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Abstract. We give several new characterizations of completely monotone functions and
Bernstein functions via two approaches: the first one is driven algebraically via elementary
preserving mappings and the second one is developed in terms of the behavior of their
restriction on N0. We give a complete answer to the following question: Can we affirm that a
function f is completely monotone (resp. a Bernstein function) if we know that the sequence
( f (k))k is completely monotone (resp. alternating)? This approach constitutes a kind of
converse to Hausdorff’s moment characterization theorem in the context of completely
monotone sequences.

Keywords: Completely monotone functions; Completely monotone sequences; Bernstein
functions; Completely alternating functions; Completely alternating sequences; Hausdorff
moment problem; Hausdorff moment sequences; Self-decomposability

2010 Mathematics Subject Classification: 30E05; 44A10; 44A60; 47A57; 60E05; 60E07;
60B10

∗ Corresponding author at: Department of Statistics & OR, King Saud University, P.O. Box 2455, Riyadh 11451,
Saudi Arabia.
E-mail addresses: rafik.aguech@ipeit.rnu.tn (R. Aguech), wissem jedidi@yahoo.fr (W. Jedidi).
Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

https://doi.org/10.1016/j.ajmsc.2018.03.001
1319-5166 c⃝ 2018 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajmsc.2018.03.001&domain=pdf
mailto:rafik.aguech@ipeit.rnu.tn
mailto:wissem_jedidi@yahoo.fr
https://doi.org/10.1016/j.ajmsc.2018.03.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


58 R. Aguech and W. Jedidi

1. INTRODUCTION

Traditionally, completely monotone functions (CM) are recognized as Laplace transforms
of positive measures and Bernstein functions (BF) are their positive antiderivatives. The
literature devoted to these two classes of functions is impressive since they have remarkable
applications in various branches, for instance, they play a role in potential theory, probability
theory, physics, numerical and asymptotic analysis, and combinatorics. A detailed collection
of the most important properties of completely monotone functions can be found in the
monograph of Widder [20] and for Bernstein functions, the reader is referred to the elegant
manuscript of Schilling, Song and Vondraček [17]. Hausdorff’s moment characterization
theorem [10] is explained in details, and also in the context of measures on commutative
semigroup in the Book of Berg, Christensen and Ressel [3]. The references [3] and [17]
were a major support in the elaboration of this paper and constitute for us a real source of
inspiration.

Theorem 2, is borrowed from [3] and gives the complete characterization of completely
monotone (respectively alternating) sequences: a sequence (ak)k is interpolated by a function
f in CM (respectively BF) if and only if (ak)k completely monotone (respectively
alternating) sequence and minimal (see Definition 2 for minimality). Completely monotone
sequences are also known as the Hausdorff moment sequences. In this spirit, a natural
question prevailed, what about the converse? i.e:

Can we affirm that a function f belongs to CM (respectively BF) if we know that the
sequence ( f (k))k is completely monotone (respectively alternating)? In other terms,
could a completely monotone (respectively alternating) and minimal sequence (ak)k be
interpolated by a regular enough function f , which is not in CM (respectively BF)?

We prove that under natural regularity assumptions on f , the answer is affirmative for the
first question (and then infirmative for the second) and this constitutes a kind of converse of
Hausdorff’s moment characterization theorem [10]. Mai, Schenk and Scherer [13] adapted a
Widder’s result [20] and used a specific technique from Copula theory in order to state, in
their Lemma 3.1 and Theorem 1.1, that:
(i) a continuous function f with f (0) = 1 belongs to CM if and only if the sequence
( f (xk))k is completely monotone for every x ∈ Q ∩ [0, ∞);
(ii) a continuous function f with f (0) = 0 belongs to BF and is self-decomposable if and
only if the sequence ( f (xk) − f (yk))k is completely alternating for every x > y > 0. (See
Section 8 for the definition of self-decomposable Bernstein functions.)

The idea of this paper was born when we wanted to remove the dependence on x
in characterizations (i) and (ii) and to study general non bounded completely monotone
functions and general Bernstein functions. Our answer to the question is given in Theorems 4
and 5 that says:
(iii) a bounded function f belongs to CM if and only if it has a holomorphic extension
on Re(z) > 0 which remains bounded there and the sequence

(
f (xk)

)
k≥0 is completely

monotone and minimal for some (and hence for all) x > 0. If f is unbounded, then a shifting
condition is necessary;
(iv) a bounded function f is a Bernstein function if and only if it has a holomorphic extension
on Re(z) > 0, and the sequence

(
f (xk)

)
k≥0 is completely alternating and minimal for some

(and hence for all) x > 0. If f is unbounded, then a boundedness condition on the increments
is necessary.
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For each of Theorems 4 and 5 we shall give two proofs based on two different approaches,
the first one uses Blaschke’s theorem on the zeros of a function on the open unit disc and
the second one is based on a Gregory–Newton expansion of holomorphic functions (see
Section 6 for the last two concepts). We emphasize that these two approaches require some
boundedness (especially in the completely monotone case). In Corollary 4.2 of Gnedin and
Pitman [9] the necessity part of (iv) above is stated without the holomorphy and minimality
condition, their formulation is equivalent to Theorem 2. We discovered the idea of our
second proof (for the Bernstein property context) hidden in the remark right after their
corollary. The authors surmise that the sufficiency part of (iv) could be proved by Gregory–
Newton expansion of Bernstein functions and we will show that their idea works. Since
we are studying general, non necessarily bounded functions in CM and in BF , there was
a price to pay in order to avoid these kind of restrictive conditions. For this purpose, we
develop in Sections 3 and 4 there several algebraic tools, based on the scale, shift and
difference operators, giving new characterizations for the CM and BF classes. We did our
best to remove redundant assumptions of regularity (such as continuity or differentiability or
boundedness or global dependence on parameters) in the our sufficiency conditions. This kind
of redundancy often appears, because the classes CM and BF are very rich in information.
These tools, that we find intrinsically useful, can also be considered as a major contribution in
this work. They were also crucial in the proofs of the results given in Section 5. Throughout
this paper, we give different proofs, whenever it is possible, and when the approaches were
clearly distinct.

The paper is organized as follows. Section 2 gives the basic setting and definitions.
In Sections 3 and 4, we recall classical characterizations of complete monotonicity and
alternation for functions and sequences, we develop several other characterizations and we
discuss the concept of minimal sequences. Section 6 is devoted to specific pre-requisite for the
proofs of the main results. We recall there and adapt some results around functional iterative
equations and asymptotic of differences of functions. We also adapt some results stemming
from complex analysis and from interpolation theory. Section 7 is devoted to the proofs and
Section 8 gives an alternative characterization for self-decomposable Bernstein functions to
point (ii) above, in the spirit of point (iv) above.

2. BASIC NOTATIONS AND DEFINITIONS

Throughout this paper, N0 denotes the set of non-negative integers and N = N0
∖ {0}

. A sequence (ak)k∈N0 is seen as a function a : N0 → R so that a(k) = ak . The
symbols ∧ and ∨ denote respectively the min and the max. All the considered functions are
measurable, the measures are positive, Radon with support contained in [0, ∞). For functions
f : D ⊂ C → C, the scaling, the shift and the difference operators acting on them are
respectively denoted, whenever these are well defined, by

σc f (x) := f (cx), σ = σ1 = Identity,
τc f (x) := f (x + c), τ = τ1,

∆c f (x) := f (x + c) − f (x), ∆ := ∆1,

θc f (x) := f (c) − f (0) + f (x) − f (x + c), θ := θ1,

and their iterates are given by σ 0
c f = τ 0

c f = ∆0
c f = θ0

c f = f and for every n ∈ N,

σ n
c = τcn , τ n

c = τcn, ∆n
c f = ∆c(∆n−1

c f ), θn
c f = (−1)n(∆n

c f − ∆n
c f (0)

)
,
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so that for every n ∈ N0,

∆n
c f (x) =

n∑
i=0

(
n
i

)
(−1)n−i f (x + ic) (1)

θn
c f =

n∑
i=0

(
n
i

)
(−1)i (

f (x + ic) − f (ic)
)
.

Definition 1 (Berg [3] p. 130). Let D = (0, ∞) or [0, ∞) or N0. A function f : D → f (D)
is called completely monotone on D, and we denote f ∈ CM(D), if f (D) ⊂ [0, ∞)
(respectively completely alternating if f (D) ⊂ R and we denote f ∈ CA(D) ), if for all
finite sets {c1, . . . , cn} ⊂ D and x ∈ D , we have

(−1)n∆c1 · · ·∆cn f (x) ≥ 0 (respectively ≤ 0).

Remark 1.

(i) Every function f in CM(D) (respectively CA(D)) is non-increasing (respectively
non-decreasing). We will see later on that f is necessarily decreasing (respectively
increasing) when it is not a constant.

(ii) A non-negative function f belongs to CM(D) if and only if −∆c f belongs to CM(D)
for every c ∈ D∖{0} .

(iii) By [3, Lemma 6.3 p. 131], a function f belongs to CA(D) if and only if for every
c ∈ D∖{0} , the function ∆c f belongs to CM(D).

(iv) By linearity of the difference operators, the classes CM(D) and CA(D) are convex
cones.

3. CLASSICAL CHARACTERIZATIONS OF COMPLETELY MONOTONE AND
ALTERNATING FUNCTIONS AND ADDITIONAL CHARACTERIZATIONS VIA

ALGEBRAIC TRANSFORMATIONS

3.1. Completely monotone functions

Characterization of completely monotone functions is an old story and is due to the
seminal works of Bernstein, Bochner and Schoenberg. A nice presentation could be found
in the monograph of Schilling et al. [17]:

Theorem 1 ([17, Proposition 1.2 and Theorem 4.8]). The following three assertions are
equivalent:

(a) Ψ is completely monotone on (0, ∞) (respectively on [0, ∞));
(b) Ψ is represented as the Laplace transform of a unique Radon (respectively finite)

measure ν on [0, ∞):

Ψ (λ) =

∫
[0,∞)

e−λxν(dx), λ > 0 (respectively λ ≥ 0); (2)

(c) Ψ is infinitely differentiable on (0, ∞) (respectively continuous on [0, ∞), infinitely
differentiable on (0, ∞)) and satisfies (−1)n Ψ (n)

≥ 0 for every n ∈ N0.
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The measure ν in (2) will be referred in the sequel as the representative measure of Ψ .

Remark 2.

(i) Every function Ψ ∈ CM(0, ∞) such that Ψ (0+) exists, naturally extends to a
continuous bounded function in CM[0, ∞), this is the reason why we identify,
throughout this paper, such functions Ψ with their extension on [0, ∞).

(ii) By Corollary 1.6 p. 5 in [17], the closure of CM[0, ∞) (with respect to pointwise
convergence) is CM[0, ∞). This insures that Ψ ∈ CM(0, ∞) if and only if τcnΨ ∈

CM[0, ∞) for some positive sequence cn tending to zero or equivalently τcΨ ∈

CM(0, ∞) for every c > 0. It is also immediate that Ψ ∈ CM(0, ∞) if and only
if σcΨ ∈ CM(0, ∞) for some (and hence for all) c > 0.

(iii) It is not clear at all to see that functions in CM(0, ∞) are actually infinitely
differentiable just using Definition 1. The latter is clarified by point (b) of Theorem 1.
Furthermore, Dubourdieu [6] pointed out that strict inequality prevails in point (c) of
for all non-constant completely monotone functions, for these and their derivatives are
then strictly monotone.

We start with a taste of what we can obtain as algebraic characterization. The following
proposition has to be compared with Remark 1(ii):

Proposition 1.

(a) A function Ψ : (0, ∞) → [0, ∞) belongs to CM(0, ∞) if and only if for some (and
hence for all) c > 0 the function −∆cΨ belongs to CM(0, ∞) and the Laplace
representative measure in (2) of −∆cΨ gives no mass to zero.

(b) In this case, the sequence of functions (−∆nc)Ψ converges pointwise, locally uniformly,
to a function in CM(0, ∞) that does not depend on c, more precisely

Ψ (λ) = lim
x→∞

Ψ (x) + lim
n→∞

(−∆nc)Ψ (λ), λ > 0.

The same holds for the successive derivatives of (−∆nc)Ψ .

3.2. Completely alternating functions and Bernstein functions

The well known class BF of Bernstein functions consists of those functions Φ : (0, ∞) →

[0, ∞), infinitely differentiable on (0, ∞) and satisfy (−1)n−1Φ(n)(λ) ≥ 0, for every λ > 0
and n ∈ N. In other terms, Φ is a Bernstein function if it is non-negative, infinitely
differentiable and Φ ′

∈ CM(0, ∞). It is also known (see Theorem 3.2 p. 21[17] for instance)
that any function Φ ∈ BF admits a continuous extension on [0, ∞), still denoted Φ, and
represented by

Φ(λ) = q + dλ +

∫
(0,∞)

(1 − e−λx )µ(dx), λ ≥ 0 , (3)

where q, d ≥ 0 and the so-called Lévy measure µ satisfies the integrability condition∫
(0,∞)

(1 − e−x ) µ(dx) < ∞ which is equivalent to
∫

(0,∞)
(1 ∧ x) µ(dx) < ∞.
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An integration by parts gives∫
(0,∞)

e−λxµ
(
(x, ∞)

)
dx =

Φ(λ) − q
λ

− d, λ > 0,

so that q = Φ(0), d = limx→∞
Φ(x)

x and the relation between Φ and the triplet (q, d, µ)
becomes one-to-one.

The following proposition unveils the link between completely alternating functions and
Bernstein functions:

Proposition 2. (1) The class of Bernstein functions coincides with the class of non-negative
and completely alternating functions on [0, ∞).

(2) The class of completely alternating functions on (0, ∞) is given by

CA(0, ∞) = { f : (0, ∞) → R, differentiable, s.t. f ′
∈ CM(0, ∞)}.

In particular, if g ∈ CM(0, ∞), then −g ∈ CA(0, ∞).

It is clear that the subclass BFb of bounded Bernstein function is given by

BFb = {Φ ∈ BF , s.t. lim
λ→∞

Φ(λ) < ∞}

= {Φ ∈ BF , s.t. Φ(λ) = q +

∫
(0,∞)

(1 − e−xλ) µ(dx), with q ≥ 0,

µ
(
(0, ∞)

)
< ∞}

and that

Φ ∈ BFb if and only if Φ ≥ 0 and Φ(∞) − Φ ∈ CM[0, ∞). (4)

We denote

BF0
b = {Φ ∈ BFb, s.t. Φ(0) = 0}

= {Φ ∈ BF , s.t. Φ(λ) =

∫
(0,∞)

(1 − e−xλ) µ(dx), with µ
(
(0, ∞)

)
< ∞}.

We also have the following equivalences

Φ ∈ BF ⇐⇒ Φ ≥ 0 and σcΦ ∈ BF for some (and hence for all) c > 0 (5)

⇐⇒ λ ↦→ Φ(λ + c) − Φ(c) ∈ BF , for every c > 0. (6)

Equivalence (5) is immediate and (6) is justified as follows: by differentiation get Φ ′(.+ c) ∈

CM[0, ∞), for all c > 0 and closure of the class CM(0, ∞) (Corollary 1.6 p. 5 [17]) insures
that Φ ′

∈ CM(0, ∞). A natural question is to ask whether (6) remains true if expressed
with a single fixed c > 0. The answer is negative because for every Φ0 ∈ BF , the function
Φ(λ) = Φ0(|λ− c|), λ ≥ 0, is not in BF despite that λ ↦→ Φ(λ+ c) −Φ(c) ∈ BF . A closed
transformation is studied in Corollary 3.8 (vii) p. 28 in [17] which says that Φ ∈ BF yields
θcΦ ∈ BF for every c > 0. We propose the following improvement:

Proposition 3.

(a) A function Φ : [0, ∞) −→ [0, ∞) belongs to BF if and only if for some (and hence for
all) c > 0,

λ ↦→ θcΦ(λ) = Φ(c) − Φ(0) + Φ(λ) − Φ(λ + c) ∈ BF0
b.
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(b) In this case, the sequence of functions θncΦ converges pointwise, locally uniformly, to
a function in BF , null in zero, that does not depend on c. More precisely

Φ(λ) = Φ(0) + λ lim
x→∞

Φ(x)
x

+ lim
n→∞

θncΦ(λ), λ ≥ 0.

The same holds for the successive derivatives of θncΦ.

Remark 3. By (4), point (a) is also equivalent to λ ↦→ Φ(λ + c) − Φ(λ) ∈ CM[0, ∞), for
some (and hence for all) c > 0.

4. CLASSICAL CHARACTERIZATION OF COMPLETELY MONOTONE AND
ALTERNATING SEQUENCES AND ADDITIONAL RESULTS

A characterization of completely monotone (respectively alternating) sequences, closely
related to Hausdorff moment characterization theorem [10], could be found in the monograph
of Berg et al. [3]:

Theorem 2 ([3, Propositions 6.11 and 6.12 p. 134]). Let a = (ak)k≥0 a positive sequence.
Then, the following conditions are equivalent:

(a) the sequence a is completely monotone (respectively alternating);
(b) for all k ∈ N0, n ∈ N0 (respectively n ≥ 1), we have

(−1)n∆na(k) ≥ 0 (respectively ≤ 0); (7)

(c) there exists a positive Radon measure ν on [0, 1] (respectively q ∈ R, d ≥ 0 and a
positive Radon measure µ on [0, 1)) such that we have the representation

a0 = ν([0, 1]), ak =

∫
(0,1]

ukν(du), k ≥ 1 (8)(
respectively a0 = q, ak = q + d k +

∫
[0,1)

(1 − uk) µ(du), k ≥ 1
)
. (9)

4.1. Comments on CM(N0) and CA(N0)

Comment 1: In the completely monotone case, the measure ν in (8) is not only Radon
but also finite because of the convention a0 = ν ([0, 1]). In the completely alternating case,
we have that a0 = q and the measure µ in (9) is only Radon, satisfying the integrability
condition

∫
[0,1)(1 − u) µ(du) < ∞. By the dominated convergence theorem, we retrieve d =

limk→∞ (ak/k) . Furthermore, in both cases, ν (respectively (q, d, µ)) uniquely determine
the sequence (ak)k≥0, which is justified as follows:

1- In the completely monotone case: use Fubini argument, get that the exponential
generating function of the sequence (ak)k≥0 is the Laplace transform of ν,∑

k≥0

ak
(−t)k

k!
=

∫
[0,1]

e−tu ν(du), t ≥ 0,

and finally conclude with the injectivity of the Laplace transform. A more sophisticated argu-
ment could be extracted from Lemma 3.2 [7] in order to prove uniqueness of the measure ν.
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2- In the completely alternating case: making an integration by parts, write

ak − q − dk − µ ({0}) = k
∫ 1

0
uk−1 µ

(
(0, u]

)
du, k ≥ 1,

then by a Fubini argument, get that the exponential generating function of the sequence
(ak)k≥0 leads to a Bernstein function build with the triplet (q, d, µ):

h(t) : =

∑
k≥0

ak
tk

k!
, t ≥ 0

= (q + d t)et
+ µ ({0}) (et

− 1) + t
∫ 1

0
etu µ

(
(0, u]

)
du

= (q + d t)et
+ µ ({0}) (et

− 1) +

∫
(0,1)

(et
− etv) µ(dv)

e−t h(t) = q + d t + µ ({0}) (1 − e−t ) +

∫
(0,1)

(1 − e−tw) µ̂(dw) (10)

where µ̂ is the image of the measure µ obtained by the change of variable w = 1 − v, and
finally conclude with the unicity through the Bernstein representation in equality (10).

Comment 2: Completely monotone sequences are always positive, whereas a completely
alternating sequence is non-negative if and only if the corresponding q-value in (9) is non-
negative (see [2]).

4.2. The classes CM∗(N0) and CA∗(N0) of minimal completely monotone and alternating
sequences

A lot of care is required if one modifies some terms of a completely monotone or
alternating sequence. We clarify, with our own approach, the following fact we have found
in [11] and [12], and extend it to completely alternating sequences: strict inequality prevails
throughout (7) for a completely monotone sequence unless a1 = a2 = · · · = an = · · · , that
is, unless all terms except possibly its first are identical. We can state that

A sequence a = (ak)k≥0 in CM(N0) (respectively in CA(N0)) ceases to strictly
alternate, in differences, at a certain rank if and only if the sequence a is constant
(respectively if and only if the sequence a is affine).

Our argument uses the explicit computation (1) of the quantities (−1)n∆na(k), n ∈

N, k ∈ N0, which does not seem to be fully exploited in the literature we encountered:

(−1)n∆na(k) =

⎧⎪⎪⎨⎪⎪⎩
µ({0})1k=0 +

∫
(0,1)

uk(1 − u)nν(du) if a ∈ CM(N0)

− µ({0})1k=0 −

∫
(0,1)

uk(1 − u)nµ(du) if a ∈ CA(N0).

Let α = ν or µ. Based on the fact that
∫

(0,1) uk(1 − u)nα(du) = 0, for some n ∈ N and
k ∈ N0, if and only if α

(
(0, 1)

)
= 0, then an elementary reasoning shows that

(−1)n∆na(k) = 0 for some n ∈ N,

k ∈ N0 ⇐⇒

{
am = µ({1}), ∀m ≥ 1 if a ∈ CM(N0)
am = q + µ({0}) + d m, ∀m ≥ 1 if a ∈ CA(N0).
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As an example, fix ϵ > 0 and consider the completely monotone (respectively alternating)
sequence b0 = ϵ, bk = 0, k ≥ 1 (respectively b0 = 0, bk = ϵ, k ≥ 1). It satisfies:

(−1)n∆nb(k) = ϵ 1k=0 (respectively − ϵ 1k=0), n ∈ N, k ∈ N0.

By linearity of the operators (−1)n∆n , we obviously have

(−1)n∆n(a − b)(k)

=

⎧⎪⎪⎨⎪⎪⎩
(µ({0}) − ϵ)1k=0 +

∫
(0,1)

uk(1 − u)nν(du) if a ∈ CM(N0)(
ϵ − µ({0})

)
1k=0 −

∫
(0,1)

uk(1 − u)nµ(du) if a ∈ CA(N0).

Since ν is finite (respectively µ integrates 1 − u), then the dominated convergence theorem
ensures that

lim
n→∞

∫
(0,1)

(1 − u)nν(du) = lim
n→∞

∫
(0,1)

(1 − u)nµ(du) = 0,

so that the quantities (−1)n∆n(a − b)(0) takes the sign of µ({0}) − ϵ when n is big enough.
The above discussion clarifies the concept of minimality initially introduced, with a different
approach, in the monograph of Widder [20]:

Definition 2 ([20, Widder, p. 163] and [2, Athavale–Ranjekar]). Let a = (ak)k≥0 a
completely monotone (respectively alternating) sequence.

(i) a is called minimal and we denote a ∈ CM∗(N0) (respectively a ∈ CA∗(N0)) if the
sequence

{a0 − ϵ, a1, . . . , ak, . . .} (respectively {a0, a1 − ϵ, . . . , ak − ϵ, . . .})

is not completely monotone (respectively alternating) for any positive ϵ.
(ii) Equivalently, a is minimal if and only if the measure ν in (8) (respectively µ in (9)) has

no point mass at zero.

Example 1. The sequence a =
(
(k + 1)−1

)
k≥0 ceases to be completely monotone if a0 = 1

is replaced by a0 = 1 − ϵ, since

(−1)n∆na(0) =
1

n + 1
− ϵ, n ∈ N0.

The analogous constatation holds for the completely alternating sequence
(
1 − (k + 1)−1

)
k≥0

accordingly to Definition 2.

After the above comments and considerations on minimal sequences, Theorem 2 could be
specified as follows: taking ν̃ and µ̃ obtained as the image of the measures ν and µ on (0, ∞)
in (8) and (9) through the obvious change of variable u = e−x , we have:

Theorem 3.

(a) [20, Theorem 14b, p. 14] and [2, Theorem 1] A positive sequence a = (ak)k≥0 is
obtained by interpolating a member of CM[0, ∞) (respectively BF) on N0 if and only
if a belongs to CM∗(N0) (respectively CA∗(N0)).
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(b) Equivalently, a sequence (ak)k≥0 belongs to CM∗(N0) (respectively belongs to CA∗(N0)
and positive) if and only if there exist a unique finite measure ν̃ on (0, ∞) (respectively
a unique triplet (q, d, µ̃) where q, d ≥ 0 and the measure µ̃ satisfying

∫
(0,∞)(1 ∧

u) µ̃(du) < ∞), such that:

ak =

∫
[0,∞)

e−ku ν̃(du)
(

resp. ak = q + dk +

∫
(0,∞)

(1 − e−ku) µ̃(du)
)
,

k ≥ 0. (11)

It is clear that the subclass CM∗(N0) and the subclass of positive sequences in CA∗(N0)
are convex cones.

5. LINKING FUNCTIONS AND SEQUENCES OF THE COMPLETELY AND
ALTERNATING TYPE

In the spirit of Theorems 2 and 3, a natural question is to ask whether the completely
monotone (respectively Bernstein) character of function f is entirely recognized via its
associated sequence ( f (k))k . This constitutes a kind converse of Hausdorff’s moment
characterization theorem [10] which is formulated in Theorems 2 or 3. A complete answer is
given in the following two subsections.

5.1. Complete monotonicity property of functions is recognized by their restriction on N0

Theorem 4. Let Ψ : [0, ∞) −→ [0, ∞) be a bounded function. Then, Ψ is completely
monotone if and only if the two following conditions hold:

(a) the function Ψ has a holomorphic extension on Re(z) > 0 and remains bounded there;
(b) the sequence

(
Ψ (k)

)
k≥0 is completely monotone and minimal.

Corollary 1. A function Ψ : (0, ∞) −→ [0, ∞) is completely monotone if and only if the
following two conditions hold: for some (and hence all) positive sequence (ϵn)n≥0 such that
ϵn → 0,

(i) the function Ψ has a holomorphic extension on Re(z) > 0 and remains bounded on
Re(z) > ϵn;

(ii) the sequence
(
τϵnΨ (k)

)
k≥0 =

(
Ψ (ϵn + k)

)
k≥0 completely monotone and minimal.

Corollary 2. Two completely monotone functions on (0, ∞) coincide on the set of positive
integers starting from a certain rank if and only if they are equal. If one of them extends to
[0, ∞), then so does the other and they coincide on [0, ∞).

5.2. Complete monotonicity property of functions is recognized by their restriction on a
lattices of the form αnN0, where αn → 0

The following two results characterize complete monotonicity of functions only in terms
of minimal completely monotone sequences, i.e. condition (a) in Theorem 4 and Corollary 1
would be self contained.
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Proposition 4. A function Ψ : [0, ∞) → [0, ∞) belongs to CM[0, ∞) if and only if
it is continuous and for some (and hence for all) sequence (αn)n≥0 of positive numbers
tending to zero, there corresponds a sequence (Ψn)n≥0 in CM[0, ∞) such that the following
representation holds each for each n ∈ N0:

Ψ (αn k) = Ψn(k), for all k ∈ N0
(
i.e.

(
Ψ

(
αnk

))
k≥0 ∈ CM∗(N0)

)
.

For non-bounded completely monotone functions on (0, ∞) an analogous statement is
given, but we require a minor correction consisting on shifting the function on the right of
zero:

Corollary 3. For a function Ψ : (0, ∞) → [0, ∞), the following conditions are equivalent:

(a) Ψ belongs to CM(0, ∞);
(b) Ψ is continuous and to every sequence (rn)n≥0 of positive rational numbers tending

to zero, there corresponds a sequence (Ψn)n≥0 in CM[0, ∞), such that following
representation holds for each n ∈ N0:

Ψ (rn(k + 1)) = Ψn(k), for all k ∈ N0(
i.e.

(
Ψ

(
rn(k + 1)

))
k≥0 ∈ CM∗(N0)

)
;

(c) Ψ is continuous and there exists a sequence (Ψn)n>0 in CM[0, ∞), such that the
following representation holds for each n ∈ N:

Ψ (
k + 1

n
) = Ψn(k), for all k ∈ N0

(
i.e.

(
Ψ

(k + 1
n

))
k≥0 ∈ CM∗(N0)

)
.

Remark 4. (i) By continuity, it is not difficult to see that assertions in Proposition 4
(respectively Corollary 3) are also equivalent to the following:

Ψ is continuous, bounded (respectively continuous, non necessarily bounded) and the
sequence

(
Ψ (xk)

)
k≥0 (respectively

(
Ψ

(
x(k + 1)

))
k≥0

) belongs to CM∗(N0) for every

x ∈ (0, ∞) or for every x ∈ Q ∩ (0, ∞).
The latter is precisely what is stated in Lemma 3.1 in [13] in case Ψ (0) = 1, the minimality
condition was somehow occulted.

(ii) The reader could notice that Theorem 4 requires a supplementary assumption of
holomorphy and of boundedness compared to Proposition 4 and Corollary 3. The point is
that Theorem 4 gives more information since for every function Ψ satisfying condition (a)
therein, we have

Ψ ∈ CM(0, ∞) ⇐⇒ σxΨ ∈ CM(0, ∞), for some x ∈ (0, ∞)
⇐⇒

(
Ψ

(
x(k + 1)

))
k≥0 ∈ CM∗(N0), for some x ∈ (0, ∞). (12)

The same holds for Ψ ∈ CM[0, ∞) under the additional condition of finiteness of Ψ (0+).
The condition of minimality and holomorphy appear to be the lowest price to pay in order to
have the condition (12) expressed for a single x instead of all x .

5.3. Bernstein property of functions is recognized by their restriction on N0

Theorem 5. A function Φ : [0, ∞) → [0, ∞) is a Bernstein function if and only if it
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(a) the function Φ has a holomorphic extension on Re(z) > 0 and satisfies there
|Φ(c + z) − Φ(z)| ≤ M for some c, M > 0;

(b) the sequence
(
Φ(k)

)
k≥0 is completely alternating and minimal.

Since every Bernstein functions Φ satisfies λ ↦→ Φ(λ)/λ ∈ CM(0, ∞), we immediately
deduce from Corollary 2 the following:

Corollary 4. Two Bernstein functions coincide on the set of non-negative integers starting
from a certain rank if and only if they are equal on [0, ∞).

5.4. Bernstein property of functions is recognized by their restriction on lattices of the form
αnN0, where α → 0

As for completely monotone functions, the following two results characterize Bernstein
property of functions only in terms of minimal completely alternating sequences, i.e. condi-
tion (a) in Theorem 5 would be self contained.

Proposition 5. A function Φ : [0, ∞) −→ [0, ∞) belongs to BF0
b if and only if it is

continuous and for some (and hence for all) sequence (αn)n≥0 of positive numbers tending to
zero, there corresponds a sequence (Φn)n≥0 in BF0

b, such that the following representation
holds for each n ∈ N0:

Φ(αnk) = Φn(k), for all k ∈ N0
(
i.e.

(
Φ

(
αnk

))
k≥0 ∈ CA∗(N0)

)
.

Corollary 5. For a function Φ : [0, ∞) −→ [0, ∞), the following conditions are equivalent:

(a) Φ belongs to BF ;
(b) Φ is continuous and to every sequence (rn)n≥0 of positive rational numbers tending

to zero, there corresponds a sequence (Φn)n≥0 in BF , such that the following
representation holds for each n ∈ N0:

Φ(rn k) = Φn(k), for all k ∈ N0
(
i.e.

(
Φ

(
rnk

))
k≥0 ∈ CA∗(N0)

)
;

(c) Φ is continuous and there exists a sequence (Φn)n>0 in BF , such that the following
representation holds for each n ∈ N:

Φ(
k
n

) = Φn(k), for all k ∈ N0
(
i.e.

(
Φ

( k
n

))
k≥0 ∈ CA∗(N0)

)
.

Remark 5. As in Remark 4, we can notice the following:
(i) By continuity, assertions in Corollary 5 (respectively Proposition 5) are equivalent to

the following assertion:

Φ is continuous and the sequence
(
Φ(xk)

)
k≥0 belongs to ∈ CA∗(N0) (respectively

belongs to ∈ CA∗(N0) and is bounded) for every x ∈ (0, ∞) or for every x ∈ Q+.
(ii) Theorem 5 requires a supplementary assumption of holomorphy and of sub-affinity

compared to Proposition 5 and Corollary 5. Theorem 5 gives more information since for
every function Φ satisfying condition (a) therein, we have

Φ ∈ BF ⇐⇒ σxΦ ∈ BF for some x ∈ (0, ∞) ⇐⇒

(
Φ(xk)

)
k≥0

belongs to

∈ CA∗(N0) (respectively belongs to ∈ CA∗(N0) and is bounded) for some x ∈ (0, ∞).
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6. SOME PRE-REQUISITE

The following results are crucial in order to conduct our proofs.

6.1. On iterative functional equations and asymptotic of differences

We first present a result of Webster [19] which will be used in the proofs of Propositions 1
and 2. Given a log-concave function g : [0, ∞) → [0, ∞), he considered the iterative
functional equation

f (x + 1) = g(x) f (x), x > 0, and f (1) = 1. (13)

Motivated by the study of generalized gamma functions and their characterization by a Bohr–
Mollerup–Artin type theorem, Webster studied equations of type (13). A combination of
Theorems 4.1 and 4.2 [19] gives results that were stated in [1] under this form:

Theorem 6 (Webster, [19]). Let g : [0, ∞) → [0, ∞) be a log-concave function
satisfying g(x + a)/g(x) → 1, as x → ∞ for every fixed a > 0. For n ≥ 1, let
an = (g′

−
(n) + g′

+
(n))/2g(n) and γg = limn→∞

(∑n
1a j − log g(n)

)
. Then, there exists

a unique log-convex solution f : [0, ∞) → [0, ∞) to the functional Eq. (13) satisfying
f (1) = 1 and given by

f (x) =
e−γg x

g(x)

∞∏
n=1

g(n)
g(n + x)

ean x , x > 0. (14)

If furthermore lima→∞g(x) = 1, then the representation simplifies to

f (x) =
1

g(x)

∞∏
n=1

g(n)
g(n + x)

, x > 0. (15)

Theorem 1.1.8 p. 5 [5] says that if l : R → R is additive (i.e. l(x + y) = l(x) +

l(y), ∀x, y ∈ R), and measurable, then l(x) = Cx for some C ∈ R. On the other hand,
consider a function l : [0, ∞) → [0, ∞) solution of the iterative equation

l(x + 1) = l(x) + l(1), x ∈ (0, ∞).

Take g(x) = el(1) and f (x) = el(x)−l(1) in Theorem 6. Clearly, an = 0 and γg = −l(1)
and (14) yields that the unique convex solution is given by l(x) = l(1) x , x ≥ 0. It would
be desiderate to have a similar conclusion without the convexity assumption. Karamata’s
characterization theorem for regularly varying functions (Theorem 1.4.1 p. 17 in [5]), says
that if limx→∞h(λ + x) − h(x) = l(λ), then there exists a real number ρ such that
limx→∞

(
h(λ + x) − h(x)

)
= ρλ for every λ ≥ 0. We propose the following lemma as

an improvement of Karamata’s characterization:

Lemma 1. Suppose two measurable functions h, l : [0, ∞) → [0, ∞) are linked for every
λ ≥ 0 by the limit

h(λ + n) − h(n) → l(λ), as n → ∞ and n ∈ N.

Then, necessarily l(λ) = λl(1) with l(1) ≥ 0 and

h(λ + x) − h(x) → l(λ), as x → ∞,

uniformly in each compact λ-set in [0, ∞). (16)
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Proof. The proof goes through the following four steps:
(a) For every λ ≥ 0, write that

l(λ + 1) = lim
n→∞

[h(λ + 1 + n) − h(n)]

= lim
n→∞

[h(λ + 1 + n) − h(n + 1)] + lim
n→∞

[h(n + 1) − h(n)] = l(λ) + l(1)

and retrieve that

l(λ + m) = l(λ) + l(m) = l(λ) + l(1) m, for every λ ≥ 0, m ∈ N0. (17)

Since h(n + 1) − h(n) converges to l(1), then, so does its Cesàro mean

l(1) = lim
n→∞

1
n

n−1∑
i=0

[h(i + 1) − h(i)] = lim
n→∞

h(n) − h(0)
n

= lim
n→∞

h(n)
n

,

and deduce that l(1) ≥ 0.
(b) Case where l ≡ 0 (i.e. l(1) = 0): Assume that a function k : [0, ∞) → [0, ∞) satisfies

lim
n→∞, n∈N

k(λ + n) − k(n) → 0.

Reproduce identically the first proof of Theorem 1.2.1 p. 6 [5] (by taking with their notations
x = n ∈ N) in order to get k(λ+n)−k(n) → 0 uniformly in each compact λ-set in (0, ∞) as
n → ∞ and n ∈ N. Denote {x} and [x] the fractional and integer part of x . Then, mimicking
the end of the second proof of Theorem 1.2.1 p. 6 [5], take an arbitrary compact interval
[a, b] in [0, ∞) and observe that

sup
λ∈[a,b]

⏐⏐k(λ + x) − k(x)
⏐⏐ = sup

λ∈[a,b]

⏐⏐k(λ + {x} + [x]) − k({x} + [x])
⏐⏐

≤ sup
u∈[a,b+1]

⏐⏐k(u + [x]) − k([x])
⏐⏐

+ sup
u∈[0,1]

⏐⏐k(u + [x]) − k([x])
⏐⏐

goes to zero as [x] → ∞. Finally, get

k(λ + x) − k(x) → 0, as x → ∞, uniformly in each compact λ-set in [0, ∞). (18)

(c) Case where l ≡/ 0: Taking k(x) = h(x) − l(x) and using (17), obtain for every λ > 0

k(λ + n) − k(n) = h(λ + n) − l(λ + n) − h(n) + l(n) = h(λ + n) − h(n) − l(λ) → 0.

as n → ∞. By step b) deduce that k satisfies (18).
(d) Taking h(x) = log f (ex ) with f as in Theorem 1.4.1 p. 17 [5], conclude that necessarily
the function l is linear, i.e. l(λ) = l(1)λ.

6.2. On Blaschke’s characterization theorem

The second result, due to Blaschke, allows to identify holomorphic functions given their
restriction along suitable sequences:

Theorem 7 (Blaschke, Corollary p. 312 in Rudin [15]). If f is holomorphic and bounded on
the open unit disc D, if α1, α2, α3, . . . are the zeros of f in D and if

∑
∞

i=1(1 − |αi |) = ∞,

then f (z) = 0 for all z ∈ D.
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Using the is conformal one-to-one mapping of the open unit disc onto the open right half
plane

θ (z) =
1 + z
1 − z

,

one can easily rephrase Blaschke’s theorem for function defined on the open right half plane:

Corollary 6. Two holomorphic functions on the open right half plane P are identical if their
difference is bounded and they coincide along a sequence z1, z2, z3, . . . in P, such that the
series

∑
(1 − |

zi −1
zi +1 |) diverge and in particular for zi = i ∈ N.

Remark 6. Corollary 6 will be used essentially in the proofs of Theorems 4 and 5 for
checking the equality between two functions coinciding along the sequence of positive
integers. We are totally aware that Theorems 4 and 5 could be rephrased in a more general
setting with different sequences. For clarity’s sake, we preferred to state our results there
under their current form.

6.3. On Gregory–Newton development

In the alternative proofs of Theorems 4 and 5, we will also need the concept of Gregory–
Newton development that we recall here:

Definition 3. A function f defined on some domain D of the complex plane is said to admit
a Gregory–Newton development if there exists some sequence (ak)k≥0 such that

f (z) =

∞∑
k=0

(−1)k ak

k!
zk, z ∈ D,

where

z0
= 1 and zk

= z(z − 1) · · · (z − k + 1) = 1, k ≥ 1.

Remark 7. (i) Notice that the factorial powers zn and the usual powers zk are related through
the relations

zn
=

n∑
k=0

[n
k

]
(−1)n−k zk and zn

=

n∑
k=0

{n
k

}
zk ,

where
[ n

k

]
and

{ n
k

}
are the Stirling numbers of the first and second kind respectively. These

relations allow to swap between Gregory–Newton and power series developments whenever
it is possible. This clarifies why a Gregory–Newton development for a holomorphic function
is unique.

(ii) For functions f admitting a Gregory–Newton development, Nörlund ([14] p. 103),
showed that necessarily

ak = (−1)k ∆k f (0), k ≥ 0.

(iii) It is worth noting that the transformation(
f (l)

)
l=0,...,m ↦→

(
(−1)n ∆n f (0)

)
n=0,...,m
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is the classical binomial transform which is involutive. Since the operators τ and ∆ commute,
and so do their iterates, it is immediate that the transformation

(
f (k + l)

)
l=0,...,m ↦→(

(−1)n ∆n f (k)
)

n=0,...,m is also involutive for every fixed k ∈ N0. The transformation(
f (l)

)
l=0,...,m ↦→

(
∆n f (0)

)
n=0,...,m is called the Euler transform. It is not an involution but

remains one-to-one (see [8]). It is now clear that

the sequence
(
∆k f (0)

)
k≥0 is one-to-one with the sequence ( f (k))k≥0. (19)

It is trivial that any function f : D ⊂ C → C could be represented by an interpolating
polynomial Pn of a degree n ≥ 1, plus a remainder function Rn:

f = Pn + Rn, where Pn(z) =

n∑
k=0

∆k f (0)
k!

zk .

The following result clarifies when the remainder function goes to zero, i.e. when f could be
expanded in a unique way (see point (i) in Remark 7) into a Gregory–Newton series given by

f (z) =

∞∑
k=0

∆k f (0)
k!

zk . (20)

Theorem 8 (Nörlund, [14] p. 148). In order that a function f admits a Gregory–Newton
development (20), it is necessary and sufficient that f is holomorphic in a certain half-plane
Re(z) > α and f is of the exponential type, i.e.⏐⏐⏐ f (z)

⏐⏐⏐ ≤ CeD|z|, (21)

where C and D are fixed positive numbers.

As an application, we propose the following:

Proposition 6. (1) Every bounded completely monotone function Ψ admits an extension
which

(i) is bounded, continuous on the half plane Re(z) ≥ 0 and holomorphic on Re(z) > 0;
(ii) is expandable into a Gregory–Newton series on the half plane Re(z) > 0.

(2) Every Bernstein function Φ admits an extension which
(i) is continuous on the half plane Re(z) ≥ 0 and holomorphic on Re(z) > 0;
(ii) satisfies for some C, D ≥ 0

|Φ(z) − Φ(z′)| ≤ C + D |z − z′
| for every z, z′ s.t. Re(z) ≥ Re(z′) ≥ 0;

(iii) is expandable into a Gregory–Newton series on the half plane Re(z) > 0.

Proof. (1) Assertion (i) is due to Corollary 9.12 p. 67 [4]. Boundedness of the extension of
Ψ insures that Nörlund’s condition (21) is satisfied and then (ii) is true.
(2) Assertion (i) is due to 9.14 p. 68 [4] or to Proposition 3.6 p. 25 [17], so that the
representation (3) extends on Re(z) ≥ 0

Φ(z) = q + d z +

∫
(0,∞)

(1 − e−zx )µ(dx).
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For (2)(ii), we reproduce some steps of the Proposition 3.6 p. 25 [17], we observe that for
every x ≥ 0 and z, z′

∈ C such that Re(z) ≥ Re(z′) ≥ 0, we have

|e−zx
− e−z′x

| ≤ |1 − e−(z−z′)x
| ≤ 2 ∧ |(z − z′)x | ≤ (2 ∨ |z − z′

|)(1 ∧ x)
≤ (2 + |z − z′

|)(1 ∧ x).

We deduce

|Φ(z) − Φ(z′)| ≤ d |z − z′
| +

∫
(0,∞)

|e−zx
− e−z′x

|µ(dx)

≤ d|z − z′
| + (2 + |z − z′

|)
∫

(0,∞)
(1 ∧ x)µ(dx)

= C + D |z − z′
| ≤ (C ∨ D) eD|z−z′

|

where C = 2
∫

(0,∞)(1 ∧ x)µ(dx) and D = d +
∫

(0,∞)(1 ∧ x)µ(dx).
(2) (iii) is justified as follows: take z′

= 0, get that |Φ(z)| ≤ |Φ(0)| + C + D |z| ≤

(
(
C + |Φ(0)|

)
∨ D) eD|z| and deduce Φ satisfies Nörlund’s condition (21).

7. THE PROOFS

Proof of Proposition 1. (a) For the necessity part, notice that if c > 0 and Ψ is represented
by Ψ (λ) =

∫
(0,∞) e−λx µΨ (dx), λ > 0, then

h(λ) := Ψ (λ) − Ψ (λ + c) =

∫
(0,∞)

e−λx (1 − e−cx ) µΨ (dx)

since the measure µh(dx) := (1 − e−cx ) µΨ (dx) gives no mass to zero.
For the sufficiency part, take c > 0 and consider the iterative functional equation

Ψ (λ) − Ψ (λ + c) = h(λ) with h ∈ CM(0, ∞) represented by

h(λ) =

∫
(0,∞)

e−λx µh(dx).

We would like to show that Ψ ∈ CM(0, ∞), or equivalently (by Remark 2(ii)) that
σcΨ ∈ CM(0, ∞). This is the reason why it is sufficient to show that the solution of the
iterative functional equation

Ψ (λ) − Ψ (λ + 1) = h(λ)

belongs to CM(0, ∞), i.e. to check things with c = 1. For this purpose, we apply Theorem 6
with the log-concave function g(λ) = e−h(λ), λ > 0 satisfying limλ→∞g(λ) = 1 and
f (λ) = eΨ (λ)−Ψ (1), λ > 0. We obtain the representation:

Ψ (λ) − Ψ (1) = h(λ) −

∞∑
n=1

∫
(0,∞)

e−nx (1 − e−λx )µh(dx)

=

∫
(0,∞)

(e−λx
− e−x )µh(dx),

which insures that Ψ is differentiable with −Ψ ′
∈ CM(0, ∞). Because Ψ is non-negative,

we conclude that Ψ ∈ CM(0, ∞).
Statement (b) could be extracted from the second proof that follows. □
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Second proof of the sufficiency part of Proposition 1. Fix c > 0 and write for every n ∈ N
and λ > 0,

(−∆nc)Ψ (λ) = Ψ (λ) − Ψ (λ + nc) =

n−1∑
i=0

Ψ (λ + ic) − Ψ (λ + (i + 1)c)

=

n−1∑
i=0

(−∆c)Ψ (λ + ic)

Obviously, the sequence n ↦→ (−∆nc)Ψ (λ) is increasing for every λ, c > 0, then x ↦→ Ψ (x)
is decreasing and then converging, since non-negative. We denote Ψ (∞) := limx→∞Ψ (x).
The function λ ↦→ (−∆nc)Ψ (λ) belongs to CM(0, ∞) and, by Corollary 1.7 p. 6 in [17],
the limiting function (−∆∞,c)Ψ := limn→∞(−∆nc)Ψ also belongs to CM(0, ∞), the
convergence holds locally uniformly and also for the derivatives. This limit does not depend
on c because it satisfies:

Ψ (λ) = Ψ (∞) + (−∆∞,c)Ψ (λ), λ > 0. □

Proof of Proposition 2. (1) If Φ ∈ BF is represented by (3), then for every c > 0,

λ ↦→ ∆cΦ(λ) = Φ(λ + c) − Φ(λ) = dc +

∫
(0,∞)

e−λx (1 − e−cx )µ(dx), λ ≥ 0,

is non-negative and belongs to CM[0, ∞). By Remark 1(iii) we deduce that Φ ∈ CA[0, ∞).
Conversely, assume Φ ∈ CA[0, ∞) and non-negative, we will show that Φ is differentiable

and that Φ ′ in completely monotone on (0, ∞) which is equivalent to Φ ∈ BF . Remark 1(iii)
and definiteness of Φ in zero yield to

λ ↦→ ∆cΦ(λ) = Φ(λ + c) − Φ(λ) ∈ CM[0, ∞), ∀c > 0.

Inspired by the proof of Proposition 1, we will see, that ∆Φ ∈ CM(0, ∞) (i.e. when taking
c = 1) is sufficient for proving that Φ is differentiable and that Φ ′

∈ CM(0, ∞). Indeed,
assume ∆Φ is the Laplace representation µ

∆Φ(λ) =

∫
[0,∞)

e−λxµ(dx).

Theorem 6 insures that f (λ) = eΦ(1)−Φ(λ) is the unique solution of the iterative functional
equation f (λ + 1) = f (λ)g(λ) and Φ(1) − Φ(λ) has the following representation for every
λ > 0:

Φ(1) − Φ(λ) = ∆Φ(λ) −

∞∑
n=1

∆Φ(n) − ∆Φ(n + λ)

=

∫
[0,∞)

e−λx µ(dx) −

∞∑
n=1

∫
(0,∞)

(e−nx
− e−(n+λ)x ) µ(dx)

= µ({0}) +

∫
(0,∞)

e−λx µ(dx) −

∫
(0,∞)

(1 − e−λx )
e−x

1 − e−x
µ(dx)

= µ({0}) +

∫
(0,∞)

e−x
− e−λx

1 − e−x
µ(dx).
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Then, for every a > 0, λ ↦→ Φ(λ + a) −Φ(a) =
∫

(0,∞)(1 − e−λx ) e−ax

1−e−x µ(dx) is a Bernstein
function which is equivalent, by (6) to Φ ∈ BF .

(2) The proof is conducted identically by dropping the positivity condition on Φ. □

Proof of Proposition 3. If Φ ∈ BF is represented by (3) and if c > 0, then

λ ↦→ θcΦ(λ) = Φ(c) − Φ(0) + Φ(λ) − Φ(λ + c) =

∫
(0,∞)

(1 − e−λx )(1 − e−cx )µ(dx).

We deduce that θcΦ ∈ BF0
b since (1 − e−cx )µ(dx) is a measure with finite total mass equal

to Φ(c) −
(
Φ(0) + d c

)
.

Conversely, assume λ ↦→ θcΦ(λ) =
[
Φ(c) − Φ(0)

]
−

[
Φ(λ + c) − Φ(λ)

]
∈ BF0

b. The
latter is equivalent by (4) to λ ↦→

[
Φ(λ+ c) −Φ(λ)

]
∈ CM[0, ∞) and we conclude as in the

proof of Proposition 2.
Statement (b) could be extracted from the second proof that follows. □

Second proof of the sufficiency part of Proposition 3. Because of the invariance (5), it is
enough to prove the Proportion in case where c = 1. Since θΦ belongs to BF0

b, then it is
represented with a finite measure µ on (0, ∞) by

θcΦ(λ) =

∫
(0,∞)

(1 − e−λx ) µc(dx), λ ≥ 0.

We will see that the latter is sufficient to show that φ is differentiable on (0, ∞) and that Φ ′

belongs to CM(0, ∞). First notice that for every n ∈ N0 and λ ≥ 0,

θncΦ(λ) =
[
Φ(nc) − Φ(0)

]
−

[
Φ(λ + nc) − Φ(λ)

]
=

n−1∑
k=0

[
Φ((k + 1)c) − Φ(kc)

]
−

[
Φ(λ + (k + 1)c) − Φ(λ + kc)

]
=

n−1∑
k=0

{[
Φ(c) − Φ(0)

]
−

[
Φ(λ + (k + 1)c) − Φ(λ + kc)

]}
−

{[
Φ(c) − Φ(0)

]
−

[
Φ((k + 1)c) − Φ(kc)

]}
=

n−1∑
k=0

θcΦ(λ + kc) − θcΦ(kc)

=

n−1∑
k=0

∫
(0,∞)

(1 − e−λx ) e−kcx µc(dx)

=

∫
(0,∞)

(1 − e−λx )
1 − e−ncx

1 − e−cx
µc(dx).

By Corollary 3.9 p. 29 [17], the sequence θncΦ converges locally uniformly, and all its
derivatives to a Bernstein function θ∞,cΦ given by

λ ↦→ θ∞,cΦ(λ) =

∫
(0,∞)

1 − e−λx

1 − e−x
µc(dx) ∈ BF .
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We have also showed that for every λ ≥ 0, Φ(nc) −Φ(λ + nc) → θ∞,cΦ(λ) +Φ(0) −Φ(λ),
when n → ∞. On the other hand, by (16), we get that for every λ ≥ 0

lim
x→∞

Φ(λ + x) − Φ(x) = dcλ, for some dc ≥ 0

and we deduce that,

Φ(λ) = Φ(0) + dcλ + θ∞,cΦ(λ), λ ≥ 0.

Uniqueness of the triplet of characteristics in the representation (3) of Bernstein functions
allows to conclude that both dc and θ∞,cΦ do not depend on c. □

Proof of Theorem 4. For the necessity part, use Proposition 6 for (a) and Theorem 3 for
(b). For the sufficiency part, use Theorem 3 again which asserts that there is a unique finite
measure µ on [0, ∞) such that

Ψ (k) =

∫
[0,∞)

e−kx µ(dx), ∀k ∈ N0.

The finiteness of each term Ψ (k), k ∈ N0 allows to define the function

Ψ (λ) :=

∫
[0,∞)

e−λx µ(dx), λ ≥ 0.

Since Ψ (k) = Ψ (k) for every k ∈ N0, and since the extensions on Re(z) > 0 of both
functions Ψ and Ψ are holomorphic and bounded, then Blaschke’s argument given in
Corollary 6 insures that the extensions of Ψ and Ψ are equal on Re(z) > 0. We deduce
that Ψ and Ψ coincide on (0, ∞) and, by continuity in zero, also on [0, ∞). □

Alternative Proof of Theorem 4. We conclude as in the last proof without the use of
Blaschke’s argument. Because the extensions on Re(z) > 0 of both functions Ψ and
Ψ are holomorphic and bounded, they are, by Proposition 6 expandable into Gregory–
Newton series as in (20). Since (Ψ (k))k≥0 =

(
Ψ (k)

)
k≥0 and the sequences

(
∆kΨ (0)

)
k≥0

and (Ψ (k))k≥0 entirely determine each other by (19), we conclude that ∆kΨ (0) = ∆kΨ (0)
for all k ∈ N0. Finally, Ψ and Ψ have the same expansion (20) and then are equal. □

Proof of Corollary 1. For the necessity part, do as in the proof of Theorem 4. For the
sufficiency part, notice that the sequence of functions τϵnΨ (λ) = Ψ (ϵn + λ), λ ≥ 0, satisfy
the conditions of Theorem 4 and converge to Ψ . One concludes with Remark 2(ii). □

Proof of Corollary 2. The necessity part is obvious. For the sufficiency part, consider two
functions Ψ1 and Ψ2 in CM(0, ∞), represented by their measures ν1 and ν2, and coinciding
on {n0, n0 + 1, . . .} for some n0 ∈ N0. By construction, the well defined functions on [0, ∞),
τn0Ψ1(λ) and τn0Ψ2, coincide on N0. Using Remark 7 and imitating the end of the proof of
Theorem 4, conclude that τn0Ψ1 and τn0Ψ2 are equal, that is∫

[0,∞)
e−λx e−n0 xν1(dx) =

∫
[0,∞)

e−λx e−n0 xν2(dx), ∀λ ≥ 0.

By injectivity of Laplace transform, conclude that the measures e−n0 xν1(dx) and e−n0 xν2(dx)
are equal and so are ν1 and ν2. One can also use the Gregory–Newton expansion argument as
in the alternative proof of Theorem 4. Now, assume Ψ1(0+) < ∞ (that is Ψ1 ∈ CM[0, ∞)),
then, by continuity, necessarily Ψ1(0+) = Ψ2(0+) and Ψ1 = Ψ2 on [0, ∞). □
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Proof of Proposition 4. The necessity part is obvious by Remark 2(ii), we tackle the
sufficiency part. Using continuity in zero, it is enough to prove that Ψ is completely monotone
on (0, ∞). We fix λ > 0 and denote [x] the integer part of the real number x . Notice that
αn[ λ

αn
] is smaller than λ and tends to λ when n goes to infinity. We claim that

en(λ, u) := e−αn [ λ
αn ] u

−→ e−λ u, uniformly in u ≥ 0, when n → ∞. (22)

Indeed, using the inequality

a e−a
≤ 1 and 0 ≤ e−a

− e−b
=

∫ b

a
e−u du ≤ (b − a) e−a, 0 ≤ a ≤ b,

we have, for every integer n such that αn < λ and u ≥ 0, that

0 ≤ en(λ, u) − e−λ u
≤ αn u

(
λ

αn
− [

λ

αn
]
)

e−αn [ λ
αn ] u

≤ αn u e−αn [ λ
αn ] u

≤
1

[ λ
αn

]
≤

αn

λ − αn
.

Now, by assumption, we have

Ψ
(
αn[

λ

αn
]
)

= Ψn

(
[

λ

αn
]
)

=

∫
[0,∞)

e−[ λ
αn ]u

νn(du) =

∫
[0,∞)

en(λ, v) ν̃n(dv),

where νn is the representative measure of Ψn and ν̃n is the finite measure with total mass
ν̃n

([
0, ∞

))
= Ψ (0), image of νn by the change of variable u = αnv. Continuity of Ψ yields

Ψ (λ) = lim
n→∞

Ψ
(
αn[

λ

αn
]
)

= lim
n→∞

∫
[0,∞)

en(λ, u) ν̃n(du)

and Helly’s selection theorem, insures that there exist a subsequence
(̃
νn p

)
p≥0 and a finite

measure ν on [0, ∞) such that ν̃n p converges vaguely (and also weakly) to ν. Taking the limit
along the subsequence n p and thanks to the uniformity in (22), we get

Ψ (λ) =

∫
[0,∞)

e−λ u ν(du). □

Proof of Corollary 3. Since (a) H⇒ (b) is justified by Remark 2(ii) and (b) H⇒ (c) is
immediate, we just need to prove (c) H⇒ (a). In case where Ψ (0+) < ∞, Proposition 4
directly applies. In case where Ψ (0+) = ∞, we claim that for every fixed m ∈ N, the
function

τ 1
m
Ψ (λ) = Ψ (

1
m

+ λ), λ ≥ 0,

satisfies the condition of Proposition 4. Indeed, τ 1
m
Ψ is continuous and, by assumption, there

exists for each n ∈ N, a function Ψmn ∈ CM[0, ∞), associated to a measure νnm with finite
total mass νnm

(
[0, ∞)

)
= Ψ (1/m), such that for every l ∈ N0,

τ 1
m
Ψ (

l
n

) = Ψ (
n + ml

mn
) = Ψmn(n + ml) =

∫
[0,∞)

e−(n+ml) u νnm(du)

=

∫
[0,∞)

e−
n+ml

mn v ν̃n,m(dv) =

∫
[0,∞)

e−lv νn,m(dv) (23)
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where ν̃n,m is the image of νnm by the change of variable u =
v
n . Taking l = 0 in (23), it is

immediate that the measure

νn,m(dv) := e−
v
m ν̃n,m(dv)

is also a measure with finite total mass νn,m
(
[0, ∞)

)
= Ψ ( 1

m ).
It is now evident, by Proposition 4, that for every m, the function τ 1

m
Ψ is completely

monotone on [0, ∞) for every m ∈ N. Using Remark 2(ii), we conclude that Ψ ∈

CM(0, ∞). □

Proof of Theorem 5. We tackle the proof with the necessity part: the holomorphy condition
(i) is in Proposition 6 and the second condition stems from Theorem 3. Proof of the
sufficiency part is based on Blaschke’s result stated in Corollary 6, used with some care,
because Bernstein function are not bounded in general. By Proposition 3, it is enough to
check whether the function

λ ↦→ θΦ(λ) := ∆1Φ(0) − ∆1Φ(λ) = Φ(1) − Φ(0) + Φ(λ) − Φ(λ + 1)

belongs to BF0
b in order to show that Φ ∈ BF . We argue as follows:

1- representation (11) gives

Φ(k) = q + dk +

∫
(0,∞)

(1 − e−kx )µ(dx), k ∈ N0,

and allows to define the function

Φ(λ) = q + dλ +

∫
(0,∞)

(1 − e−λx )µ(dx), λ ∈ [0, ∞),

and then, by Proposition 3, θΦ ∈ BF0
b;

2- the sequences
(
θΦ(k)

)
k≥0 and

(
θΦ(k)

)
k≥0 are equal;

3- boundedness condition in (a) yields boundedness of the function the extension of θΦ,
boundedness of the function the extension of θΦ stems from Proposition 6;

4- Corollary 6 insures that the extensions of the functions θΦ and θΦ are equal on (0, ∞)
and also on since θΦ(0) = θΦ(0) = 0. Then, θΦ ∈ BF0

b. □

Alternative proof of Theorem 5. As in the alternative proof of Theorem 4, Gregory–Newton
expansion approach works. Do as in the proof Theorem 5 until point 3- and use Proposition 6
to conclude in a point 4- that both extensions of θΦ and θΦ share the Gregory–Newton
expansion and then are equal. □

Proof of Proposition 5. The necessity part comes from (5). The sufficiency part is an
adaptation of the proof of Proposition 4. From (22), we have

1 − en(λ, u) = 1 − e−αn [ λ
αn ] u

−→ 1 − e−λ u uniformly in u ≥ 0 when n → ∞.

Notice that

Φ
(
αn[

λ

αn
]
)

= Φn

(
αn[

λ

αn
]
)

=

∫
[0,∞)

(
1 − e−

[
λ
αn

]
u)

µn(du),

where µn is the representative measure of Ψn . By the change variable u = αnv, the
representation

Φ
(
αn[

λ

αn
]
)

=

∫
[0,∞)

(
1 − en(λ, u)

)
µ̃n(du)
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holds true where µ̃n being a finite measure with total mass µ̃n
(
(0, ∞)

)
= limλ→∞Φ(λ) <

∞ due to the monotone convergence theorem applied along λ → ∞. The rest of
the proof is continued exactly as in proof of Proposition 4 through the limit Φ(λ) =

limn→∞Φ (αn[λ/αn]) . □

Proof of Corollary 5. The implication (a) H⇒ (b) is justified by (5) and (b) H⇒ (c) being
immediate, we just need to prove (c) H⇒ (a). By In order to show that Φ ∈ BF , it is enough,
by Proposition 3, to check that for every fixed m ∈ N, the function

θ 1
m
Φ(λ) = Φ(

1
m

) − Φ(0) + Φ(λ) − Φ(
1
m

+ λ), λ ≥ 0,

belongs to BF0
b. By assumption there exists for each n ∈ N, a function Φmn ∈ BF , having

triplet of characteristics (qmn, dmn, µmn), such that the following representation holds true for
all k ∈ N0:

Φ(
1
m

+
k
n

) − Φ(
k
n

) = Φ(
mk + n

mn
) − Φ(

mk
mn

) = Φmn(mk + n) − Φmn(mk)

= dmn n +

∫
(0,∞)

e−mku (1 − e−nu) µmn(du). (24)

Representation (24) shows that the sequence k ↦→ Φ( 1
m +

k
n )−Φ( k

n ) is positive and decreasing
then is converging. Similarly, we have

θ 1
m
Φ(

k
n

) = Φ(
1
m

) − Φ(0) + Φ(
k
n

) − Φ(
1
m

+
k
n

) (25)

= Φ(
n

mn
) − Φ(0) + Φ(

mk
mn

) − Φ(
mk + n

mn
)

= Φmn(n) − Φmn(0) + Φmn(mk) − Φmn(km + n)

=

∫
(0,∞)

(1 − e−kmu) (1 − e−nu) µmn(du).

Making the change of variable u = v/m in (26), we retrieve with the image µ̃mn of µmn that

θ 1
m
Φ(

k
n

) =

∫
(0,∞)

(1 − e−ku) (1 − e−
n
m u) µ̃mn(du), ∀k ∈ N0. (26)

Representation (25) and continuity of θ 1
m
Φ justifies that limx→∞θ 1

m
Φ(x) = limk→∞θ 1

m
Φ( k

n )
is finite. Then, the monotone convergence theorem insures applied in (26) gives that∫

(0,∞)
(1 − e−

n
m u) µ̃mn(du) = lim

x→∞
θ 1

m
Φ(x).

i.e. the measure (1 − e−
u
m ) µ̃mn(du) is finite with total mass limx→∞θ 1

m
Φ(x). We conclude

that θ 1
m
Φ satisfies the condition of Proposition 5 and then belongs to BF0

b. □

8. BERNSTEIN SELF-DECOMPOSABILITY PROPERTY OF FUNCTIONS IS ALSO
RECOGNIZED BY THEIR RESTRICTION ON N0

During the redaction of this paper, we felt it important to clarify the probabilistic
notion of infinite divisibility and self-decomposability of non-negative random variables. The
probabilistic point of view is well presented in the book Steutel and van Harn in [18]. Every
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Bernstein function Φ, null in zero, is the cumulant function (i.e. Laplace exponent) of an
infinitely divisible non-negative random variable Z , i.e.

E[e−λZ ] :=

∫
[0,∞)

e−λx P(Z ∈ dx) = e−Φ(λ), λ ≥ 0.

The latter is equivalent to the existence, for every integer n, of non-negative i.i.d random
variables Zn

1 , . . . , Zn
n such that Z d

= Zn
1 + · · · + Zn

n , or also to the fact that the function

λ ↦→
(
E[e−λZ ]

)t
is completely monotone for every t > 0.

In [18], Steutel and van Harn present class of non-negative self-decomposable r.v.’s by
those random variables X , such that for every c ∈ (0, 1), the function

λ ↦→ Ψc(λ) = E[e−λX ]/E[e−cλX ], (27)

belongs to CM[0, ∞). The latter is equivalent to the existence, for each c ∈ (0, 1), of a r.v.
Yc independent from X such that the following identity in law holds true

X d
= c X + Yc.

Necessarily the r.v. X is infinitely divisible and is called a self-decomposable r.v. Its cumulant
function Φ(λ) = − logE[e−λX ], λ ≥ 0 (necessarily differentiable) satisfies (27) or
equivalently it satisfies 3)(b) in Proposition 7, for this reason, Φ is called a self-decomposable
Bernstein function. Another characterization of Φ is a specification of the form (3) with q = 0
and the Lévy measure of the form ν(dx) = x−1k(x)dx, x > 0 with k a decreasing function
(see [16] for more account).

We denote CF the class of cumulant functions of probability measures, i.e.:

CF := {λ ↦→ φ(λ) = − logE[e−λZ ]

= − log
∫

[0,∞)
e−λx P(Z ∈ dx), Z a non-negative r.v.} .

Remark 8. It is clear that
(i) CF is stable by addition (it stems from the addition of independent random variables),

is closed under pointwise limits (this is the convergence in distribution) and also stable by the
operators σc and τc introduced in Section 2.

(ii) Φ ∈ BF if and only if t
(
Φ − Φ(0)

)
∈ CF for every t > 0. φ ∈ CF if and only if

1 − e−φ
∈ BFb. The latter yields Φ ∈ BF if and only if 1 − e−tΦ

∈ BFb for every t > 0.
(iii) Observe that Φ ∈ BF if and only if (1−e−ϵnΦ)/ϵn ∈ BFb for some positive sequence

ϵn tending to zero. To see the claim, use closure property under pointwise limits of BF
(Corollary 3.9 p. 29 in [17]) together with Φ = limn→∞

(
1 − e−ϵnΦ

)
/ϵn . One can deduce that

Φ belongs to BF if and only if ϵnΦ belongs to CF for some positive sequence ϵn tending to
zero.

We have the following useful result related to (5):

Proposition 7. Let Φ : [0, ∞) −→ [0, ∞) and ρcΦ(λ) := (σ − σc)Φ(λ) = Φ(λ) − Φ(cλ),
c ∈ (0, 1).
(1) If Φ is continuous at the neighborhood of 0 and ρcΦ ∈ CF (respectively BF) for some
c ∈ (0, 1), then Φ belongs to CF (respectively BF).
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(2) Assume Φ is continuous at the neighborhood of 0, then the following assertions are
equivalent:

(a) ρcΦ ∈ BF for every c ∈ (0, 1);
(b) ρcΦ ∈ CF for every c ∈ (0, 1);
(c) Φ is differentiable on (0, ∞) and λ ↦→ λΦ ′(λ) ∈ BF .

Proof of Proposition 7. (1) If ρcΦ belongs to CF (respectively BF), then for every n ∈ N0,

λ ↦→ ρcnΦ(λ) = Φ(λ) − Φ(cnλ) =

n−1∑
i=0

Φ(ckλ) − Φ(ck+1λ) =

n−1∑
i=0

ρcΦ(ckλ)

belongs to CF (respectively BF). By closure of CF (respectively BF) and using the fact that
Φ is continuous at 0, deduce that Φ − Φ(0) = limn→∞ρcnΦ ∈ CF (respectively BF).

(2) (a) H⇒ (b): By Remark 8(ii), ρcΦ ∈ BF and is null at zero, then ρcΦ ∈ CF .
(b) H⇒ (c): Since ρcΦ ∈ CF for all c ∈ (0, 1), then by 1), Φ ∈ CF and then differentiable.
Further, by Remark 8(ii), ρcΦ ∈ CF for all c ∈ (0, 1) implies to

(
1 − e−ρcΦ

)
/(1 − c) ∈ BF

for all c ∈ (0, 1). Letting c → 1−, we get, by closure of BF again, that the λ ↦→ λΦ ′(λ) =

limc→1−

(
1 − e−ρcΦ(λ)

)
/(1 − c) ∈ BF .

(c) H⇒ (a): The function x ↦→ Φ0(x) = xΦ ′(x) ∈ BF . Write λ ↦→ ρcΦ(λ) =
∫ 1

c Φ0(λx) dx
x

for every c ∈ (0, 1), observe that differentiability under the integral is well justified and
the alternating property of the function under the last integral allows to conclude that
ρcΦ ∈ BF . □

We are then able to state a Corollary to Theorem 5 and Proposition 7:

Corollary 7. Let function Φ : [0, ∞) → [0, ∞) admitting a finite limit at 0. Then
(1) Φ is a Bernstein function if and only if it admits holomorphic extension on the half

plane Re(z) > 0 and (Φ(k) − Φ(ck))k≥0 is completely alternating and minimal for some
c ∈ (0, 1).

(2) Φ is a self-decomposable Bernstein function if and only if it admits holomorphic
extension on the half plane Re(z) > 0 and one the following holds

(a) the sequence (Φ(k) − Φ(ck))k≥0 is completely alternating and minimal for all c ∈

(0, 1);
(b) the sequence

(
kΦ ′(k)

)
k≥0 is completely alternating and minimal.

Remark 9. The main contribution in [13] consists in Theorem 1.1 where it was stated in
case Φ(0) = 0: Φ is a self-decomposable Bernstein function if and only if

(Φ(xk) − Φ(yk))k≥0 is completely alternating for every x > y > 0.

No minimality nor holomorphy conditions were required in [13]. In our work, these
conditions appeared to be the lowest price to pay in order to fix x = 1 or to have the non
parametric characterization (2)(b) and this clarifies the discussion at the end of section 1
in [13].
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