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Abstract. This paper considers the computation of the Ate pairing on the Hessian model
of elliptic curves. Due to the many important properties making the model attractive in
cryptography, we compute for the first time the Ate pairing on this model and show how
both the Tate and the Ate pairings can be parallelized on this curve. We wrote codes in the
Sage software to ensure the correctness of formulas in this work.
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1. INTRODUCTION

In cryptography, pairings are bilinear maps defined on the group of points of an elliptic
of hyperelliptic curve. These mathematical objects were first used to solve the discrete
logarithm problem [16], but they now constitute an interesting research topic in cryptography
as they allow to construct many other cryptographic protocols [6,7,14,22]. Several papers
exist on the efficient computation and implementation of pairings on various models of
elliptic curves [1–3,5,9–11,13,29] leading sometimes to other type of interesting pairings
such as the Ate pairing (see [19,20,28]). The most common used model of elliptic curves
is the so called Weierstrass model in its short equation y2

= x3
+ ax + b defined over

a finite field Fq . Several other models exist in the literature such as the Hessian model,
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the Edward model, the Jacobi model. These curves are almost all birationally equivalent
to the Weierstrass model but depending on the properties of each curve such as arithmetic
of points, a careful choice of the model may be necessary. For example, an elliptic curve
with complete addition formulas and/or unified addition formulas ensure protection against
exceptional procedure attacks [21] and side-channel attacks respectively on protocols based
on the curves used. Also, addition formulas that can be parallelized may bring advantage in
terms of efficiency of the computations. The Hessian model of elliptic curves [26] has been
proven to have unified addition formulas [23] which can be computed in a parallel way [26].
Also this model presents a nice geometric interpretation of the group law that allows to obtain
competitive costs in pairing’s computation with respect to well known models of curves such
as the Weierstrass and the Edward model [18]. Also, some standard curves from IEEE, SECG
can be transformed to Hessian curves as pointed out by Smart [26]. This work continues to
emphasize on these nice properties of the Hessian form of elliptic curve. In particular, we
show in this paper that one can efficiently parallelize the computation of both the Tate and
the Ate pairings on this curve. More precisely, our contribution is as follows:

1. Considering the fact that in the computation of the Ate pairing, addition of points is
performed in an extension field Fqk of the base field Fq where the elliptic curve is
defined, we used a specific representation of points to efficiently compute this pairing
on the Hessian curves, by first rewriting adequate addition formulas. This is similar
to the twist technique that enables to avoid some inversions and to perform some
computations rather in a subfield of Fqk . We also provide codes written with the
software Sage [27] to ensure the correctness of all the formulas in this work (http://
www.camercrypt.org/sagehessian.txt)

2. Using the aforementioned adapted addition formulas, we succeed to efficiently com-
pute the Ate pairing on Hessian curves. Also we consider the previous result [18] (and
the only existing one to our knowledge) on the computation of the Tate pairing on
Hessian curves and we succeed to show how both the Tate and the Ate pairings can be
efficiently computed in a parallel manner. The results are summarized in Table 7.

The rest of this work is organized as follows: In Section 2 we define pairings on elliptic
curves and the Miller algorithm for its efficient computation. Section 3 presents the Hessian
model of elliptic curves with some important properties (addition of points, formulas for the
computation of the Tate pairing). In Section 4, we give details for the first time in the literature
for the computation of the Ate pairing on Hessian curves. We then show how to parallelize
the computation of both the Tate and Ate pairings in Section 5. Section 6 concludes our work.

Notations. In this work the following notations ml , sl and mc represent the cost of
multiplication, squaring and multiplication with a constant in the field Fql respectively.

2. PRELIMINARIES ON ELLIPTIC CURVES AND PAIRINGS

This section reviews fundamental elements on pairings over elliptic curves useful to
understand the work. We define the two pairings concerned in this work namely the Tate
and the Ate pairings.

Let E be an elliptic curve defined over a finite field Fq . The identity element of the additive
group law defined on the set of rational points of E is denoted O. We denote r a large prime
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Fig. 1. The Miller algorithm for the computation of the reduced Tate pairing.

divisor of the group order ♯E(Fq ) and k the smallest integer such that r divides qk
− 1. The

set E
(
Fq

)
[r ] = {P ∈ E

(
Fq

)
: [r ]P = O} is the set of r -torsion points with coordinates

in an algebraic closure Fq of Fq , where [ ] : P ↦−→ [m]P is the endomorphism defined on
E(Fq ) which maps P to itself m times.

The Tate pairing. Consider a point P ∈ E(Fq )[r ] and the principal divisor D = r (P)−r (O)
such that Div ( fr,P ) = D for a certain function fr,P . Let Q ∈ E(Fqk )[r ] and µr be the group
of r th roots of unity in F∗

qk .

Definition 1 (The Tate Pairing). [25] The reduced Tate pairing er is a bilinear and non
degenerate map defined by

er : E(Fq )[r ]× E(Fqk )[r ] → µr

(P, Q) ↦→ fr,P (Q)
qk
−1
r

The value fr,P (Q) can be determined efficiently using Miller’s algorithm [24] (see Fig. 1)
which uses the rational function h R,S such that

Div(h R,S) = (R)+ (S)− (S + R)− (O)

with R and S two arbitrary points on the elliptic curve. In the case of elliptic curves in
Weierstrass form, h R,S =

ℓR,S
vR+S

where ℓR,S is the straight line defining R + S and vR+S is
the corresponding vertical line passing through R + S. So simple, this is slightly the same
thing in the case of Hessian curves but this function is much more complicated in other cases
(degree-two curves like conics in the case of Jacobi or Edwards curves).

More information on pairings can be found in [17] and [12].

The Ate pairing. We briefly present in this section the Ate pairing and we refer to [20] for
more details. Let t be the trace of the Frobenius endomorphism defined by

πq : E
(
Fq

)
→ E

(
Fq

)
(x, y) ↦→

(
xq , yq)
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The Frobenius endomorphism πq has exactly two eigenvalues 1 and q. This enables to
consider points P ∈ G1 = E

(
Fq

)
[r ]∩ Ker(πq − [1]) = E(Fq )[r ] and Q ∈ G2 =

E
(
Fq

)
[r ]∩ Ker(πq − [q]). The Ate pairing is defined as follows:

Definition 2 (The Ate Pairing). [20] The reduced Ate pairing is the map:

eA : G2 ×G1 → µr

(Q, P) ↦→ fT,Q(P)
qk
−1
r

where T = t − 1.

Theorem 1 makes sense to Definition 2 as it states that the Ate pairing is a power of a Tate
pairing and therefore is a pairing. A complete proof can be found in [20].

Theorem 1 ([20]). Let N = gcd(T k
− 1, qk

− 1) and T k
− 1 = L N. We have

- eA(Q, P)rc
= ( fr,Q(P)(qk

−1)/r )L N where c =
∑k−1

i=0 T k−1−i q i
≡ kqk−1 mod r.

- for r ∤ L, the Ate pairing eA is non-degenerate.

Remark 1. During the execution of the Miller algorithm the point addition is performed in
an extension field of Fq in Ate pairing computation whereas it is performed in the base field
Fq in the case of the Tate pairing. Therefore each step of the Ate pairing is more expensive
than the Tate pairing. However the Miller loop length in the case of the Ate pairing is log2T
which is less (generally the half) than log2r , the loop length for the Tate pairing.

3. THE HESSIAN MODEL OF ELLIPTIC CURVES

In this section we recall the definition of an Hessian curve together with addition formulas.
We also recall from [18] the Miller function on this curve which is essential for the
computation of various pairings.

3.1. Definition of the Hessian model of elliptic curves

Definition 3. The Hessian model of elliptic curve over a finite field Fq (or any field) is
defined in [26] by a homogeneous equation of the form

X3
+ Y 3

+ Z3
= 3DXY Z

or the affine equation

x3
+ y3
+ 1 = Dxy

where D ∈ F⋆
q and D3

̸= 1.

The map between the Hessian curves HD and Weierstrass curves is given in Proposition 1.

Proposition 1. The Hessian curve HD : x3
+y3
+1 = Dxy over Fq is birationally equivalent

to the Weierstrass curve WD : v
3
= u3

− 27D(D3
+ 8)u + 54(D6

− 20D3
− 8) under the
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maps

ϕ : HD −→ WD

(x, y) ↦−→ (η(x + 9D2),−1+ η(3D3
− Dx − 12));

ϕ−1
: WD −→ HD

(u, v) ↦−→ (−9D2
+ ξu, 3ξ (v − 1))

where

η =
6(D3

− 1)(y + 9D3
− 3Dx − 36)

(x + 9D2)2(3D3 − Dx − 12)3 and ξ =
12(D3

− 1)
Du + v + 1

3.2. Addition formulas on Hessian curves

The geometric interpretation of the group law on Hessian curves is similar to the one on
Weierstrass curves with a little difference. Given two points P and Q on HD , the sum P+ Q
is obtained as the reflection with respect to the line y = x of the third intersection point of the
line (P Q) with HD [18]. The identity point is denoted O := (−1 : 1 : 0). Explicitly, given a
point P1 = (X1 : Y1 : Z1) on HD , its opposite is given as −P1 = (Y1 : X1 : Z1).

Point addition
Assume P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) and P1 + P2 = P3 = (X3 : Y3 : Z3), then⎧⎨⎩

X3 = Y 2
1 X2 Z2 − X1 Z1Y 2

2
Y3 = X2

1Y2 Z2 − Y1 Z1 X2
2

Z3 = Z2
1 X2Y2 − X1Y1 Z2

2

Point doubling
Assume P1 = (X1 : Y1 : Z1), 2P2 = P3 = (X3 : Y3 : Z3), then⎧⎨⎩

X3 = Y1(X3
1 − Z3

1)
Y3 = X1(Z3

1 − Y 3
1 )

Z3 = Z1(Y 3
1 − X3

1)

For a complete understanding of addition formulas on Hessian curves one can read [8,23,26]
and [15].

3.3. Miller’s function on Hessian curves

As we earlier mentioned, the computation of pairings with the Miller algorithm requires a
function h R,S with divisor div(h R,S) = (R)+(S)−(R+S)−(O) where R and S are two points
on the elliptic curve. This function is in fact the description of the geometric interpretation of
the group law on the elliptic curve. In the case of Hessian curves, such function is given by
Theorem 2.

Theorem 2 ([18]). Let HD be the Hessian curve over Fq ; P1 = (X1 : Y1 : Z1) and
P2 = (X2 : Y2 : Z2) two points on HD(Fq ). Define P3 = (X3 : Y3 : Z3) = P1 + P2.
Then the function h P1,P2 is given by

h P1,P2 (X, Y, Z ) =
cX X + cY Y + cZ Z

(Y3 Z3 − Z3 X3)(X + Y )+ (X2
3 − Y 2

3 )Z
, (1)
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where the coefficients are given as follows:

a. If P1 ̸= P2 then

cX = Y1 Z2 − Z1Y2
cY = Z1 X2 − X1 Z2
cZ = X1Y2 − Y1 X2

b. If P1 = P2, then cX = 3X2
1−3DY1 Z1, cY = 3Y 2

1 −3DX1 Z1 and cZ = 3Z2
1−3DX1Y1.

The function in Theorem 2 is given for the first time by Gu et al. [18] to compute the Tate
pairing on Hessian curves. This is to our knowledge the only result in the literature on pairing
computation on Hessian curve. In the next section we extend their work to the computation
of the Ate pairing.

4. COMPUTATION OF THE ATE PAIRING ON HD

In this section we begin by rewriting the point addition, the point doubling formulas and
Miller’s function suitable for the computation of the Ate pairing.

4.1. Explicit addition formulas for the Ate pairing on Hessian curve

As earlier mentioned, we observe that the addition and doubling of points are performed
in Fqk . But thanks to the approach explained in [18] if k is even then points with coordinates
in Fqk can take the form (A + Bα : A − Bα : C) with α ∈ Fqk and A, B, C ∈ F

q
k
2

. This
form will particularly allow to make some computation rather in a subfield Fqk/2of Fqk , as
Fqk is now viewed as a Fqk/2 -vector space. Thus, to compute the Ate pairing, it is necessary
to rewrite addition and doubling of points, with the difference that the points have the form
(Ai + Biα : Ai − Biα : Ci ) where Ai , Bi , Ci ∈ F

q
k
2

, i = 1, 2, 3. The sage code for the
correctness of the formulas is available at http://www.camercrypt.org/sagehessian.txt.

Point addition
Let P1 = (A1+B1α : A1−B1α : C1) and P2 = (A2+B2α : A2−B2α : C2) be two points

on HD(Fqk )[r ] with Ai , Bi , Ci ∈ F
q

k
2

, i = 1, 2. Denote P1 + P2 = P3 = (X3 : Y3 : Z3) then
the coordinates of P3 are computed as follows:

X3 = (A1 − B1α)2(A2 + B2α)C2 − (A1 + B1α)(A2 + B2α)2C1

= (A1C2 − A2C1)(A1 A2 − 2B1 B2α
2)+ (A2 B2

1 C2 − A1 B2
2 C1)α2

+ [(B1C2 − B2C1)(B1 B2α
2
− 2A1 A2)+ (A2

1 B2C2 − A2
2 B1C1)]α

Y3 = (A1 − B1α)2(A2 + B2α)C2 − (A1 − B1α)(A2 + B2α)2C1

= (A1C2 − A2C1)(A1 A2 − 2B1 B2α
2)+ (A2 B2

1 C2 − A1 B2
2 C1)α2

− [(B1C2 − B2C1)(B1 B2α
2
− 2A1 A2)+ A2

1 B2C2 − A2
2 B1C1]α

Z3 = C2
1 (A2

2 − B2
2α2)− (A2

1 − B2
1α2)C2

2

= C2
1 A2

2 − C2
1 B2

2α2
− C2

2 A2
1 − C2

2 B2
1α2C2

2

= C2
1 A2

2 − C2
2 A2

1 + (C2
2 B2

1 − C2
1 B2

2 )α2
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Hence P1 + P2 = P3 = (A3 + B3α : A3 − B3α : C3) where:⎧⎨⎩
A3 = (A1C2 − A2C1)(A1 A2 − 2B1 B2α

2)+ (A2 B2
1 C2 − A1 B2

2 C1)α2

B3 = (B1C2 − B2C1)(B1 B2α
2
− 2A1 A2)+ (A2

1 B2C2 − A2
2 B1C1)

C3 = C2
1 A2

2 − C2
2 A2

1 + (C2
2 B2

1 − C2
1 B2

2 )α2

Point doubling
Let P1 = (A1 + B1α : A1 − B1α : C1) be a point on HD(Fqk )[r ], 2P1 = P3 = (X3 : Y3 :

Z3) where the coordinates of P3 are computed as follows:

X3 = (A1 − B1α)((A1 + B1α)3
− C3

1 )

= (A1 − B1α)(A3
1 + 3A2

1 B1α + 3A1 B2
1α2
+ B3

1α3
− C3

1 )

= 2A3
1 B1α − 2A1 B3

1α3
+ B1C3

1α + (
A4

1

α
− B4

1α3
−

C3
1 A1

α
)α

= [2A3
1 B1 − 2A1 B3

1α2
+ B1C3

1 + (
A4

1

α2 − B4
1α2
−

C3
1 A1

α2 )α]α

Y3 = (A1 + B1α)(C3
1 − (A1 − B1α)3)

= (A1 + B1α)(C3
1 − A3

1 + 3A2
1 B1α − 3A1 B2

1α2
+ B3

1α3)

= 2A3
1 B1α − 2A1 B3

1α3
+ B1C3

1α − (
A4

1

α
− B4

1α3
−

C3
1 A1

α
)α

= [2A3
1 B1 − 2A1 B3

1α2
+ B1C3

1 − (
A4

1

α2 − B4
1α2
−

C3
1 A1

α2 )α]α

Z3 = C1((A1 − B1α)3
− (A1 + B1α)3)

= C1(−6A2
1 B1α − 2B3

1α3)

= −6A2
1 B1C1α − 2B3

1 C1α
3

Therefore 2P1 = P3 = (A3 + B3α : A3 − B3α : C3) where:⎧⎪⎪⎨⎪⎪⎩
A3 = 2A3

1 B1 − 2A1 B3
1α2
+ B1C3

1

B3 = (
A4

1

α2 − B4
1α2
−

C3
1 A1

α2 )

C3 = −6A2
1 B1C1 − 2B3

1 C1α
2

4.2. SIMPLIFICATION OF THE MILLER FUNCTION FOR THE ATE PAIRING
COMPUTATION

In this section we simplify the Miller function using the representation of points previously
mentioned. We show how this representation allows to completely ignore the denominator of
the function given in Theorem 2 leading to efficient computations.

The addition step
Let R = (A1+ B1α : A1− B1α : C1) and Q = (A2+ B2α : A2− B2α : C2) be two points

on HD(Fqk )[r ], R + P = (A3 + B3α : A3 − B3α : C3) with Ai , Ci , Bi ∈ F
q

k
2

.
Let P = (xP , yP ) be a point on HD(Fq )[r ], in projective coordinates P is denoted

P = (xP : yP : 1). In the addition step the Miller function is defined as:
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h R,Q(P) =
l1(P)
l2(P)

=
CX xP + CY yP + CZ

(Y3 Z3 − Z3 X3)(xP + yP )+ (X2
3 − Y 2

3 )

So we have: l2(P) = (Y3 Z3−Z3 X3)(xP+ yP )+(X2
3−Y 2

3 ). Let us show that l2(P) ∈ F
q

k
2

. X3,

Y3, Z3 are the coordinates of R+P then X3 = A3+B3α, Y3 = A3−B3α, Z3 = C3, therefore

Y3 − X3 = A3 − B3α − A3 − B3α

= −2B3α

Z3(Y3 − X3) = −2B3C3α

X2
3 − Y 2

3 = (A3 + B3α)2
− (A3 − B3α)2

= 4A3 B3α

Thus

l2(P) = (Y3 Z3 − Z3 X3)(xP + yP )+ (X2
3 − Y 2

3 )
= −2B3C3(xP + yP )α − 4A3 B3α

= (−2B3C3(xP + yP )+ 4A3 B3)α

Substituting cX , cY , cZ by their values we obtain

cX = (A1 − B1α)C2 − C1(A2 − B2α)
= A1C2 − A2C1 + (B2C1 − B1C2)α

cY = C1(A2 + B2α)− C2(A1 + B1α)
= A2C1 − A1C2 + (B2C1 − B1C2)α

cZ = (A1 + B1α)(A2 − B2α)− (A1 − B1α)(A2 + B2α)
= 2A2 B1α − 2A1 B2α

= (2A2 B1 − 2A1 B2)α

h R,Q(P) =
cX xP + cY yP + cZ

(−2B3C3(xP + yP )− 4A3 B3)α

=
[cX xP + cY yP + cZ ]α−1

−2B3C3(xP + yP )+ 4A3 B3

Set S = −2B3C3(xP + yP ) + 4A3 B3 then S ∈ F
q

k
2

since Ai , Bi , Ci ∈ F
q

k
2

. Therefore as

qk/2
− 1 divides qk

− 1, S will tend to 1 during the final exponentiation (line 10 in the Miller
algorithm). Thus S can be simply ignored in the algorithm. Thus

h R,Q(P) = l1(P)
= (A1C2 − A2C1)(xP − yp)α−1

+ (B2C1 − B1C2)(xP + yP )+
+ 2A2 B1 − 2A1 B2

(A1C2 − A2C1)
α2 (xP − yP )α + (B2C1 − B1C2)(xP + yP )+

+ 2A2 B1 − 2A1 B2
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Table 1
Combined formulas for point addition and Miller function evaluation for the Ate pairing.

Operations Values cost

E := A1C2 E = A1C2 1mk/2
F := A2C1 F = A2C1 1mk/2
G := A1 A2 G = A1 A2 1mk/2
H := B1 B2 H = B1 B2 1mk/2
I := B1C2 E = B1C2 1mk/2
J := B2C1 E = B2C1 1mk/2
K := A2 B1 E = A2 B1 1mk/2
L := A1 B2 E = A1 B2 1mk/2
M := Hα2 M = B1 B2α

2 1mc
N := E − F N = A1C2 − A2C1 –

O := N (G − 2M) O = (A1C2 − A2C1)× 1mk/2
(A1 A2 − 2B1 B2α

2) –

P11 := K I P11 = A2 B2
1 C2 1mk/2

P12 := L J P12 = A1 B2
2 C1 1mk/2

P13 := (P11 − P12)α P13 = (A2 B2
2 C2 − A1 B2

2 C1)α2 1mc
Q1 := I − J Q1 = B1C2 − B2C1 –
R := M − 2G R = B1 B2α

2
− 2A1 A2 –

S := Q1R S = (B1C2 − B2C1)× 1mk/2
(B1 B2α

2
− 2A1 A2)

T1 := L E T1 = A2
1 B2C2 1mk/2

T2 := K F T2 = A2
2 B1C1 1mk/2

U1 := E + F U1 = A1C2 + A2C1 –
U2 := J + I U2 = B2C1 + B1C2 –
U3 := Q1U2α

2 U3 = (B2
1 C2

2 − B2
2 C2

1 )α2 1mk/2 + 1mc
U4 := NU1 U4 = (A2

1C2
2 − A2

2C2
1 ) 1mk/2

A3 := O + P13, C3 := U3 −U4 – –
B3 := S + T1 − T2 – –

h R,Q (P) := N
α2 (xP − yP )α− – k

2 m1 +
k
2 m1

−Q1(xP + yP )+ 2(K − L) –

f := f.h R,Q (P) – 1mk

Cost of the addition step
The main operations for this iteration of the Miller algorithm are f ← f.h R,Q(P) and

R ← R + Q where R = (A1 + B1α : A1 − B1α : C1), Q = (A2 + B2α : A2 − B2α : C2)
and P = (xP : yP : 1). Table 1 shows how to compute the two operations simultaneously
and also gives the cost.

From Table 1, the cost of the Miller addition step for Ate pairing is 16mk/2+3mc+km1+

1mk + 3mc. When applying fixed point (mixed addition) the cost reduces to 14mk/2+ 3mc +

km1 + 1mk

4.3. DOUBLING STEP IN THE MILLER ALGORITHM FOR ATE PAIRING

Let R = (A1+ B1α : A1− B1α : C1) be a point on HD . Let 2R = (A3+ B3α : A3− B3α :

C3) where Ai , Ci , Bi ∈ F
q

k
2

, i = 1, 3 and P = (xP , yP ). In the doubling step the Miller
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function is given by

h R,R(P) =
CX xP + CY yP + CZ

(Y3 Z3 − Z3 X3)(xP + yP )+ (X2
3 − Y 2

3 )

where X3, Y3 and Z3 are the coordinates of 2R and

cX = (A1 + B1α)2
− DC1(A1 − B1α)

= (A2
1 − DC1 A1)+ (2A1 B1 + DB1C1)α + B2

1α2

cY = (A1 − B1α)2
− DC1(A1 + B1α)

= (A2
1 − DC1 A1)− (2A1 B1 + DB1C1)α + B2

1α2

cZ = C2
1 − D(A1 + B1α)(A1 − B1α)

= (C2
1 − D A2

1)+ DB2
1α2

Substituting X3, Y3 and Z3 by their values we obtain

h R,Q(P) =
[cX xP + CY yP + CZ ]α−1

−2B3C3(xP + yP )− 4A3 B3

Set S = −2B3C3(xP + yP ) − 4A3 B3 then S ∈ F
q

k
2

since Ai , Bi , Ci ∈ F
q

k
2

and because

qk/2
− 1 divides qk

− 1, S will tend to 1 during the final exponentiation (line 10 of the Miller
algorithm) and therefore can be ignored during the execution of the algorithm. Thus we just
consider

h R,R(P) = [T (xP + yP )+ V ]α + (2A1 B1 + DB1C1)(xP − yP )

where

T =
A2

1 − DC1 A1

α2 + B2
1

V =
C2

1 − D A2
1

α2 + DB2
1

Cost of the doubling step
In the Miller doubling step for Ate pairing we have the following operations f ←

f 2.h R,R(P) and R← 2R where R = (A1+B1α : A1−B1α : C1), P = (xP : yP : 1). Table 2
shows how to compute these two operations simultaneously and also gives the cost. Thus the
total cost of the Miller doubling step for Ate pairing is 6mk/2+8sk/2+4mc+km1+1sk+1mk .

5. PARALLEL COMPUTATION OF PAIRINGS ON HESSIAN CURVES

Parallel computation refers to a group of independent processors working together to solve
a large computational problem. The most important feature of such parallel computers is that
all the processors share a single global memory space which is realized either at the hardware
level or at the software level. The parallel computation is motivated by the need to reduce the
execution time and to utilize large memory.

5.1. Parallel computation of the Tate pairing

In this section we show how to perform the computation of the Tate pairing when
three processors are used. The Sage code to ensure the correctness of the algorithms in
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Table 2
Combined formulas for point doubling Miller function evaluation for Ate pairing.

Operations Values cost

E1 := A2
1 E1 = A2

1 1sk/2
F := B2

1 F = B2
1 1sk/2

G := C2
1 G = C2

1 1sk/2
H := 1/2(A1 + C1)2

− E1 − G H = A1C1 1sk/2
I := 1/2(A1 + B1)2

− E1 − F E = A1 B1 1sk/2
J := 1/2(B1 + C1)2

− F − G E = B1C1 1sk/2
K1 := Fα2 K1 = B2

1 α2 1mc
K2 := K 2

1 K2 = B4
1 α4 1sk/2

L := E1 I L = A3
1 B1 1mk/2

M := I K1 M = A1 B3
1 α2 1mk/2

N := G J N = C3
1 B1 1mk/2

E2 := E2
1 E2 = A4

1 1sk/2
O := G H O = C3

1 A1 1mk/2
P11 := E1 J P11 = A2

1 B1C1 1mk/2
Q1 := K1 J Q1 = C1 B3

1 α2 1mk/2

T := E1−DH
α2 + F T =

A2
1−D A1C1

α2 + B2
1 mc

V := G−DE1
α2 + DF V =

C2
1−D A2

1
α2 + DB2

1 mc

A3 := 2L − 2M + N A3 = 2A3
1 B1 − 2A1 B3

1 α2
+ C3

1 B1 –

B3 :=
1
α2 (E2 − O − K2) B3 =

A4
1

α2 −
C3

1 A1
α2 − B4

1 α2 1mc

C3 := −6P11 − 2Q1 C3 = −6A2
1 B1C1 − 2C1 B3

1 α2 –

h R,R(P) := (T (xP + yP )+ V )α+ – –
+(2I + D J )(xP − yP ) – km1

f1 := f 2 – 1sk
f1 := f1.h R,R(P) – 1mk

Table 3
Parallel execution of addition step for Tate pairing.

Processor1 Processor2 Processor3 Cost

o1 = Y1 Z2 o2 = Z1Y2 o3 = Z1 X2 1m1
o4 = X1 Z2 o5 = X1Y2 o6 = Y1 X2 1m1
l1 = o1o4 l2 = o2o5 l3 = o3o6 1m1
l4 = o4o5 l5 = o1o6 l6 = o2o3 1m1
cX = o1 − o2 cY = o3 − o4 cZ = o5 − o6 –
X3 = l5 − l2 Y3 = l4 − l3 Z3 = l6 − l1 –
t1 = cX xQ t2 = cY yQ – k

2 m1
f = f.(t1 + t2 + cZ ) – – 1mk

this section is available at http://www.camercrypt.org/sagehessian.txt. Table 3 presents the
parallel execution of the addition step in Miller’s algorithm and Table 4 the parallel execution
of the addition step. From Table 3 the total cost of the parallel execution of the addition step
is 4m1+

k
2 m1+ 1mk while the normal execution of the addition requires 12m1+ km1+ 1mk

when a single processor is used [18].
Table 4 presents the parallel execution of the doubling step in Miller’s algorithm and its

cost for the Tate pairing. From Table 4 the total cost of parallel execution of the doubling step
is 1mk + 1sk +

k
2 m1 + 1m1 + 2s1.
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Table 4
Parallel execution of doubling step for Tate pairing.

Processor1 Processor2 Processor3 Cost

l1 = X2
1 l2 = Y 2

1 l3 = Z2
1 s1

l4 = X1Y1 l5 = X1 Z1 l6 = Y1 Z1 s1
cX = 3l1 − 3Dl6 cY = 3l2 − 3Dl5 cZ = 3l3 − 3Dl4 –

X3 = (l4 − l6)× Y3 = (l5 − l4)× Z3 = (l6 − l5)× 1m1
(l5 + l1 + l3) (l6 + l2 + l3) (l4 + l1 + l2) –

t1 = cX xQ t2 = cY yQ f1 = f 2 k
2 m1 + 1sk

f = f.(t1 + t2 + cZ ) – – 1mk

Table 5
Parallel execution of addition step for Ate pairing.

Processor1 Processor2 Processor3 Cost

l1 = A1C2 l2 = A2C1 l3 = A1 B2 1mk/2
l4 = B1C2 l5 = B2C1 l6 = A2 B1 1mk/2
l7 = A1 A2 l8 = B2 B1 l9 = l6l4 1mk/2
l10 = l3l5 l11 = l3l1 l12 = l2l6 1mk/2
a1 = l4 − l5 a2 = l4 + l5 – –
l13 = a1a2 – – 1mk/2
c1 = l8α

2 c2 = (l9 − l10)α2 c3 = a1a2α
2 1mc

a3 = (l1 − l2) a4 = l1 + l2 a5 = l3 − 2c1 –
l14 = a3a5 l15 = a1(c1 − 2l7) l16 = a3a4 1mk/2
A3 = l14 + c2 B3 = l15 + l11 − l12 C3 = −l16 + c3 –
t1 =

a3
α2 (xP − yP ) t2 = −a1(xP + yP )+ 2(l6 − l3) – k

2 m1

f = f.[t1α + t2] – – 1mk

5.2. Parallel computation of the Ate pairing

This section concerns the parallel computation of the Ate pairing. We proceed the same
manner as we previously did for the Tate pairing.

The following Table 5 shows how the Ate pairing can be computed using three processors.
From Table 5 the total cost of parallel execution of the addition step in Ate pairing is
6mk/2 + 1mc +

k
2 m1 + 1mk .

Table 6 presents the parallel execution of the doubling step of the Miller algorithm. Thus
the total cost of parallel execution of the doubling step is 1mk+2mk/2+2sk/2+

k
2 m1+1sk+

2mc.

5.3. Conclusion

Table 7 summarizes all the costs obtained in this work and compare with previous results.

6. CONCLUSION

In this work we extended the results of Gu et al. [18] on the computation of the Tate
pairing to the computation of the Ate pairing on the Hessian model of elliptic curves. We
also succeeded to show how the computation of the two pairings can be parallelized. We
provided a Sage code to ensure the correctness of all the formulas and the algorithms in this
work.
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Table 6
Parallel execution of doubling step for Ate pairing.

Processor1 Processor2 Processor3 Cost

o1 = A2
1 o2 = B2

1 o3 = C2
1 1sk/2

o4 = A1 B1 o5 = A1C1 o6 = B1C1 1sk/2
c1 = o2α

2 – – 1mc
a1 = o1 − Do5 a2 = 2o4 + Do6 a3 = o3 − Do1 –
a4 = o1 − c1 a5 = o1 + c1 – –
l1 = o3o6 l2 = o3o5 l3 = a4a5 1mk/2
A3 = 2o4(o1 − c1)+ l1 C3 = −o6(6o1 + 2c1) – 1mk/2

B3 =
1
α2 (L3− l2) T = a1

α2 + o2 V = a3
α2 + Do2 1mc

t1 = T (xP + yP )+ V t2 = a2(xP − yP ) – k
2 m1

f1 = f 2 – – 1sk
f = f.[t1α + t2] – – 1mk

Table 7
Summary of results and comparison with previous results.

Pairings Doubling Addition Mixed addition

Tate(P,Q) 1mk + 1sk + km1+ 1mk + km1 + 12m1 1mk + km1 + 10m1
[18] 3m1 + 6s1

Tate(P,Q) 1mk + 1sk +
k
2 m1+ 1mk +

k
2 m1 + 4m1 –

Parallelization 1m1 + 2s1
(This work)

Ate(P,Q) 6mk/2 + 8sk/2 + 4mc+ 16mk/2 + 3mc + km1+ 14mk/2 + 3mc + km1+

(This work) km1 + 1sk + 1mk 1mk 1mk

Ate(P,Q) 2mk/2 + 2sk/2 + 2mc+ 6mk/2 + 1mc +
k
2 m1+ –

Parallelization k
2 m1 + 1sk + 1mk 1mk

(This work)
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