Algebra Appl.
444 (2014) 67-80.
[2] R.A. Brualdi, D. Cvetkovi¢, A Combinatorial Approach to Matrix Theory and its Applications, CRC Press,
2008.
[3] M. Cavers, S.M. Cioabd, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald, M.
Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra Appl. 436 (2012) 4512-4529.
[4] D. Cui, Y. Hou, On the skew spectra of cartesian products of graphs, Electron. J. Combin. 20 (2) (2013) #P19.
[5] Shi-Cai Gong, Guang-Hui Xu, The characteristic polynomial and the matchings polynomial of a weighted
digraph, Linear Algebra Appl. 436 (2012) 3597-3607.
[6] Yaoping Hou, Tiangang Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, Elec.
J. Comb. 18 (2011) #p156.
[7] S. Liu, H. Zhang, Permanental polynomials of skew adjacency matrices of oriented graphs, arXiv:1409.3036
[math.CO].
[8] J.S. Maybee, Combinatorially symmetric matrices, Linear Algebra Appl. 8 (1974) 529-537.
[9] Seymour V. Parter, J.W.T. Youngs, The symmetrization of matrices by diagonal matrices, J. Math. Anal. Appl.
4 (1962) 102-110.
[10] B. Shader, Wasin So, Skew spectra of oriented graphs, Electron. J. Combin. 16 (2009) #N32.
[11] C.W. Shih, C.W. Weng, Cycle-symmetric matrices and convergent neural networks, Physica D 146 (2000)
213-220.


http://refhub.elsevier.com/S1319-5166(17)30090-7/sb1
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb1
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb1
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb2
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb2
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb2
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb3
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb3
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb3
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb4
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb5
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb5
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb5
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb6
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb6
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb6
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb8
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb9
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb9
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb9
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb10
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb11
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb11
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb11

	Skew-signings of positive weighted digraphs
	Introduction
	Cycle-symmetric digraphs
	Skew-signings of cycle-symmetric digraphs
	Proof of the main theorem
	References


