Skew-signings of positive weighted digraphs

Kawtar Attas, Abderrahim Boussaïri*, Mohamed Zaidi
Faculté des Sciences Aïn Chock, Département de Mathématiques et Informatique, Laboratoire de Topologie, Algèbre, Géométrie et Mathématiques discrètes, Km 8 route d'El Jadida, BP 5366 Maarif, Casablanca, Maroc

Received 17 April 2017; revised 2 November 2017; accepted 17 January 2018
Available online 3 February 2018

Abstract

An arc-weighted digraph is a pair (D, ω) where D is a digraph and ω is an arc-weight function that assigns to each arc $u v$ of D a nonzero real number $\omega(u v)$. Given an arc-weighted digraph (D, ω) with vertices v_{1}, \ldots, v_{n}, the weighted adjacency matrix of (D, ω) is defined as the $n \times n$ matrix $A(D, \omega)=\left[a_{i j}\right]$ where $a_{i j}=\omega\left(v_{i} v_{j}\right)$ if $v_{i} v_{j}$ is an arc of D, and 0 otherwise. Let (D, ω) be a positive arc-weighted digraph and assume that D is loopless and symmetric. A skew-signing of (D, ω) is an arc-weight function ω^{\prime} such that $\omega^{\prime}(u v)= \pm \omega(u v)$ and $\omega^{\prime}(u v) \omega^{\prime}(v u)<0$ for every arc $u v$ of D. In this paper, we give necessary and sufficient conditions under which the characteristic polynomial of $A\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω). Our main theorem generalizes a result of Cavers et al. (2012) about skew-adjacency matrices of graphs.

Keywords: Arc-weighted digraphs; Skew-signing of a digraph; Weighted adjacency matrix

Mathematics Subject Classification: 05C22; 05C31; 05C50

1. Introduction

A directed graph or, more simply, a digraph D is a pair $D=(V, E)$ where V is a set of vertices and E is a set of ordered pairs of vertices called $\operatorname{arcs.}$ For $u, v \in V$, the $\operatorname{arc} a=(u, v)$

[^0]
https://doi.org/10.1016/j.ajmsc.2018.01.001
1319-5166 © 2018 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
of D is denoted by $u v$. An arc of the form $u u$ is called a loop of D. A loopless digraph is one containing no loops. A symmetric digraph is a digraph such that if $u v$ is an arc then $v u$ is also an arc. Given a symmetric digraph $D=(V, E)$ and a subdigraph $H=(W, F)$ of D, we denote by H^{*} the subdigraph of D whose vertex set is W and arc set is $\{v u: u v \in F\}$.

Let G be a simple undirected and finite graph. An orientation of G is an assignment of a direction to each edge of G so that we obtain a directed graph \vec{G}. Let \vec{G} be an orientation of G. With respect to a labeling v_{1}, \ldots, v_{n} of the vertices of G, the skew-adjacency matrix of \vec{G} is the $n \times n$ real skew-symmetric matrix $S(\vec{G})=\left[s_{i j}\right]$, where $s_{i j}=1$ and $s_{j i}=-1$ if $v_{i} v_{j}$ is an arc of \vec{G}, otherwise $s_{i j}=s_{j i}=0$. The skew-characteristic polynomial of \vec{G} is defined as the characteristic polynomial of $S(\vec{G})$. This definition is correct because skew-adjacency matrices of \vec{G} with respect to different labelings are permutationally similar and so have the same characteristic polynomial.

There are several recent works about skew-characteristic polynomials of oriented graphs, one can see for example [1,3-6,10]. An open problem is to find the number of possible orientations with distinct skew-characteristic polynomials of a given graph G. In particular it is of interest to know whether all orientations of a graph G can have the same skewcharacteristic polynomial. The following theorem, obtained by Cavers et al. [3] gives an answer to this question.

Theorem 1.1. The orientations of a graph G all have the same skew-characteristic polynomial if and only if G has no cycles of even length.

A similar result to this theorem was obtained by Liu and Zhang [7]. They proved that all orientations of a graph G have the same permanental polynomial if and only if G has no cycles of even length.

In this work, we will extend Theorem 1.1 to positive weighted loopless and symmetric digraphs (which we abbreviate to pwls-digraphs). An arc-weighted digraph or more simply a weighted digraph is a pair (D, ω) where D is a digraph and ω is a arc-weight function that assigns to each arc $u v$ of D a nonzero real number $\omega(u v)$, called the weight of the arc $u v$. Let (D, ω) be a weighted digraph with vertices v_{1}, \ldots, v_{n}. The weighted adjacency matrix of (D, ω) is defined as the $n \times n$ matrix $A(D, \omega)=\left[a_{i j}\right]$ where $a_{i j}=\omega\left(v_{i} v_{j}\right)$, if $v_{i} v_{j}$ is an arc of D and 0 otherwise. Let (D, ω) be a pwls-digraph. A skew-signing of (D, ω) is an arc-weight function ω^{\prime} such that $\omega^{\prime}(u v)= \pm \omega^{\prime}(u v)$ and $\omega^{\prime}(u v) \omega^{\prime}(v u)<0$ for every arc $u v$ of D.

Our aim is to characterize the pwls-digraphs (D, ω) for which the characteristic polynomial of $A\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω). This characterization involves directed cycles in D. Recall that a directed cycle of length $t>0$ is a digraph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and arcs $v_{1} v_{2}, \ldots, v_{t-1} v_{t}, v_{t} v_{1}$. Throughout this paper, we use the term "cycle" to refer to a "directed cycle" in a digraph. A cycle of length $t=2$ is called a digon. A cycle is odd (resp. even) if its length is odd (resp. even). Our main result is the following theorem.

Theorem 1.2. Let (D, ω) be a pwls-digraph. Then the following statements are equivalent:
(i) The characteristic polynomial of $\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω).
(ii) D has no even cycles of length more than 2 and $A(D, \omega)=\Delta^{-1} S \Delta$ where S is a nonnegative symmetric matrix with zero diagonal and Δ is a diagonal matrix with positive diagonal entries.

Note that a graph G can be identified with the pwls-digraph obtained from G by replacing each edge joining two vertices u and v by the arcs $u v$ and $v u$, both of them have weight 1 . Moreover, every orientation of G can be identified with a skew-signing of this weighted digraph. Then, our main result is a generalization of Theorem 1.1.

2. CYCLE-SYMMETRIC DIGRAPHS

There is a natural correspondence between real matrices and weighted digraphs. Indeed, every $n \times n$ real matrix $M=\left[m_{i j}\right]$ is the weighted adjacency matrix of a unique weighted digraph $\left(D_{M}, \omega_{M}\right)$ with vertex set $\{1, \ldots, n\}$. This digraph, called the weighted digraph associated to M, is defined as follows: $i j$ is an arc of D_{M} iff $m_{i j} \neq 0$, and the weight of an $\operatorname{arc} i j$ is $\omega_{M}(i j)=m_{i j}$.

We start with some formulas involving the characteristic polynomial of a matrix and its weighted associated digraph. For this, we need some notations and definitions. Let D be a digraph. A linear subdigraph L of D is a vertex disjoint union of some cycles in D. A linear subdigraph L of D is called even linear if L contains no odd cycles. Let $\overrightarrow{\mathcal{L}}_{k}(D)$ (resp. $\overrightarrow{\mathcal{L}}_{k}^{e}(D)$) denote the set of all linear (resp. even linear) subdigraphs of D that cover precisely k vertices of D. We usually write this as $\overrightarrow{\mathcal{L}}_{k}$ (resp. $\overrightarrow{\mathcal{L}}_{k}^{e}$) when no ambiguity can arise.

Let A be a real matrix and let (D, ω) be the weighted digraph associated to A. We denote by $p_{A}(x)=\operatorname{det}(x I-A)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ the characteristic polynomial of A. The Coates determinant formula (see [2] p. 65) can be stated as follows:

$$
\begin{equation*}
a_{k}=\left.\sum_{\vec{L} \in \overrightarrow{\mathfrak{L}}_{k}}(-1)^{\mid \vec{L}}\right|_{\omega(\vec{L})} \tag{1}
\end{equation*}
$$

where $|\vec{L}|$ denotes the number of cycles in \vec{L} and $\omega(\vec{L})$ is the product of all the weights of the arcs of \vec{L}.

In particular

$$
\begin{equation*}
\operatorname{det}(A)=(-1)^{n} a_{n}=(-1)^{n} \sum_{\vec{L} \in \overrightarrow{\mathcal{L}}_{n}}(-1)^{|\vec{L}|_{\omega(}(\vec{L}) .} \tag{2}
\end{equation*}
$$

We consider now the case where A is skew-symmetric. Let \vec{C} be a cycle of length k of D. Then

$$
\begin{aligned}
\omega(\vec{C}) & =a_{i_{1} i_{2}} a_{i_{2} i_{3}} \ldots a_{i_{k-1} i_{k}} a_{i_{k} i_{1}}=(-1)^{k} a_{i_{1} i_{k}} a_{i_{k} i_{k-1}} \ldots a_{i_{3} i_{2}} a_{i_{2} i_{1}} \\
& =(-1)^{k} \omega\left(\overrightarrow{C^{*}}\right) \\
& =\left\{\begin{array}{l}
-\omega\left(\overrightarrow{C^{*}}\right) \text { if } k \text { is odd } \\
\omega\left(\overrightarrow{C^{*}}\right) \text { if } k \text { is even. }
\end{array}\right.
\end{aligned}
$$

Let $\vec{L} \in \overrightarrow{\mathcal{L}_{k}} \backslash \overrightarrow{\mathcal{L}_{k}^{e}}$. By definition of $\overrightarrow{\mathcal{L}_{k}}$ and $\overrightarrow{\mathcal{L}_{k}^{e}}$, the linear subdigraph \vec{L} contains an odd cycle \vec{C} among its components. Let $\overrightarrow{L^{\prime}}$ the linear subdigraph obtained from \vec{L} by replacing the cycle \vec{C} by $\overrightarrow{C^{*}}$. Since \vec{C} is odd, and then $\omega(\vec{C})=-\omega\left(\overrightarrow{C^{*}}\right), \omega(\vec{L})=-\omega\left(\overrightarrow{L^{\prime}}\right)$. Thus, linear subdigraphs of $\overrightarrow{\mathcal{L}_{k}} \backslash \overrightarrow{\mathcal{L}_{k}^{e}}$ contribute 0 to a_{k}.

It follows that

$$
a_{k}=\left.\sum_{\vec{L} \in \overrightarrow{\mathcal{L}}_{k}^{e}}(-1)^{\mid \vec{L}}\right|_{\omega(\vec{L})} .
$$

If k is odd, then $\overrightarrow{\mathcal{L}_{k}^{e}}$ is empty, and hence

$$
a_{k}=\left\{\begin{array}{c}
0 \text { if } k \text { is odd } \tag{3}\\
\sum_{\vec{L} \in \overrightarrow{\mathcal{L}}_{k}^{e}}(-1)^{\mid \vec{L}} \mid \omega(\vec{L}) \text { if } k \text { is even. }
\end{array}\right.
$$

We introduce now a special class of weighted symmetric digraphs called cycle-symmetric digraphs. The characterization of these digraphs will be used in the proof of our main theorem.

Let ω be a positive arc-weight function of D and let q be a positive integer. We say that (D, ω) is $(\leq q)$-cycle-symmetric if $\omega(\vec{C})=\omega\left(\vec{C}^{*}\right)$ for every cycle \vec{C} of D of length at most q. If $q=n$ then (D, ω) is said to be cycle-symmetric.

We borrowed the terminology "cycle-symmetric" from Shih and Weng [11]. Following this paper, an $n \times n$ real matrix $\left[a_{i j}\right]$ is called cycle-symmetric if the following two conditions hold:
(C1) for $i \neq j \in\{1, \ldots, n\}, a_{i j} a_{j i}>0$ or $a_{i j}=a_{j i}=0$;
(C2) For any sequence of distinct integers i_{1}, \ldots, i_{k} from the set $\{1, \ldots, n\}$, we have

$$
a_{i_{1} i_{2}} a_{i_{2} i_{3}} \cdots a_{i_{k-1} i_{k}} a_{i_{k} i_{1}}=a_{i_{1} i_{k}} a_{i_{i_{k} i_{k-1}}} \cdots a_{i_{3} i_{2}} a_{i_{2} i_{1}} .
$$

Remark 1. Obviously, a pwls-digraph (D, ω) is always (≤ 2)-cycle-symmetric. Moreover, a pwls-digraph is cycle-symmetric if and only if its weighted adjacency matrix is cyclesymmetric.

The following theorem gives a characterization of cycle-symmetric matrices. For the proof, one can see [8,9,11].

Theorem 2.1. An $n \times n$ real matrix A is cycle-symmetric if and only if there exists an invertible diagonal matrix D such that $D^{-1} A D$ is symmetric.

It easy to see that if A is a nonnegative matrix, then the diagonal entries of D can be chosen positive. So by using Remark 1, we obtain the following corollary.

Corollary 2.2. Let (D, ω) be a pwls-digraph. Then, the following statements are equivalent:
(i) (D, ω) is cycle-symmetric.
(ii) $A(D, \omega)=\Delta^{-1} S \Delta$ where S is a nonnegative symmetric matrix with zero diagonal and Δ is a diagonal matrix with positive diagonal entries.

3. SKEW-SIGNINGS OF CYCLE-SYMMETRIC DIGRAPHS

In this section, we will prove the following proposition, which is a special case of our main theorem for cycle-symmetric pwsl-digraphs.

Proposition 3.1. Let (D, ω) be a cycle-symmetric pwls-digraph. Then, the following statements are equivalent:
(i) The characteristic polynomial of $\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω);
(ii) D contains no even cycles of length greater than 3.

We start with some preparatory results about skew-signings of pwls-digraphs. Let (D, ω) be an arbitrary pwls-digraph and let ω^{\prime} be a skew-signing of (D, ω). We consider the two arc-weight functions defined as follows: $\bar{\omega}(u v)=\sqrt{\omega(u v) \omega(v u)}$ and $\widehat{\omega^{\prime}}(u v)=$ $\frac{\omega^{\prime}(u v)}{\omega(u v)} \sqrt{\omega(u v) \omega(v u)}$ for every arc $u v$ of D. It is easy to check the following properties:
P1 The weighted adjacency matrix of $(D, \bar{\omega})$ is symmetric.
$\mathbf{P 2} \widehat{\omega^{\prime}}$ is a skew-signing of $(D, \bar{\omega})$ and the weighted adjacency matrix of ($D, \widehat{\omega^{\prime}}$) is skewsymmetric.
P3 Let q be a positive integer such that $3 \leq q \leq n$. If (D, ω) is a ($\leq q$)-cycle-symmetric digraph, then for every cycle \vec{C} of D with length at most q we have $\omega(\vec{C})=\bar{\omega}(\vec{C})$ and $\omega^{\prime}(\vec{C})=\widehat{\omega^{\prime}}(\vec{C})$.

We denote by $p_{(D, \omega)}(x):=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ the characteristic polynomial of (D, ω). The characteristic polynomials of $\left(D, \omega^{\prime}\right)$ and $\left(D, \widehat{\omega^{\prime}}\right)$ are respectively denoted by $p_{\left(D, \omega^{\prime}\right)}(x):=x^{n}+b_{1} x^{n-1}+\cdots+b_{n-1} x+b_{n}$ and $p_{\left(D, \widehat{\omega^{\prime}}\right)}(x):=x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x+c_{n}$.

From Formula (1), we have $b_{1}=0$ and $b_{2}=-a_{2}$. In particular, b_{1} and b_{2} are independent of ω^{\prime}.

Lemma 3.2. Let q be a positive integer such that $3 \leq q \leq n$. If (D, ω) is $(\leq q)$-cyclesymmetric, then:

$$
b_{k}=\left\{\begin{array}{cc}
0 & \text { if } k \text { is odd } \\
\left.\sum_{\vec{L} \in \overrightarrow{\mathcal{L}}_{k}^{e}}(-1)^{\mid \vec{L}}\right|_{\omega^{\prime}(\vec{L})} \text { if } k \text { is even }
\end{array}\right.
$$

for $k=1, \ldots, q$.
Proof. Let $k \in\{1, \ldots, q\}$. From Property P3, we have $\omega^{\prime}(\vec{L})=\widehat{\omega^{\prime}}(\vec{L})$ for every $\vec{L} \in \overrightarrow{\mathcal{L}}_{k}$. By using Formula (1), it follows that $b_{k}=c_{k}$. Moreover, from Property $\mathbf{P 2}, A\left(D, \widehat{\omega^{\prime}}\right)$ is a skew-symmetric matrix. Then by Formula (3) we have:

$$
c_{k}=\left\{\begin{array}{cc}
0 & \text { if } k \text { is odd } \\
\sum_{\vec{L} \in \overrightarrow{\mathcal{L}}_{k}^{e}}(-1)^{\mid \vec{L}} \mid \widehat{\omega^{\prime}}(\vec{L}) & \text { if } k \text { is even. }
\end{array}\right.
$$

Now, by applying again $\mathbf{P 3}$, we obtain

$$
b_{k}=c_{k}=\left\{\begin{array}{cc}
0 & \text { if } k \text { is odd } \\
\left.\sum_{\vec{L} \in \overrightarrow{\mathcal{L}}_{k}^{e}}(-1)^{\mid \vec{L}}\right|_{\omega^{\prime}(\vec{L})} \text { if } k \text { is even. }
\end{array}\right.
$$

We denote by $\overrightarrow{\mathcal{C}}_{k}$ the set of all cycles of length k in D. For a skew-signing ω^{\prime}, this set can be partitioned into two subsets: $\overrightarrow{\mathcal{C}}_{k, \omega^{\prime}}^{+}$and $\overrightarrow{\mathcal{C}}_{k, \omega^{\prime}}^{-}$where $\overrightarrow{\mathcal{C}}_{k, \omega^{\prime}}^{+}\left(\right.$resp. $\left.\overrightarrow{\mathcal{C}}_{k, \omega^{\prime}}^{-}\right)$is the set of
cycles \vec{C} with length k such that $\omega^{\prime}(\vec{C})>0$ (resp. $\omega^{\prime}(\vec{C})<0$). In the case when k is even, we denote by $\overrightarrow{\mathcal{D}}_{k}$ the set of all collections \vec{L} of vertex disjoint digons that cover precisely k vertices in D.

Corollary 3.3. Assume that (D, ω) is $(\leq q-1)$-cycle-symmetric for some $q \in\{4, \ldots, n+1\}$ and contains no even cycles of length $k \in\{3, \ldots, q-1\}$, then

$$
b_{k}= \begin{cases}0 & \text { if } k \text { is odd } \\ \sum_{\vec{L} \in \overrightarrow{\mathcal{D}}_{k}} \omega(\vec{L}) & \text { if } k \text { is even }\end{cases}
$$

for $k=1, \ldots, q-1$ and if $q \leq n$, then

$$
b_{q}= \begin{cases}-\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{+}} \omega(\vec{C})+\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q}^{-}} \omega\left(\omega^{\prime}\right. \\ -\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{+}} \omega(\vec{C})+\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{-}} \omega(\vec{C})+\sum_{\vec{L} \in \overrightarrow{\mathcal{D}}_{q}} \omega(\vec{L}) \text { if } q \text { is even } .\end{cases}
$$

Proof. The first equality follows from Lemma 3.2.
From Formula (1), we have

$$
\begin{aligned}
b_{q} & =\left.\sum_{\vec{L} \in \overrightarrow{\mathcal{L}}_{q}}(-1)^{\mid \vec{L}}\right|_{\omega^{\prime}(\vec{L})} \\
& =\sum_{\vec{L} \in \overrightarrow{\mathcal{L}_{q}} \backslash\left(\overrightarrow{\mathcal{L}_{q}} \cup \overrightarrow{\mathcal{C}}_{q}\right)}(-1)^{|\vec{L}|_{\omega^{\prime}}(\vec{L})+\sum_{\vec{L} \in \overrightarrow{\mathcal{L}}_{q}^{e} \backslash \overrightarrow{\mathcal{C}}_{q}}(-1)^{|\vec{L}|} \omega^{\prime}(\vec{L})-\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q}} \omega^{\prime}(\vec{C}) .} .
\end{aligned}
$$

By definition of $\overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{+}$and $\overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{-}$, we have

$$
\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q}} \omega^{\prime}(\vec{C})=\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{+}} \omega(\vec{C})-\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{-}} \omega(\vec{C})
$$

Consider now $\vec{L} \in \overrightarrow{\mathcal{L}_{q}} \backslash\left(\overrightarrow{\mathcal{L}_{q}^{e}} \cup \overrightarrow{\mathcal{C}}_{q}\right)$. By definition of $\overrightarrow{\mathcal{L}_{q}}$ and $\overrightarrow{\mathcal{L}_{q}^{e}}$, the linear subdigraph \vec{L} $\xrightarrow{\text { contains an odd cycle } \vec{C}}$ among its components. Let \vec{L} the linear subdigraph obtained from \vec{L} by replacing the cycle \vec{C} by $\overrightarrow{C^{*}}$. Since \vec{C} is odd and $\omega(\vec{C})=\omega\left(\overrightarrow{C^{*}}\right), \omega^{\prime}(\vec{L})=-\omega^{\prime}\left(\overrightarrow{L^{\prime}}\right)$. Thus, linear subdigraphs of $\overrightarrow{\mathcal{L}_{q}} \backslash\left(\overrightarrow{\mathcal{L}}_{q}^{e} \cup \overrightarrow{\mathcal{C}}_{q}\right)$ contribute 0 to b_{q}.

Now, according to the parity of q,we will distinguish two cases:
Case 1: If q is odd, then $\overrightarrow{\mathcal{L}_{q}^{e}}=\emptyset$ and hence

$$
b_{q}=-\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{+}} \omega(\vec{C})+\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{-}} \omega(\vec{C})
$$

Case 2: If q is even, then by hypothesis $\overrightarrow{\mathcal{L}_{q}^{e}}=\overrightarrow{\mathcal{D}_{q}}$ and hence

$$
b_{q}=\left.\sum_{\vec{L} \in \overrightarrow{\mathcal{D}}_{q}}(-1)^{\mid \vec{L}}\right|_{\omega^{\prime}}(\vec{L})-\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{+}} \omega(\vec{C})+\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime}}^{-}} \omega(\vec{C}) .
$$

This completes the proof of the second equality.

The implication $(i i) \Rightarrow(i)$ of Proposition 3.1 is deduced form Corollary 3.3 for $q=n+1$. Before proving the implication $(i) \Rightarrow$ (ii), we introduce some notations and establish an intermediate result. Let (D, ω) be an arbitrary pwsl-digraph and consider an arbitrary cycle of D of length $q \geqslant 3$ whose vertices are v_{1}, \ldots, v_{q} and whose arcs are $e_{1}:=$ $v_{1} v_{2}, \ldots, e_{q-1}:=v_{q-1} v_{q}, e_{q}:=v_{q} v_{1}$. Let ω^{\prime} be a skew-signing of (D, ω). Let $h \in$ $\{1, \ldots, q\}$, we denote by $\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{h}\right)$ the sum of the weights of cycles \vec{C} of length q in D such that $\omega^{\prime}(\vec{C})>0$ and contain arcs e_{1}, \ldots, e_{h}. Define $\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{h}\right)$ analogously. For $r<h$, we denote by $\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{r}, \overline{e_{r+1}}, \ldots, \overline{e_{h}}\right)$ the sum of the weights of cycles \vec{C} of length q in D such that $\omega^{\prime}(\vec{C})>0$ and contain arcs e_{1}, \ldots, e_{r} but not $\operatorname{arcs} e_{r+1}, \ldots, e_{h}$, Define $\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{r}, \overline{e_{r+1}}, \ldots, \overline{e_{h}}\right)$ analogously.

Lemma 3.4. There exists a skew-signing ω_{0}^{\prime} of (D, ω) such that $\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right) \neq \eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)$.
Proof. Assume the contrary. We claim that for each $t \in\{1, \ldots, q\}$ and for all skew-signings ω^{\prime} of $(D, \omega), \eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{t}\right)=\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{t}\right)$. For this, we proceed by induction on t. The case $t=1$ is assumed. Let $t \in\{1, \ldots, q-1\}$ and suppose that the claim is true for t. Then

$$
\left\{\begin{array}{l}
\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{t}\right)=\eta_{\omega^{\prime}}^{+}\left(e_{1}, e_{2}, \ldots, e_{t}, e_{t+1}\right)+\eta_{\omega^{\prime}}^{+}\left(e_{1}, e_{2}, \ldots, e_{t}, \overline{e_{t+1}}\right) \\
\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{t}\right)=\eta_{\omega^{\prime}}^{-}\left(e_{1}, e_{2}, \ldots, e_{t}, e_{t+1}\right)+\eta_{\overline{\omega^{\prime}}}^{-}\left(e_{1}, e_{2}, \ldots, e_{t}, \overline{e_{t+1}}\right) .
\end{array}\right.
$$

Consider now the skew-signing $\omega^{\prime \prime}$ that coincides with ω^{\prime} outside $\left\{e_{t+1}, e_{t+1}^{*}\right\}$ and such that $\omega^{\prime \prime}(e)=-\omega^{\prime}(e)$ for $e \in\left\{e_{t+1}, e_{t+1}^{*}\right\}$.

Then, we have

$$
\left\{\begin{array}{l}
\eta_{\omega^{\prime \prime}}^{+}\left(e_{1}, \ldots, e_{t}\right)=\eta_{\overline{\omega^{\prime}}}^{-}\left(e_{1}, e_{2}, \ldots, e_{t}, e_{t+1}\right)+\eta_{\omega^{\prime}}^{+}\left(e_{1}, e_{2}, \ldots, e_{t}, \overline{e_{t+1}}\right) \\
\eta_{\omega^{\prime \prime}}^{-}\left(e_{1}, \ldots, e_{t}\right)=\eta_{\omega^{\prime}}^{+}\left(e_{1}, e_{2}, \ldots, e_{t}, e_{t+1}\right)+\eta_{\overline{\omega^{\prime}}}\left(e_{1}, e_{2}, \ldots, e_{t}, \overline{e_{t+1}}\right) .
\end{array}\right.
$$

But by induction hypothesis, we have $\eta_{\omega^{\prime \prime}}^{+}\left(e_{1}, \ldots, e_{t}\right)=\eta_{\omega^{\prime \prime}}^{-}\left(e_{1}, \ldots, e_{t}\right)$ and $\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots\right.$, $\left.e_{t}\right)=\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{t}\right)$.

Then

$$
\begin{aligned}
\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{t}, \overline{e_{t+1}}\right)-\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{t}, \overline{e_{t+1}}\right) & =\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{t+1}\right)-\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{t+1}\right) \\
& =\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{t+1}\right)-\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{t+1}\right) .
\end{aligned}
$$

Thus $\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{t}, e_{t+1}\right)=\eta_{\omega^{\prime}}^{-}\left(e_{1}, e_{2}, \ldots, e_{t}, e_{t+1}\right)$.
This completes the induction proof. For $t=q$ we have, $\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{q}\right)=\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{q}\right)$.
Now, choose a skew-signing ω^{\prime} of (D, ω) such that $\omega^{\prime}\left(e_{1}\right)=\omega\left(e_{1}\right), \ldots, \omega^{\prime}\left(e_{q}\right)=\omega\left(e_{q}\right)$. Then, we have $\eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{q}\right)=\prod_{i=1}^{q} \omega\left(e_{i}\right)$ and $\eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{q}\right)=0$, a contradiction. It follows that there exists a skew-signing ω_{0}^{\prime} such that $\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right) \neq \eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)$.

The proof of $(i) \Rightarrow$ (ii) in Proposition 3.1 follows from the following more general result.
Lemma 3.5. Let (D, ω) be an $(\leq l)$-cycle-symmetric pwsl-digraph where $l \geqslant 3$. If the characteristic polynomial of $\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω), then every cycle of length at most l is an odd cycle or a digon.

Proof. Assume for contradiction that D contains an even cycle of length $q \in\{4, \ldots, l\}$ and choose such a cycle with q as small as possible. We will use the notations of the previous
lemma. Let $\omega^{\prime \prime}$ be the skew-signing of (D, ω) that coincides with ω_{0}^{\prime} outside $\left\{e_{1}, e_{1}^{*}\right\}$ and such that $\omega^{\prime \prime}(e)=-\omega_{0}^{\prime}(e)$ for $e \in\left\{e_{1}, e_{1}^{*}\right\}$. The characteristic polynomials of $\left(D, \omega_{0}^{\prime}\right)$ and $\left(D, \omega^{\prime \prime}\right)$ are respectively denoted by $p_{\left(D, \omega_{0}^{\prime}\right)}(x):=x^{n}+b_{1} x^{n-1}+\cdots+b_{n-1} x+b_{n}$ and $p_{\left(D, \omega^{\prime \prime}\right)}(x):=x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x+c_{n}$.

By the choice of q and from the second equality of Corollary 3.3, we have $b_{q}-c_{q}=$ $-\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega_{0}^{\prime}}^{+}} \omega(\vec{C})+\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega_{0}^{\prime}}^{-}} \omega(\vec{C})+\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}_{q, \omega^{\prime \prime}}^{+}} \omega(\vec{C})-\sum_{\vec{C} \in \overrightarrow{\mathcal{C}}}^{q, \omega^{\prime \prime}}-$

Every cycle \vec{C} of length q that contains neither e_{1} nor e_{1}^{*} contributes 0 to $b_{q}-c_{q}$. It follows that:

$$
\begin{aligned}
b_{q}-c_{q} & =-\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right)-\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}^{*}\right)+\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)+\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}^{*}\right) \\
& +\eta_{\omega^{\prime \prime}}^{+}\left(e_{1}\right)+\eta_{\omega^{\prime \prime}}^{+}\left(e_{1}^{*}\right)-\eta_{\omega^{\prime \prime}}^{-}\left(e_{1}\right)-\eta_{\omega^{\prime \prime}}^{-}\left(e_{1}^{*}\right) .
\end{aligned}
$$

By construction of $\omega^{\prime \prime}$, we have $\eta_{\omega^{\prime \prime}}^{+}\left(e_{1}\right)=\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right), \eta_{\omega^{\prime \prime}}^{-}\left(e_{1}\right)=\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right), \eta_{\omega^{\prime \prime}}^{+}\left(e_{1}^{*}\right)=\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}^{*}\right)$, $\eta_{\omega^{\prime \prime}}^{-}\left(e_{1}^{*}\right)=\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}^{*}\right)$.

Then $b_{q}-c_{q}=-2\left(\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right)+\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}^{*}\right)\right)+2\left(\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)+\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}^{*}\right)\right)$
As (D, ω) is $(\leq l)$-cycle-symmetric, we have $\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right)=\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}^{*}\right), \eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}^{*}\right)=\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)$ and then $b_{q}-c_{q}=-4\left(\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right)-\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)\right) \neq 0$, a contradiction.

4. Proof of the main theorem

The implication $(i i) \Longrightarrow(i)$ follows easily from Corollary 2.2 and Proposition 3.1. To prove $(i) \Longrightarrow(i i)$ it suffices to use Proposition 3.1 and the next lemma.

Lemma 4.1. Let (D, ω) be a pwls-digraph. If the characteristic polynomial of $\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω), then (D, ω) is cycle-symmetric.

Proof. Assume for a contradiction that (D, ω) is not cycle-symmetric and let \vec{C}_{0} be a shortest cycle of D such that $\omega\left(\vec{C}_{0}\right) \neq \omega\left(\vec{C}_{0}^{*}\right)$. We denote by v_{1}, \ldots, v_{q} the vertices of \vec{C}_{0} and $e_{1}:=v_{1} v_{2}, \ldots, e_{q-1}:=v_{q-1} v_{q}, e_{q}:=v_{q} v_{1}$ its arcs. Let $h \in\{1, \ldots, q\}$ and $r \in\{1, \ldots, h\}$. For every skew-signing ω^{\prime} of (D, ω),we set:

$$
\begin{aligned}
N_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{r}, \overline{e_{r+1}}, \ldots, \overline{e_{h}}\right)= & \eta_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{r}, \overline{e_{r+1}}, \ldots, \overline{e_{h}}\right) \\
& +\eta_{\omega^{\prime}}^{+}\left(e_{1}^{*}, \ldots, e_{r}^{*}, \overline{e_{r+1}^{*}}, \ldots, \overline{e_{h}^{*}}\right) \\
N_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{r}, \overline{e_{r+1}}, \ldots, \overline{e_{h}}\right)= & \eta_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{r}, \overline{e_{r+1}}, \ldots, \overline{e_{h}}\right) \\
& +\eta_{\overline{\omega^{\prime}}}^{-}\left(e_{1}^{*}, \ldots, e_{r}^{*}, \overline{e_{r+1}^{*}}, \ldots, \overline{e_{h}^{*}}\right) .
\end{aligned}
$$

Step 1 There exists a skew-signing ω_{0}^{\prime} of (D, ω) such that $N_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right) \neq N_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)$.
Assume by contradiction that $N_{\omega^{\prime}}^{+}\left(e_{1}\right)=N_{\omega^{\prime}}^{-}\left(e_{1}\right)$ for every skew-signing ω^{\prime} of (D, ω). By using an induction process, we can deduce, as in the proof of Lemma 3.4, that $N_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{q}\right)=N_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{q}\right)$ for all skew-signings ω^{\prime} of (D, ω). However,

$$
N_{\omega^{\prime}}^{+}\left(e_{1}, \ldots, e_{q}\right)= \begin{cases}\omega\left(\vec{C}_{0}\right)+\omega\left(\vec{C}_{0}^{*}\right) & \text { if } q \text { is even and } \omega^{\prime}\left(\vec{C}_{0}\right)>0 \\ 0 & \text { if } q \text { is even and } \omega^{\prime}\left(\vec{C}_{0}\right)<0 \\ \omega\left(\vec{C}_{0}\right) & \text { if } q \text { is odd and } \omega^{\prime}\left(\vec{C}_{0}\right)>0 \\ \omega\left(\vec{C}_{0}^{*}\right) & \text { if } q \text { is odd and } \omega^{\prime}\left(\vec{C}_{0}\right)<0\end{cases}
$$

and

$$
N_{\omega^{\prime}}^{-}\left(e_{1}, \ldots, e_{q}\right)= \begin{cases}0 & \text { if } q \text { is even and } \omega^{\prime}\left(\vec{C}_{0}\right)>0 \\ \omega\left(\vec{C}_{0}\right)+\omega\left(\vec{C}_{0}^{*}\right) & \text { if } q \text { is even and } \omega^{\prime}\left(\vec{C}_{0}\right)<0 \\ \omega\left(\vec{C}_{0}^{*}\right) & \text { if } q \text { is odd and } \omega^{\prime}\left(\vec{C}_{0}\right)>0 \\ \omega\left(\vec{C}_{0}\right) & \text { if } q \text { is odd and } \omega^{\prime}\left(\vec{C}_{0}\right)<0\end{cases}
$$

which contradicts our assumption on \vec{C}_{0}. This completes the proof of Step 1.
Step 2. (D, ω) is $(\leq q-1)$-cycle-symmetric and contains no even cycles of length $k \in$ $\{3, \ldots, q-1\}$.

This follows from the choice of q and Lemma 3.5.
Consider now the skew-signing $\omega^{\prime \prime}$ of (D, ω) that coincides with ω_{0}^{\prime} outside $\left\{e_{1}, e_{1}^{*}\right\}$ and such that $\omega^{\prime \prime}(e)=-\omega_{0}^{\prime}(e)$ for $e \in\left\{e_{1}, e_{1}^{*}\right\}$. Let $p_{\left(D, \omega_{0}^{\prime}\right)}(x):=x^{n}+b_{1} x^{n-1}+\cdots+b_{n-1} x+b_{n}$ and $p_{\left(D, \omega^{\prime \prime}\right)}(x):=x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x+c_{n}$ be the characteristic polynomials of $\left(D, \omega_{0}^{\prime}\right)$ and ($D, \omega^{\prime \prime}$) respectively.

As in the proof of Lemma 3.5, we have

$$
\begin{aligned}
b_{q}-c_{q} & =-2\left(\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right)+\eta_{\omega_{0}^{\prime}}^{+}\left(e_{1}^{*}\right)\right)+2\left(\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)+\eta_{\omega_{0}^{\prime}}^{-}\left(e_{1}^{*}\right)\right) \\
& =-2\left(N_{\omega_{0}^{\prime}}^{+}\left(e_{1}\right)-N_{\omega_{0}^{\prime}}^{-}\left(e_{1}\right)\right) \neq 0
\end{aligned}
$$

which contradicts Step 1. This ends the proof of lemma.

References

[1] A. Anuradha, R. Balakrishnan, Wasin So, Skew spectra of graphs without even cycles, Linear Algebra Appl. 444 (2014) 67-80.
[2] R.A. Brualdi, D. Cvetkovič, A Combinatorial Approach to Matrix Theory and its Applications, CRC Press, 2008.
[3] M. Cavers, S.M. Cioabă, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald, M. Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra Appl. 436 (2012) 4512-4529.
[4] D. Cui, Y. Hou, On the skew spectra of cartesian products of graphs, Electron. J. Combin. 20 (2) (2013) \#P19.
[5] Shi-Cai Gong, Guang-Hui Xu, The characteristic polynomial and the matchings polynomial of a weighted digraph, Linear Algebra Appl. 436 (2012) 3597-3607.
[6] Yaoping Hou, Tiangang Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, Elec. J. Comb. 18 (2011) \#p156.
[7] S. Liu, H. Zhang, Permanental polynomials of skew adjacency matrices of oriented graphs, arXiv:1409.3036 [math.CO].
[8] J.S. Maybee, Combinatorially symmetric matrices, Linear Algebra Appl. 8 (1974) 529-537.
[9] Seymour V. Parter, J.W.T. Youngs, The symmetrization of matrices by diagonal matrices, J. Math. Anal. Appl. 4 (1962) 102-110.
[10] B. Shader, Wasin So, Skew spectra of oriented graphs, Electron. J. Combin. 16 (2009) \#N32.
[11] C.W. Shih, C.W. Weng, Cycle-symmetric matrices and convergent neural networks, Physica D 146 (2000) 213-220.

[^0]: * Corresponding author.

 E-mail addresses: kawtar.attas@gmail.com (K. Attas), aboussairi@hotmail.com (A. Boussaïri), zaidi.fsac@gmail.com (M. Zaidi).
 Peer review under responsibility of King Saud University.

