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Abstract. In 2014, Asadi et al. introduced the concept of an M-metric space which is
a generalization of a partial metric space and established Banach and Kannan fixed point
theorems on M-metric spaces. In this work, we prove two fixed point theorems for Chatterjea
contraction mappings in the framework of M-metric spaces. These provide partial answers to
a question posed by Asadi et al. concerning a fixed point for Chatterjea contraction mappings.
We also give some examples and numerical results which can be obtained from our results.
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1. INTRODUCTION

The famous metric fixed point theorem, generally known as the Banach contraction
principle, is one of the essential results in the metric fixed point theory. This principle states
that, if (X, d) is a complete metric space, then a mapping T : X → X satisfying the Banach
contractive condition, that is, there exists k ∈ [0, 1) such that
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d(T x, T y) ≤ kd(x, y) (1.1)

for all x, y ∈ X , has a unique fixed point.
In fact, the origin of this principle appeared in the methods for solving nonlinear

differential equations via successive approximations. However, since the Banach contraction
principle is remarkable in its simplicity, a wide range of applications has been given in many
different frameworks. In the last decades, a number of fixed point results have been obtained
in attempts to generalize this principle. In parallel with the Banach contraction principle,
Kannan [3] and Chatterjea [2] proved, respectively, the following fixed point theorems.

Theorem 1.1 ([3]). Let (X, d) be a complete metric space and T : X → X satisfies the
Kannan contractive condition, that is, there exists k ∈

[
0, 1

2

)
such that

d(T x, T y) ≤ k[d(x, T x) + d(y, T y)] (1.2)

for all x, y ∈ X. Then T has a unique fixed point.

Theorem 1.2 ([2]). Let (X, d) be a complete metric space and T : X → X satisfies the
Chatterjea contractive condition, that is, there exists k ∈

[
0, 1

2

)
such that

d(T x, T y) ≤ k[d(x, T y) + d(y, T x)] (1.3)

for all x, y ∈ X. Then T has a unique fixed point.

On the other hand, Matthews [5] introduced the concept of a partial metric space and
created an extension of the celebrated Banach contraction principle to the partial metric
framework. Based on the results of Matthews [5], Asadi et al. [1] presented a new concept of
an M-metric space and studied the topology on M-metric spaces. They also established the
fixed point theorems, which are generalizations of Banach and Kannan fixed point theorems
in the setup of partial metric spaces. Here we will state the mentioned fixed point results
in [1].

Theorem 1.3 ([1]). Let (X, m) be a complete M-metric space and let T : X → X be a
mapping satisfying the following condition:

∃k ∈ [0, 1) such that m(T x, T y) ≤ km(x, y) for all x, y ∈ X. (1.4)

Then T has a unique fixed point.

Theorem 1.4 ([1]). Let (X, m) be a complete M-metric space and let T : X → X be a
mapping satisfying the following condition:

∃k ∈

[
0,

1
2

)
such that m(T x, T y) ≤ k[m(x, T x) + m(y, T y)] for all x, y ∈ X.

(1.5)

Then T has a unique fixed point.

They also posed the following open problem.
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Problem 1.5 ([1]). Let (X, m) be a complete M-metric space and let T : X → X be a
mapping satisfying the following condition:

∃k ∈

[
0,

1
2

)
such that m(T x, T y) ≤ k[m(x, T y) + m(T x, y)] for all x, y ∈ X.

(1.6)

Does T have a unique fixed point?

Later, many authors have studied this subject and their topological properties. In the
sequel, Monfared et al. [6] proved the following theorem as a solution of Problem 1.5 for
a smallest interval.

Theorem 1.6 ([6]). Let (X, m) be a complete M-metric space and let T : X → X be a
mapping satisfying the following condition:

∃k ∈

[
0,

√
3 − 1
2

)
such that m(T x, T y) ≤ k[m(x, T x) + m(y, T y)]

for all x, y ∈ X. (1.7)

Then T has a unique fixed point.

In this work, we give two other partial answers to Problem 1.5. These results are the
existence theorems of a unique fixed point for Chatterjea contraction mappings in the
framework of M-metric spaces. The presented results improve, extend and unify Theorem 1.2
and the Chatterjea fixed point result in partial metric spaces. Furthermore, we give some
illustrative examples which support our results, and leave the open questions for those who
might be interested.

2. PRELIMINARIES

In this paper, the letter R+ and N denote the set of all non-negative real numbers and the
set of all positive integers, respectively. The following definitions, notations and lemma are
needed in the sequel.

Definition 2.1 ([5]). Let X be a nonempty set. A function p : X × X → R+ is called a
partial metric (briefly, p-metric) if the following conditions are satisfied for all x, y, z ∈ X :

(p1) p(x, x) = p(y, y) = p(x, y) ⇐⇒ x = y (equality);
(p2) p(x, x) ≤ p(x, y) (small self-distances);
(p3) p(x, y) = p(y, x) (symmetry);
(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z) (triangularity).

Also, the pair (X, p) is called a partial metric space (briefly, p-metric space).

It is obvious that the class of partial metric spaces is effectively larger than that of metric
spaces. The following examples show that, in general, a p-metric space need not necessarily
be a metric space.

Example 2.2. Let X = [0, ∞) and p : X × X → R+ be defined by p(x, y) = max{x, y}

for all x, y ∈ X . Then (X, p) is a p-metric space but it is not a metric space. Indeed,
p(1, 1) = 1 ̸= 0.
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Example 2.3. Let X = {[a, b] : a, b ∈ R, a ≤ b} and p : X × X → R+ be defined by

p([a, b], [c, d]) = max{b, d} − min{a, c}

for all [a, b], [c, d] ∈ X . Then (X, p) is a p-metric space but it is not a metric space. Indeed,
p([1, 3], [1, 3]) = 2.

Each p-metric p on a nonempty set X generates a T0-topology τp on X which has as a
base the family of open p-ball {Bp(x, ϵ) : x ∈ X, ϵ > 0}, where

Bp(x, ϵ) := {y ∈ X : p(x, y) < p(x, x) + ϵ}

for all x ∈ X and ϵ > 0.

Definition 2.4 ([5]). Let (X, p) be a p-metric space.

• A sequence {xn} in X converges to x ∈ X if and only if p(x, x) = lim
n→∞

p(x, xn). In this
case, we write xn → x as n → ∞.

• A sequence {xn} in X is called Cauchy whenever lim
n,m→∞

p(xn, xm) exists and is finite.
• The p-metric space (X, p) is said to be complete if and only if every Cauchy sequence

{xn} in X converges to some x ∈ X such that lim
n,m→∞

p(xn, xm) = p(x, x).

Note that the limit of a sequence in a partial metric space is not necessarily unique as the
following example shows.

Example 2.5 ([5]). Let X = [0, ∞) and p : X × X → R+ be defined by

p(x, y) = max{x, y}

for all x, y ∈ X . Then (X, p) is a p-metric space. Consider the sequence {xn} = {1 +
1
n } in

X . Note that

lim
n→∞

p(xn, 1) = lim
n→∞

max{1 +
1
n
, 1} = lim

n→∞
(1 +

1
n

) = 1 = p(1, 1)

and

lim
n→∞

p(xn, 2) = lim
n→∞

max{1 +
1
n
, 2} = lim

n→∞
2 = 2 = p(2, 2).

This implies that xn → 1 as n → ∞ and xn → 2 as n → ∞. Moreover, for any a ≥ 1 we
have lim

n→∞
p(xn, a) = a. It yields that xn → a as n → ∞ for all a ≥ 1.

Let X be a nonempty set and m : X × X → R+ be a given function. For every x, y ∈ X ,
the following notation are useful in the sequel:

1. mx,y := min{m(x, x), m(y, y)};
2. Mx,y := max{m(x, x), m(y, y)}.

Very recently, Asadi et al. [1] gave the notion of an M-metric space which is a
generalization of a p-metric space. Next, we recall the definition and some properties of
M-metric spaces.

Definition 2.6 ([1]). Let X be a nonempty set. A function m : X × X → R+ is called an
m-metric if the following conditions are satisfied for all x, y, z ∈ X :
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Fig. 1. Relationship between metrics, p-metrics and M-metrics on a nonempty set X .

(m1) m(x, x) = m(y, y) = m(x, y) ⇔ x = y;
(m2) mx,y ≤ m(x, y);
(m3) m(x, y) = m(y, x);
(m4) (m(x, y) − mx,y) ≤ (m(x, z) − mx,z) + (m(z, y) − mz,y).

Also, the pair (X, m) is called an M-metric space.

Lemma 2.7 ([1]). Every partial metric space is an M-metric space but the converse is not
true.

From Lemma 2.7, we refer the reader to the relation between metrics, p-metrics and
M-metrics in Fig. 1.

From the fact in Fig. 1, it is interesting that we have to focus on m-metric spaces. Some
examples of an m-metric which show that it is a real generalization of a partial metric are the
following.

Example 2.8. Let X = [0, ∞) and m : X × X → R+ be defined by m(x, y) =
x+y

2 for
all x, y ∈ X . Then m is an m-metric on X , but it is not a p-metric. Indeed, m(4, 4) = 4 ̸≤

m(4, 2) = 3.

Example 2.9. Let X = {1, 2, 3} and m : X × X → R+ be defined by

m(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x = y = 1,

9, x = y = 2,

5, x = y = 3,

10, x, y ∈ {1, 2} and x ̸= y,

7, x, y ∈ {1, 3} and x ̸= y,

8, x, y ∈ {2, 3} and x ̸= y.

Then m is an m-metric but it is not a p-metric. Indeed, m(2, 2) = 9 ̸≤ m(2, 3) = 8.

Remark 2.10 ([1]). For every x, y in an M-metric space (X, m), the following assertions
hold:

1. 0 ≤ Mx,y + mx,y = m(x, x) + m(y, y);
2. 0 ≤ Mx,y − mx,y = |m(x, x) − m(y, y)|;
3. Mx,y − mx,y ≤ (Mx,z − mx,z) + (Mz,y − mz,y).

Definition 2.11 ([1]). Let (X, m) be an m-metric space.

1. A sequence {xn} in X converges to point x ∈ X if and only if

lim
n→∞

(m(xn, x) − mxn ,x ) = 0. (2.1)
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2. A sequence {xn} in X is called an m-Cauchy sequence if

lim
n,m→∞

(m(xn, xm) − mxn ,xm ) and lim
n,m→∞

(Mxn ,xm − mxn ,xm ) (2.2)

exist and are finite.
3. An M-metric space (X, m) is said to be complete if every m-Cauchy sequence {xn} in

X converges to a point x ∈ X such that

lim
n→∞

(m(xn, x) − mxn ,x ) = 0 and lim
n→∞

(Mxn ,x − mxn ,x ) = 0.

Example 2.12 ([4]). Let X = [0, ∞) and an m-metric m : X × X → R+ be defined by
m(x, y) =

x+y
2 for all x, y ∈ X . Then (X, m) is complete.

Lemma 2.13 ([1]). Let (X, m) be an M-metric space and {xn}, {yn} be sequences in X.
Assume that xn → x ∈ X and yn → y ∈ X as n → ∞. Then

lim
n→∞

(m(xn, yn) − mxn ,yn ) = m(x, y) − mx,y .

Lemma 2.14 ([1]). Let (X, m) be an M-metric space and {xn} be a sequence in X. Assume
that xn → x ∈ X as n → ∞. Then

lim
n→∞

(m(xn, y) − mxn ,y) = m(x, y) − mx,y

for all y ∈ X.

Lemma 2.15 ([1]). Let (X, m) be an M-metric space and {xn} be a sequence in X. Assume
that xn → x ∈ X and xn → y ∈ X as n → ∞. Then m(x, y) = mx,y . Furthermore, if
m(x, x) = m(y, y), then x = y.

Lemma 2.16 ([1]). Let {xn} be a sequence in an M-metric space (X, m) and there exists
r ∈ [0, 1) such that

m(xn+2, xn+1) ≤ rm(xn+1, xn), (2.3)

for all n ∈ N. Then the following assertions hold:

(A) lim
n→∞

m(xn+1, xn) = 0;
(B) lim

n→∞
m(xn, xn) = 0;

(C) lim
n,m→∞

mxm ,xn = 0;

(D) {xn} is an m-Cauchy sequence.

3. MAIN RESULTS

In this section, we give partial answers of Problem 1.5 and also furnish some illustrative
examples to demonstrate the validity of the hypotheses and degree of utility of our results.
The main result in this section is a generalization of the classical Chatterjia fixed point result
in metric spaces and the Chatterjia fixed point result in partial metric spaces.
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Theorem 3.1. Let (X, m) be a complete M-metric space and let T : X → X be a mapping
satisfying the following condition:

∃k ∈

[
0,

1
2

)
such that m(T x, T y) ≤ k[m(x, T y) + m(T x, y)] for all x, y ∈ X.

(3.1)

If there is x0 ∈ X such that

m(T n x0, T n x0) ≤ m(T n−1x0, T n−1x0) (3.2)

for all n ∈ N, then T has a unique fixed point. Moreover, if the Picard sequence {xn} in X
which is defined by xn = T xn−1 for all n ∈ N such that x0 is an initial point in the condition
(3.2), then {xn} converges to a fixed point of T .

Proof. Starting from x0 ∈ X in the hypothesis, we will construct the sequence {xn} in X
such that

xn = T xn−1

for all n ∈ N. From (3.1), (3.2) and the condition (m4), we get

m(xn+1, xn) = m(T xn, T xn−1)
≤ k[m(xn, xn) + m(xn+1, xn−1)]
≤ k[m(xn, xn) + (m(xn+1, xn) − mxn+1,xn + m(xn, xn−1) − mxn ,xn−1 )

+ mxn+1,xn−1 ]
= k[m(xn, xn) + m(xn+1, xn) − m(xn+1, xn+1) + m(xn, xn−1)

− m(xn, xn) + m(xn+1, xn+1)]
= k[m(xn+1, xn) + m(xn, xn−1)]

for all n ∈ N. This implies that

m(xn+1, xn) ≤ rm(xn, xn−1)

for all n ∈ N, where 0 ≤ r :=
k

1−k < 1. By using Lemma 2.16, we get (A), (B), (C) and (D)
in Lemma 2.16 hold. It follows from (D) that {xn} is an M-Cauchy sequence X . From the
completeness of X , we get xn → x as n → ∞ for some x ∈ X . So

m(xn, x) − mxn ,x → 0 as n → ∞ (3.3)

and

Mxn ,x − mxn ,x → 0 as n → ∞. (3.4)

From (B), we get m(xn, xn) → 0 as n → ∞ and so

mxn ,x = min{m(xn, xn), m(x, x)} → 0 as n → ∞ (3.5)

and

mxn ,T x = min{m(xn, xn), m(T x, T x)} → 0 as n → ∞. (3.6)

From (3.3), (3.4), (3.5), we obtain

m(xn, x) → 0 as n → ∞ (3.7)
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and

Mxn ,x → 0 as n → ∞. (3.8)

By Remark 2.10, we have

Mxn ,x + mxn ,x = m(xn, xn) + m(x, x) (3.9)

for all n ∈ N. Taking limit as n → ∞ in the above equation and using (3.5), (3.8) and (B),
we have

m(x, x) = 0. (3.10)

This implies that

mx,T x = min{m(x, x), m(T x, T x)} = 0. (3.11)

Next, we will show that m(x, T x) = 0. From (m4), we get

m(x, T x) = m(x, T x) − mx,T x ≤ m(x, xn) − mx,xn + m(xn, T x) − mxn ,T x (3.12)

for all n ∈ N. Taking the limit superior as n → ∞ in (3.12) and using (3.3), (3.4), (3.6),
(3.11), we get

m(x, T x) ≤ lim sup
n→∞

[
m(x, xn) − mx,xn + m(xn, T x) − mxn ,T x

]
≤ lim sup

n→∞

[
m(x, xn) − mx,xn + m(xn, T x)

]
≤ lim sup

n→∞

[m(x, xn) − mx,xn ] + lim sup
n→∞

m(xn, T x)

= lim sup
n→∞

m(xn, T x)

≤ lim sup
n→∞

[k(m(xn−1, T x) + m(T xn−1, x))]

≤ k
[

lim sup
n→∞

m(xn−1, T x) + lim sup
n→∞

m(xn, x)
]

= k
[

lim sup
n→∞

m(xn−1, T x)
]

≤ k
[

lim sup
n→∞

[
m(xn−1, x) − mxn−1,x + m(x, T x) − mx,T x + mxn−1,T x

]]
≤ km(x, T x).

This implies that

m(x, T x) = 0. (3.13)

By the contractive condition (3.1), we have

m(T x, T x) ≤ 2km(x, T x) = 0

and hence

m(T x, T x) = 0. (3.14)
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From (3.5), (3.13), (3.14), we obtain

m(x, x) = m(T x, T x) = m(x, T x).

Using the property (m1), we get x = T x .
Finally, we will show that T has a unique fixed point. Assume that y is an another fixed

point of T . From (3.1), we get

m(x, y) = m(T x, T y)

≤ k(m(x, T y) + m(y, T x))

= k(m(x, y) + m(y, x))

≤ 2km(x, y)

< m(x, y),

which is a contraction. Then T has a unique fixed point. This completes the proof. □

Theorem 3.2. Theorem 3.1 remains true if the assumption (3.2) is replaced by the following
condition:

m(T n−1x0, T n−1x0) ≤ m(T n x0, T n x0) (3.15)

for all n ∈ N.

Proof. Let x0 ∈ X be a starting point in the hypothesis and let {xn} be the Picard iteration
defined by

xn = T xn−1, n ∈ N.

From the condition (3.15), (m4) and the contractive condition (3.1), we deduce that

m(xn+1, xn) = m(T xn, T xn−1)

≤ k[m(xn, xn) + m(xn+1, xn−1)]

= k[mxn ,xn+1 + m(xn+1, xn−1)]

≤ k[m(xn+1, xn) + m(xn, xn−1) − mxn ,xn−1 + mxn+1,xn−1 ]

= k[m(xn+1, xn) + m(xn, xn−1) − m(xn−1, xn−1) + m(xn−1, xn−1)]

= k[m(xn+1, xn) + m(xn, xn−1)]

for all n ∈ N. This implies that

m(xn+1, xn) ≤ rm(xn, xn−1)

for all n ∈ N, where 0 ≤ r :=
k

1−k < 1. The rest of the proof is similar to that of Theorem 3.1
and hence it is omitted. □

4. EXAMPLES AND NUMERICAL RESULTS

In this section, we give some examples to illustrate Theorem 3.1 and also give some
numerical results.
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Example 4.1. Let X = [0, ∞) and a function m : X×X → R+ be defined by m(x, y) =
x+y

2
for all x, y ∈ X . From Example 2.12, we get (X, m) is a complete M-metric space. Let
T : X → X be given by

T x =

⎧⎨⎩0, 0 ≤ x < 3,
x

1 + x
, x ≥ 3.

We will show that the condition (3.1) is satisfied with k =
1
4 . Suppose that x, y ∈ X . Then

there are three possibilities:

Case 1: If x, y ∈ [0, 3), the claim is obvious.
Case 2: If x, y ∈ [3, ∞), we get

m(T x, T y) =
1
2

(
x

1 + x
+

y
1 + y

)
≤

1
2

( x
4

+
y
4

)
≤

1
4

(
x
2

+
y

2(1 + y)
+

y
2

+
x

2(1 + x)

)
= k [m(x, T y) + m(y, T x)] .

Case 3: Assume that (x, y) ∈ [3, ∞) × [0, 3) ∪ [0, 3) × [3, ∞). Without loss of generality,
we may assume that x ∈ [0, 3) and y ∈ [3, ∞). Then we obtain

m(T x, T y) =
1
2

(
y

1 + y

)
≤

1
2

( y
4

)
≤

1
4

(
0 +

y
2(1 + y)

+
y
2

+ 0
)

= k [m(x, T y) + m(y, T x)] .

Then T satisfies the condition (3.1) for all x, y ∈ X with k =
1
4 . Also, T satisfies the

condition (3.2) for all x0 ∈ X . Thus, all conditions of Theorem 3.1 are satisfied and so the
existence of a unique fixed point of T follows from Theorem 3.1. In this case, a unique fixed
point of T is a point 0.

We can see some numerical experiments for approximating the unique fixed point of T in
Fig. 2. Furthermore, the convergence behavior of some iterations are shown in Fig. 3.

Example 4.2. Let X = [0, ∞) and a function m : X×X → R+ be defined by m(x, y) =
x+y

2
for all x, y ∈ X . From Example 2.12, we get (X, m) is a complete M-metric space. Define
T : X → X by

T x =

⎧⎪⎨⎪⎩
x2, 0 ≤ x <

1
2
,

1
4
, x ≥

1
2
.

Now we shall claim that T satisfies the condition (3.1) with k =
1
3 . Suppose that x, y ∈ X .

We will divide the proof into three cases.
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Fig. 2. Iterates of Picard iterations in Example 4.1.

Case 1: If x, y ∈
[
0, 1

2

)
, then we get

m(T x, T y) =
x2

2
+

y2

2
≤

x
6

+
y2

6
+

y
6

+
x2

6

=
1
3

(
x
2

+
y2

2
+

y
2

+
x2

2

)
=

1
3

[m(x, T y) + m(y, T x)].

Case 2: If x, y ∈
[ 1

2 , ∞
)
, then we get

m(T x, T y) =
1
8

+
1
8

≤
x
6

+
1
24

+
y
6

+
1
24

=
1
3

(
x
2

+
1
8

+
y
2

+
1
8

)
=

1
3

[m(x, T y) + m(y, T x)].

Case 3: Assume that (x, y) ∈
[
0, 1

2

)
×

[ 1
2 , ∞

)
∪

[ 1
2 , ∞

)
×

[
0, 1

2

)
. Without loss of generality,

we may assume that x ∈
[
0, 1

2

)
and y ∈

[ 1
2 , ∞

)
. Since x2

2 ≤
x
6 +

x2

6 and 1
8 ≤

1
24 +

y
6 . Then

we obtain that

m(T x, T y) =
x2

2
+

1
8

≤
x
6

+
1

24
+

y
6

+
x2

6

=
1
3

(
x
2

+
1
8

+
y
2

+
x2

2

)
=

1
3

[m(x, T y) + m(y, T x)].

This implies that T satisfies the condition (3.1) with k =
1
3 . It is easy to see that T satisfies

the condition (3.2) for all x0 ∈ X . Therefore, all conditions in Theorem 3.1 are satisfied. So
T has a unique fixed point. In this example, a unique fixed point of T is a point 0.

We can see some numerical experiments for approximating the unique fixed point of T in
Fig. 4. Furthermore, the convergence behavior of some iterations are shown in Fig. 5.
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Fig. 3. Convergence behavior for Example 4.1.

Fig. 4. Iterates of Picard iterations in Example 4.2.

5. OPEN PROBLEMS

In this section, we give some challenging questions for the readers.

• Problem 1.: Can Theorem 3.1 be proved without the condition (3.2) (or (3.15) for
Theorem 3.2)?

• Problem 2.: Does there exist any other condition (3.2) to prove Theorem 3.1 (or (3.15)
for Theorem 3.2)?
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Fig. 5. Convergence behavior for Example 4.2.
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