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Abstract. An arc-weighted digraph is a pair (D, ω) where D is a digraph and ω is an
arc-weight function that assigns to each arc uv of D a nonzero real number ω(uv). Given
an arc-weighted digraph (D, ω) with vertices v1, . . . , vn , the weighted adjacency matrix of
(D, ω) is defined as the n × n matrix A(D, ω) = [ai j ] where ai j = ω(vi v j ) if vi v j is an
arc of D, and 0 otherwise. Let (D, ω) be a positive arc-weighted digraph and assume that
D is loopless and symmetric. A skew-signing of (D, ω) is an arc-weight function ω′ such
that ω′(uv) = ±ω(uv) and ω′(uv)ω′(vu) < 0 for every arc uv of D. In this paper, we give
necessary and sufficient conditions under which the characteristic polynomial of A(D, ω′) is
the same for all skew-signings ω′ of (D, ω). Our main theorem generalizes a result of Cavers
et al. (2012) about skew-adjacency matrices of graphs.
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1. INTRODUCTION

A directed graph or, more simply, a digraph D is a pair D = (V, E) where V is a set of
vertices and E is a set of ordered pairs of vertices called arcs. For u, v ∈ V , the arc a = (u, v)
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of D is denoted by uv. An arc of the form uu is called a loop of D. A loopless digraph is
one containing no loops. A symmetric digraph is a digraph such that if uv is an arc then vu is
also an arc. Given a symmetric digraph D = (V, E) and a subdigraph H = (W, F) of D, we
denote by H∗ the subdigraph of D whose vertex set is W and arc set is {vu : uv ∈ F}.

Let G be a simple undirected and finite graph. An orientation of G is an assignment of a
direction to each edge of G so that we obtain a directed graph

−→
G . Let

−→
G be an orientation of

G. With respect to a labeling v1, . . . , vn of the vertices of G, the skew-adjacency matrix of
−→
G

is the n × n real skew-symmetric matrix S(
−→
G ) =

[
si j

]
, where si j = 1 and s j i = −1 if viv j

is an arc of
−→
G , otherwise si j = s j i = 0. The skew-characteristic polynomial of

−→
G is defined

as the characteristic polynomial of S(
−→
G ). This definition is correct because skew-adjacency

matrices of
−→
G with respect to different labelings are permutationally similar and so have the

same characteristic polynomial.
There are several recent works about skew-characteristic polynomials of oriented graphs,

one can see for example [1,3–6,10]. An open problem is to find the number of possible
orientations with distinct skew-characteristic polynomials of a given graph G. In particular
it is of interest to know whether all orientations of a graph G can have the same skew-
characteristic polynomial. The following theorem, obtained by Cavers et al. [3] gives an
answer to this question.

Theorem 1.1. The orientations of a graph G all have the same skew-characteristic
polynomial if and only if G has no cycles of even length.

A similar result to this theorem was obtained by Liu and Zhang [7]. They proved that all
orientations of a graph G have the same permanental polynomial if and only if G has no
cycles of even length.

In this work, we will extend Theorem 1.1 to positive weighted loopless and symmetric
digraphs (which we abbreviate to pwls-digraphs). An arc-weighted digraph or more simply
a weighted digraph is a pair (D, ω) where D is a digraph and ω is a arc-weight function that
assigns to each arc uv of D a nonzero real number ω(uv), called the weight of the arc uv.
Let (D, ω) be a weighted digraph with vertices v1, . . . , vn . The weighted adjacency matrix
of (D, ω) is defined as the n × n matrix A(D, ω) = [ai j ] where ai j = ω(viv j ), if viv j is
an arc of D and 0 otherwise. Let (D, ω) be a pwls-digraph. A skew-signing of (D, ω) is an
arc-weight function ω′ such that ω′(uv) = ±ω′(uv) and ω′(uv)ω′(vu) < 0 for every arc uv

of D.
Our aim is to characterize the pwls-digraphs (D, ω) for which the characteristic poly-

nomial of A(D, ω′) is the same for all skew-signings ω′ of (D, ω). This characterization
involves directed cycles in D. Recall that a directed cycle of length t > 0 is a digraph with
vertex set {v1, v2, . . . , vt } and arcs v1v2, . . . , vt−1vt , vtv1. Throughout this paper, we use the
term “cycle” to refer to a “directed cycle” in a digraph. A cycle of length t = 2 is called
a digon. A cycle is odd (resp. even) if its length is odd (resp. even). Our main result is the
following theorem.

Theorem 1.2. Let (D, ω) be a pwls-digraph. Then the following statements are equivalent:

(i) The characteristic polynomial of (D, ω′) is the same for all skew-signings ω′ of (D, ω).
(ii) D has no even cycles of length more than 2 and A(D, ω) = ∆−1S∆ where S is a

nonnegative symmetric matrix with zero diagonal and ∆ is a diagonal matrix with positive
diagonal entries.
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Note that a graph G can be identified with the pwls-digraph obtained from G by replacing
each edge joining two vertices u and v by the arcs uv and vu, both of them have weight 1.
Moreover, every orientation of G can be identified with a skew-signing of this weighted
digraph. Then, our main result is a generalization of Theorem 1.1.

2. CYCLE-SYMMETRIC DIGRAPHS

There is a natural correspondence between real matrices and weighted digraphs. Indeed,
every n × n real matrix M =

[
mi j

]
is the weighted adjacency matrix of a unique weighted

digraph (DM , ωM ) with vertex set {1, . . . , n}. This digraph, called the weighted digraph
associated to M , is defined as follows: i j is an arc of DM iff mi j ̸= 0, and the weight of
an arc i j is ωM (i j) = mi j .

We start with some formulas involving the characteristic polynomial of a matrix and its
weighted associated digraph. For this, we need some notations and definitions. Let D be
a digraph. A linear subdigraph L of D is a vertex disjoint union of some cycles in D. A
linear subdigraph L of D is called even linear if L contains no odd cycles. Let

−→
L k(D) (resp.

−→
L e

k(D)) denote the set of all linear (resp. even linear) subdigraphs of D that cover precisely
k vertices of D. We usually write this as

−→
L k (resp.

−→
L e

k) when no ambiguity can arise.
Let A be a real matrix and let (D, ω) be the weighted digraph associated to A. We denote

by pA(x) = det(x I − A) = xn
+ a1xn−1

+ · · · + an−1x + an the characteristic polynomial of
A. The Coates determinant formula (see [2] p. 65) can be stated as follows:

ak =

∑
−→
L ∈

−→
L k

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω(
−→
L ) (1)

where
⏐⏐⏐−→L ⏐⏐⏐ denotes the number of cycles in

−→
L and ω(

−→
L ) is the product of all the weights of

the arcs of
−→
L .

In particular

det(A) = (−1)nan = (−1)n
∑

−→
L ∈

−→
L n

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω(
−→
L ). (2)

We consider now the case where A is skew-symmetric. Let
−→
C be a cycle of length k of

D. Then

ω(
−→
C ) = ai1i2

ai2i3
. . . aik−1ik

aik i1
= (−1)kai1ik

aik ik−1
. . . ai3i2

ai2i1

= (−1)kω(
−→
C∗)

=

{
−ω(

−→
C∗) if k is odd

ω(
−→
C∗) if k is even.

Let
−→
L ∈

−→
Lk ∖

−→
Le

k . By definition of
−→
Lk and

−→
Le

k , the linear subdigraph
−→
L contains an odd

cycle
−→
C among its components. Let

−→
L ′ the linear subdigraph obtained from

−→
L by replacing

the cycle
−→
C by

−→
C∗. Since

−→
C is odd, and then ω(

−→
C ) = −ω(

−→
C∗), ω(

−→
L ) = −ω(

−→
L ′ ). Thus,

linear subdigraphs of
−→
Lk ∖

−→
Le

k contribute 0 to ak .
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It follows that

ak =

∑
−→
L ∈

−→
L e

k

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω(
−→
L ).

If k is odd, then
−→
Le

k is empty, and hence

ak =

⎧⎪⎪⎨⎪⎪⎩
0 if k is odd∑

−→
L ∈

−→
L e

k

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω(
−→
L ) if k is even. (3)

We introduce now a special class of weighted symmetric digraphs called cycle-symmetric
digraphs. The characterization of these digraphs will be used in the proof of our main
theorem.

Let ω be a positive arc-weight function of D and let q be a positive integer. We say that
(D, ω) is (≤ q)-cycle-symmetric if ω(

−→
C ) = ω(

−→
C

∗

) for every cycle
−→
C of D of length at most

q. If q = n then (D, ω) is said to be cycle-symmetric.
We borrowed the terminology “cycle-symmetric” from Shih and Weng [11]. Following

this paper, an n ×n real matrix
[
ai j

]
is called cycle-symmetric if the following two conditions

hold:

(C1) for i ̸= j ∈ {1, . . . , n}, ai j a j i > 0 or ai j = a j i = 0;
(C2) For any sequence of distinct integers i1, . . . , ik from the set {1, . . . , n}, we have

ai1i2
ai2i3

· · · aik−1ik
aik i1

= ai1ik
aik ik−1

· · · ai3i2
ai2i1

.

Remark 1. Obviously, a pwls-digraph (D, ω) is always (≤ 2)-cycle-symmetric. Moreover,
a pwls-digraph is cycle-symmetric if and only if its weighted adjacency matrix is cycle-
symmetric.

The following theorem gives a characterization of cycle-symmetric matrices. For the
proof, one can see [8,9,11].

Theorem 2.1. An n × n real matrix A is cycle-symmetric if and only if there exists an
invertible diagonal matrix D such that D−1 AD is symmetric.

It easy to see that if A is a nonnegative matrix, then the diagonal entries of D can be
chosen positive. So by using Remark 1, we obtain the following corollary.

Corollary 2.2. Let (D, ω) be a pwls-digraph. Then, the following statements are equivalent:

(i) (D, ω) is cycle-symmetric.
(ii) A(D, ω) = ∆−1S∆ where S is a nonnegative symmetric matrix with zero diagonal and
∆ is a diagonal matrix with positive diagonal entries.

3. SKEW-SIGNINGS OF CYCLE-SYMMETRIC DIGRAPHS

In this section, we will prove the following proposition, which is a special case of our
main theorem for cycle-symmetric pwsl-digraphs.



Skew-signings of positive weighted digraphs 129

Proposition 3.1. Let (D, ω) be a cycle-symmetric pwls-digraph. Then, the following
statements are equivalent:

(i) The characteristic polynomial of (D, ω′) is the same for all skew-signings ω′ of (D, ω);
(ii) D contains no even cycles of length greater than 3.

We start with some preparatory results about skew-signings of pwls-digraphs. Let (D, ω)
be an arbitrary pwls-digraph and let ω′ be a skew-signing of (D, ω). We consider the
two arc-weight functions defined as follows: ω(uv) =

√
ω(uv)ω(vu) and ω̂′(uv) =

ω′(uv)
ω(uv)

√
ω(uv)ω(vu) for every arc uv of D. It is easy to check the following properties:

P1 The weighted adjacency matrix of (D, ω) is symmetric.
P2 ω̂′ is a skew-signing of (D, ω) and the weighted adjacency matrix of (D, ω̂′) is skew-

symmetric.
P3 Let q be a positive integer such that 3 ≤ q ≤ n. If (D, ω) is a (≤ q)-cycle-symmetric

digraph, then for every cycle
−→
C of D with length at most q we have ω(

−→
C ) = ω(

−→
C ) and

ω′(
−→
C ) = ω̂′(

−→
C ).

We denote by p(D,ω)(x) := xn
+ a1xn−1

+ · · · + an−1x + an the characteristic polynomial
of (D, ω). The characteristic polynomials of (D, ω′) and (D, ω̂′) are respectively denoted by
p(D,ω′)(x) := xn

+b1xn−1
+· · ·+bn−1x +bn and p(D,ω̂′)(x) := xn

+c1xn−1
+· · ·+cn−1x +cn .

From Formula (1), we have b1 = 0 and b2 = −a2. In particular, b1 and b2 are independent
of ω′.

Lemma 3.2. Let q be a positive integer such that 3 ≤ q ≤ n. If (D, ω) is (≤ q)-cycle-
symmetric, then:

bk =

⎧⎪⎪⎨⎪⎪⎩
0 if k is odd∑

−→
L ∈

−→
L e

k

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω′(
−→
L ) if k is even

for k = 1, . . . , q.

Proof. Let k ∈ {1, . . . , q}. From Property P3, we have ω′(
−→
L ) = ω̂′(

−→
L ) for every

−→
L ∈

−→
L k .

By using Formula (1), it follows that bk = ck . Moreover, from Property P2, A(D, ω̂′) is a
skew-symmetric matrix. Then by Formula (3) we have:

ck =

⎧⎪⎪⎨⎪⎪⎩
0 if k is odd∑

−→
L ∈

−→
L e

k

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω̂′(
−→
L ) if k is even.

Now, by applying again P3, we obtain

bk = ck =

⎧⎪⎪⎨⎪⎪⎩
0 if k is odd∑

−→
L ∈

−→
L e

k

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω′(
−→
L ) if k is even. □

We denote by
−→
C k the set of all cycles of length k in D. For a skew-signing ω′, this set

can be partitioned into two subsets:
−→
C +

k,ω′ and
−→
C −

k,ω′ where
−→
C +

k,ω′ (resp.
−→
C −

k,ω′ ) is the set of
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cycles
−→
C with length k such that ω′(

−→
C ) > 0 (resp. ω′(

−→
C ) < 0). In the case when k is even,

we denote by
−→
D k the set of all collections

−→
L of vertex disjoint digons that cover precisely k

vertices in D.

Corollary 3.3. Assume that (D, ω) is (≤ q−1)-cycle-symmetric for some q ∈ {4, . . . , n + 1}

and contains no even cycles of length k ∈ {3, . . . , q − 1}, then

bk =

⎧⎪⎨⎪⎩
0 if k is odd∑
−→
L ∈

−→
D k

ω(
−→
L ) if k is even

for k = 1, . . . , q − 1 and if q ≤ n, then

bq =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

∑
−→
C ∈

−→
C +

q,ω′

ω(
−→
C ) +

∑
−→
C ∈

−→
C −

q,ω′

ω(
−→
C ) if q is odd

−

∑
−→
C ∈

−→
C +

q,ω′

ω(
−→
C ) +

∑
−→
C ∈

−→
C −

q,ω′

ω(
−→
C ) +

∑
−→
L ∈

−→
Dq

ω(
−→
L ) if q is even.

Proof. The first equality follows from Lemma 3.2.
From Formula (1), we have

bq =

∑
−→
L ∈

−→
L q

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω′(
−→
L )

=

∑
−→
L ∈

−→
Lq∖(

−→
Le

q∪
−→
C q )

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω′(
−→
L ) +

∑
−→
L ∈

−→
L e

q\
−→
C q

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω′(
−→
L ) −

∑
−→
C ∈

−→
C q

ω′(
−→
C ).

By definition of
−→
C +

q,ω′ and
−→
C −

q,ω′ , we have∑
−→
C ∈

−→
C q

ω′(
−→
C ) =

∑
−→
C ∈

−→
C +

q,ω′

ω(
−→
C ) −

∑
−→
C ∈

−→
C −

q,ω′

ω(
−→
C ).

Consider now
−→
L ∈

−→
Lq ∖ (

−→
Le

q ∪
−→
C q ). By definition of

−→
Lq and

−→
Le

q , the linear subdigraph
−→
L

contains an odd cycle
−→
C among its components. Let

−→
L the linear subdigraph obtained from

−→
L by replacing the cycle

−→
C by

−→
C∗. Since

−→
C is odd and ω(

−→
C ) = ω(

−→
C∗), ω′(

−→
L ) = −ω′(

−→
L ′ ).

Thus, linear subdigraphs of
−→
Lq ∖ (

−→
Le

q ∪
−→
C q ) contribute 0 to bq .

Now, according to the parity of q ,we will distinguish two cases:
Case 1: If q is odd, then

−→
Le

q = ∅ and hence
bq = −

∑
−→
C ∈

−→
C +

q,ω′

ω(
−→
C ) +

∑
−→
C ∈

−→
C −

q,ω′

ω(
−→
C ).

Case 2: If q is even, then by hypothesis
−→
Le

q =
−→
Dq and hence

bq =
∑

−→
L ∈

−→
Dq

(−1)
⏐⏐⏐−→L ⏐⏐⏐

ω′(
−→
L ) −

∑
−→
C ∈

−→
C +

q,ω′

ω(
−→
C ) +

∑
−→
C ∈

−→
C −

q,ω′

ω(
−→
C ).

This completes the proof of the second equality. □
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The implication (i i) ⇒ (i) of Proposition 3.1 is deduced form Corollary 3.3 for q = n+1.
Before proving the implication (i) ⇒ (i i), we introduce some notations and establish

an intermediate result. Let (D, ω) be an arbitrary pwsl-digraph and consider an arbitrary
cycle of D of length q ⩾ 3 whose vertices are v1, . . . , vq and whose arcs are e1 :=

v1v2, . . . , eq−1 := vq−1vq , eq := vqv1. Let ω′ be a skew-signing of (D, ω). Let h ∈

{1, . . . , q}, we denote by η+

ω′ (e1, . . . , eh) the sum of the weights of cycles
−→
C of length q

in D such that ω′(
−→
C ) > 0 and contain arcs e1, . . . , eh . Define η−

ω′ (e1, . . . , eh) analogously.
For r < h, we denote by η+

ω′ (e1, . . . , er , er+1, . . . , eh) the sum of the weights of cycles
−→
C

of length q in D such that ω′(
−→
C ) > 0 and contain arcs e1, . . . , er but not arcs er+1, . . . , eh ,.

Define η−

ω′ (e1, . . . , er , er+1, . . . , eh) analogously.

Lemma 3.4. There exists a skew-signing ω′

0 of (D, ω) such that η+

ω′
0
(e1) ̸= η−

ω′
0
(e1).

Proof. Assume the contrary. We claim that for each t ∈ {1, . . . , q} and for all skew-signings
ω′ of (D, ω), η+

ω′ (e1, . . . , et ) = η−

ω′ (e1, . . . , et ). For this, we proceed by induction on t . The
case t = 1 is assumed. Let t ∈ {1, . . . , q − 1} and suppose that the claim is true for t . Then{

η+

ω′ (e1, . . . , et ) = η+

ω′ (e1, e2, . . . , et , et+1) + η+

ω′ (e1, e2, . . . , et , et+1)

η−

ω′ (e1, . . . , et ) = η−

ω′ (e1, e2, . . . , et , et+1) + η−

ω′ (e1, e2, . . . , et , et+1).

Consider now the skew-signing ω′′ that coincides with ω′ outside
{
et+1, e∗

t+1

}
and such

that ω′′(e) = −ω′(e) for e ∈
{
et+1, e∗

t+1

}
.

Then, we have{
η+

ω′′ (e1, . . . , et ) = η−

ω′ (e1, e2, . . . , et , et+1) + η+

ω′ (e1, e2, . . . , et , et+1)

η−

ω′′ (e1, . . . , et ) = η+

ω′ (e1, e2, . . . , et , et+1) + η−

ω′ (e1, e2, . . . , et , et+1).

But by induction hypothesis, we have η+

ω′′ (e1, . . . , et ) = η−

ω′′ (e1, . . . , et ) and η+

ω′ (e1, . . . ,

et ) = η−

ω′ (e1, . . . , et ).
Then

η+

ω′ (e1, . . . , et , et+1) − η−

ω′ (e1, . . . , et , et+1) = η−

ω′ (e1, . . . , et+1) − η+

ω′ (e1, . . . , et+1)

= η+

ω′ (e1, . . . , et+1) − η−

ω′ (e1, . . . , et+1).

Thus η+

ω′ (e1, . . . , et , et+1) = η−

ω′ (e1, e2, . . . , et , et+1).
This completes the induction proof. For t = q we have, η+

ω′ (e1, . . . , eq ) = η−

ω′ (e1, . . . , eq ).
Now, choose a skew-signing ω′ of (D, ω) such that ω′(e1) = ω(e1), . . . , ω′(eq ) = ω(eq ).

Then, we have η+

ω′ (e1, . . . , eq ) =

q∏
i=1

ω(ei ) and η−

ω′ (e1, . . . , eq ) = 0, a contradiction. It follows

that there exists a skew-signing ω′

0 such that η+

ω′
0
(e1) ̸= η−

ω′
0
(e1). □

The proof of (i) ⇒ (i i) in Proposition 3.1 follows from the following more general result.

Lemma 3.5. Let (D, ω) be an (≤ l)-cycle-symmetric pwsl-digraph where l ⩾ 3. If the
characteristic polynomial of (D, ω′) is the same for all skew-signings ω′ of (D, ω), then
every cycle of length at most l is an odd cycle or a digon.

Proof. Assume for contradiction that D contains an even cycle of length q ∈ {4, . . . , l} and
choose such a cycle with q as small as possible. We will use the notations of the previous
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lemma. Let ω′′ be the skew-signing of (D, ω) that coincides with ω′

0 outside
{
e1, e∗

1

}
and

such that ω′′(e) = −ω′

0(e) for e ∈
{
e1, e∗

1

}
. The characteristic polynomials of (D, ω′

0) and
(D, ω′′) are respectively denoted by p(D,ω′

0)(x) := xn
+ b1xn−1

+ · · · + bn−1x + bn and
p(D,ω′′)(x) := xn

+ c1xn−1
+ · · · + cn−1x + cn .

By the choice of q and from the second equality of Corollary 3.3, we have bq − cq =

−
∑

−→
C ∈

−→
C +

q,ω′
0

ω(
−→
C ) +

∑
−→
C ∈

−→
C −

q,ω′
0

ω(
−→
C ) +

∑
−→
C ∈

−→
C +

q,ω′′

ω(
−→
C ) −

∑
−→
C ∈

−→
C −

q,ω′′

ω(
−→
C ).

Every cycle
−→
C of length q that contains neither e1 nor e∗

1 contributes 0 to bq − cq . It
follows that:

bq − cq = −η+

ω′
0
(e1) − η+

ω′
0
(e∗

1) + η−

ω′
0
(e1) + η−

ω′
0
(e∗

1)

+ η+

ω′′ (e1) + η+

ω′′ (e∗

1) − η−

ω′′ (e1) − η−

ω′′ (e∗

1).

By construction of ω′′, we have η+

ω′′ (e1) = η−

ω′
0
(e1), η−

ω′′ (e1) = η+

ω′
0
(e1), η+

ω′′ (e∗

1) = η−

ω′
0
(e∗

1),

η−

ω′′ (e∗

1) = η+

ω′
0
(e∗

1).

Then bq − cq = −2(η+

ω′
0
(e1) + η+

ω′
0
(e∗

1)) + 2(η−

ω′
0
(e1) + η−

ω′
0
(e∗

1))

As (D, ω) is (≤ l)-cycle-symmetric, we have η+

ω′
0
(e1) = η+

ω′
0
(e∗

1), η−

ω′
0
(e∗

1) = η−

ω′
0
(e1) and

then bq − cq = −4(η+

ω′
0
(e1) − η−

ω′
0
(e1)) ̸= 0, a contradiction. □

4. PROOF OF THE MAIN THEOREM

The implication (i i) H⇒ (i) follows easily from Corollary 2.2 and Proposition 3.1. To
prove (i) H⇒ (i i) it suffices to use Proposition 3.1 and the next lemma.

Lemma 4.1. Let (D, ω) be a pwls-digraph. If the characteristic polynomial of (D, ω′) is the
same for all skew-signings ω′ of (D, ω), then (D, ω) is cycle-symmetric.

Proof. Assume for a contradiction that (D, ω) is not cycle-symmetric and let
−→
C 0 be a

shortest cycle of D such that ω(
−→
C 0) ̸= ω(

−→
C

∗

0). We denote by v1, . . . , vq the vertices of
−→
C 0 and e1 := v1v2, . . . , eq−1 := vq−1vq , eq := vqv1 its arcs. Let h ∈ {1, . . . , q} and
r ∈ {1, . . . , h}. For every skew-signing ω′ of (D, ω),we set:

N+

ω′ (e1, . . . , er , er+1, . . . , eh) = η+

ω′ (e1, . . . , er , er+1, . . . , eh)

+ η+

ω′ (e∗

1, . . . , e∗

r , e∗

r+1, . . . , e∗

h)
N−

ω′ (e1, . . . , er , er+1, . . . , eh) = η−

ω′ (e1, . . . , er , er+1, . . . , eh)

+ η−

ω′ (e∗

1, . . . , e∗

r , e∗

r+1, . . . , e∗

h).

Step 1 There exists a skew-signing ω′

0 of (D, ω) such that N+

ω′
0
(e1) ̸= N−

ω′
0
(e1).

Assume by contradiction that N+

ω′ (e1) = N−

ω′ (e1) for every skew-signing ω′ of (D, ω).
By using an induction process, we can deduce, as in the proof of Lemma 3.4, that
N+

ω′ (e1, . . . , eq ) = N−

ω′ (e1, . . . , eq ) for all skew-signings ω′ of (D, ω). However,

N+

ω′ (e1, . . . , eq ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω(

−→
C 0) + ω(

−→
C

∗

0) if q is even and ω′(
−→
C 0) > 0

0 if q is even and ω′(
−→
C 0) < 0

ω(
−→
C 0) if q is odd and ω′(

−→
C 0) > 0

ω(
−→
C

∗

0) if q is odd and ω′(
−→
C 0) < 0
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and

N−

ω′ (e1, . . . , eq ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if q is even and ω′(

−→
C 0) > 0

ω(
−→
C 0) + ω(

−→
C

∗

0) if q is even and ω′(
−→
C 0) < 0

ω(
−→
C

∗

0) if q is odd and ω′(
−→
C 0) > 0

ω(
−→
C 0) if q is odd and ω′(

−→
C 0) < 0

which contradicts our assumption on
−→
C 0. This completes the proof of Step 1.

Step 2. (D, ω) is (≤ q − 1)-cycle-symmetric and contains no even cycles of length k ∈

{3, . . . , q − 1}.
This follows from the choice of q and Lemma 3.5.
Consider now the skew-signing ω′′ of (D, ω) that coincides with ω′

0 outside
{
e1, e∗

1

}
and

such that ω′′(e) = −ω′

0(e) for e ∈
{
e1, e∗

1

}
. Let p(D,ω′

0)(x) := xn
+ b1xn−1

+· · ·+ bn−1x + bn

and p(D,ω′′)(x) := xn
+c1xn−1

+· · ·+cn−1x +cn be the characteristic polynomials of (D, ω′

0)
and (D, ω′′) respectively.

As in the proof of Lemma 3.5, we have

bq − cq = −2(η+

ω′
0
(e1) + η+

ω′
0
(e∗

1)) + 2(η−

ω′
0
(e1) + η−

ω′
0
(e∗

1))

= −2(N+

ω′
0
(e1) − N−

ω′
0
(e1)) ̸= 0

which contradicts Step 1. This ends the proof of lemma. □
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[3] M. Cavers, S.M. Cioabă, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald, M.
Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra Appl. 436 (2012) 4512–4529.

[4] D. Cui, Y. Hou, On the skew spectra of cartesian products of graphs, Electron. J. Combin. 20 (2) (2013) #P19.
[5] Shi-Cai Gong, Guang-Hui Xu, The characteristic polynomial and the matchings polynomial of a weighted

digraph, Linear Algebra Appl. 436 (2012) 3597–3607.
[6] Yaoping Hou, Tiangang Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, Elec.

J. Comb. 18 (2011) #p156.
[7] S. Liu, H. Zhang, Permanental polynomials of skew adjacency matrices of oriented graphs, arXiv:1409.3036

[math.CO].
[8] J.S. Maybee, Combinatorially symmetric matrices, Linear Algebra Appl. 8 (1974) 529–537.
[9] Seymour V. Parter, J.W.T. Youngs, The symmetrization of matrices by diagonal matrices, J. Math. Anal. Appl.

4 (1962) 102–110.
[10] B. Shader, Wasin So, Skew spectra of oriented graphs, Electron. J. Combin. 16 (2009) #N32.
[11] C.W. Shih, C.W. Weng, Cycle-symmetric matrices and convergent neural networks, Physica D 146 (2000)

213–220.

http://refhub.elsevier.com/S1319-5166(17)30090-7/sb1
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb1
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb1
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb2
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb2
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb2
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb3
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb3
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb3
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb4
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb5
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb5
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb5
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb6
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb6
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb6
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://arxiv.org/1409.3036
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb8
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb9
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb9
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb9
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb10
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb11
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb11
http://refhub.elsevier.com/S1319-5166(17)30090-7/sb11

	Skew-signings of positive weighted digraphs
	Introduction
	Cycle-symmetric digraphs
	Skew-signings of cycle-symmetric digraphs
	Proof of the main theorem
	References


