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Abstract. In a graph G, a vertex w ∈ V (G) resolves a pair of vertices u, v ∈ V (G)
if d(u, w) ̸= d(v, w). A resolving set of G is a set of vertices S such that every pair
of distinct vertices in V (G) is resolved by some vertex in S. The minimum cardinality
among all the resolving sets of G is called the metric dimension of G, denoted by β(G).
The metric dimension of a wheel has been obtained in an earlier paper (Shanmukha
et al., 2002). In this paper, the metric dimension of the family of generalized wheels is
obtained. Further, few properties of the metric dimension of the corona product of graphs
have been discussed and some relations between the metric dimension of a graph and
its generalized corona product are established.
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1. INTRODUCTION

Throughout this paper, we consider graphs that are simple, finite, undirected and
connected. Given a graph G, a vertex w ∈ V (G) resolves a pair of vertices u, v ∈ V (G)
if d(u, w) ̸= d(v, w). A set S ⊆ V (G) is said to be a resolving set of G, if every pair of
distinct vertices of G is resolved by some vertex in S. In other words, a resolving set of
G is a set of vertices S = {w1, w2, . . . , wk} of G such that for each u ∈ V (G), the vector
r (u|S) = (d(u, w1), d(u, w2), . . . , d(u, wk)) uniquely identifies u. The k-vector r (u|S) is
called a metric code or S-location or S-code of u ∈ V (G).

The minimum cardinality among all the resolving sets of a graph G is called the metric
dimension of G, denoted β(G). Further, a resolving set with minimum cardinality is called
a metric basis and its elements are called landmarks.

The concept of metric dimension was introduced by F. Harary & R. A. Melter [5] and
independently by P.J. Slater [9] under the name locating set. Since then, this parameter has
been widely studied and has found applications in various real world problems pertaining to
network discovery, robot navigation and pharmaceutical chemistry. In particular, results on
the metric dimension of the cartesian product of finite and infinite graphs have been obtained
in [2]. Some results involving the metric dimension of a graph and its total graph have been
discussed in [14]. The metric dimension of some regular graphs such as the circulant graphs
C(n, ±{1, 2, 3, 4}) and hexagonal cellular networks has been obtained in [4,8]. The k-metric
dimension of graphs has been discussed in [1,11–13]. In this paper, we obtain the metric
dimension of the family of generalized wheels. We also study a few properties of the metric
dimension of the corona product of graphs and obtain some results on the metric dimension
of the generalized corona product of graphs.

We begin with defining some standard graphs and graph classes central to the paper.

Definition 1.1. A graph having its vertex set V and edge set E with |V | = n and E = ∅

is said to be a totally disconnected graph, denoted K n . In particular, if n = 1, the graph is
said to be trivial.

Definition 1.2. The generalized wheel, denoted by Wm,n , is a graph obtained by joining
the vertices of K m to every vertex of a cycle Cn . That is Wm,n = Cn + K m . The m vertices
of K m and the n vertices of Cn in Wm,n are respectively called central vertices and rim
vertices of Wm,n .

The generalized wheel W3,6 = C6 + K 3 is illustrated in Fig. 1.
Let G be a connected graph of order n and H be any arbitrary graph. The corona product

of G and H is the graph obtained from G and H by taking one copy of G and n copies
of H and joining by an edge the i th vertex of G to every vertex of Hi , the i th copy of
H, 1 ≤ i ≤ n, and is defined as follows.

Definition 1.3. Let G and H be two given graphs with V (G) = {v1, v2, . . . , vn}. Then the
corona product G ⊙ H is defined as;

V (G ⊙ H ) = V (G)
⋃(

n⋃
i=1

V (Hi )

)
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Fig. 1. The generalized wheel W3,6 = C6 + K 3.

Fig. 2. The graphs C4, P3 and the corona product C4 ⊙ P3.

Fig. 3. The graph G.

E(G ⊙ H ) = E(G)
⋃(

n⋃
i=1

[
E(Hi ) ∪ {vi u j : u j ∈ V (Hi )}

])
where Hi ∼= H for all i = 1, 2, . . . , n.

The corona product C4 ⊙ P3 of the graphs C4 and P3 is illustrated in Fig. 2.

Definition 1.4. Let G be a connected graph of order n and H be a graph having n ordered
components. Then, the graph called generalized corona product of G and H , denoted by
G ⊙

′ H , is obtained by superimposing i th vertex of G with a vertex of maximum degree
in the i th component of H .

The generalized corona product G ⊙
′ H of the graphs G and H in Figs. 3 and 4 is

illustrated in Fig. 5.

Observation 1.5. By the definition of generalized corona product of graphs, we observe
the following.
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Fig. 4. The graph H having 4 components.

Fig. 5. Generalized corona products of graphs G and H , components of H assigned in two different orders.

1. Let G be a connected graph of order n. Then G ⊙
′ H is defined only if H has exactly

n components.
2. Let G be a graph of order n and H1, H2, . . . , Hn be the components of graph H.

Then the structure of G ⊙
′ H depends on order in which the vertices of G and

components of H are assigned.
3. Both G and H are subgraphs of G ⊙

′ H.
4. Let p, q be order and size of G, p′ and q ′ be order and size of H respectively. Then

G ⊙
′ H is a connected graph of order p′

− p and size q + q ′.
5. Both G ⊙

′ H and H ⊙
′ G exist if and only if G and H are trivial graphs.

6. G ⊙
′ H is isomorphic to G if and only if H is a totally disconnected graph (i.e.,

H = K n).
7. G ⊙

′ H is isomorphic to H if and only if G is a trivial graph.

Remark 1.6. If G ⊙
′ H ∼= G or G ⊙

′ H ∼= H , then the product is called trivial product.

Definition 1.7. In the generalized corona product, if each component of H is isomorphic
to G i + K1, where G i is any graph, then the product G ⊙

′ H is called the super corona
product of G and H and is denoted by G⊙̂H .

Remark 1.8. For every i, j , 1 ≤ i, j ≤ n, if G i ∼= G j , then the super corona product
G⊙̂H is the usual corona product of graphs denoted by G ⊙ G i .

2. SOME KNOWN RESULTS ON METRIC DIMENSION

In this section, we recall some of the earlier works on metric dimension for immediate
reference in the next and subsequent sections of the paper.

Theorem 2.1 (S. Khuller et al. [6]). For a simple connected graph G, β(G) = 1 if and
only if G ∼= Pn .
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Theorem 2.2 (S. Khuller et al. [6]). A graph G with β(G) = 2 cannot have K5 as a
subgraph.

Theorem 2.3 (B. Sooryanarayana [10]). For a graph G, let G − me denote the graph,
obtained from G, by deleting m arbitrary edges from G.Then, a graph G with β(G) = k
cannot have a subgraph isomorphic to K2k+1 − (2k−1

− 1)e.

Theorem 2.4 (S. Khuller et al. [6]). A graph G with β(G) = 2 cannot have K3,3 as a
subgraph.

Theorem 2.5 (S. Khuller et al. [6]). Let G be a graph with metric dimension 2 and let
{a, b} ⊂ V (G) be a metric basis in G. The following are true:

1. There is a unique shortest path P between a and b.
2. The degrees of a and b are atmost 3.
3. Every other node on P has degree atmost 5.

Theorem 2.6 (S. Khuller et al. [6]). Let G = (V, E) be a graph of order n with diameter
d and metric dimension k. Then |V | ≤ dk

+ k.

Theorem 2.7 (F. Harary et al. [5]). For any positive integer n, β(G) = n − 1 if and only
if G ∼= Kn .

Theorem 2.8 (G. Chartrand et al. [3]). If G is a connected graph of order n, then
β(G) ≤ n − diam(G).

In view of Theorems 2.1 and 2.8, we have the following.

Lemma 2.9. For any connected graph G on n vertices which is not a path,

2 ≤ β(G) ≤ n − diam(G).

Theorem 2.10 (B. Shanmukha et al. [7]). The metric basis of a wheel W1,n , n ≥ 3 cannot
include the central vertex whenever n ̸= 3, 6.

Theorem 2.11 (B. Shanmukha et al. [7]). For a wheel W1,n, n ≥ 3,

1. β(W1,3) = β(W1,6) = 3.
2. β(W1,4) = β(W1,5) = 2.

3. β(W1,x+5k) =

{
3 + 2k, when x = 7 or 8, k = 0, 1, 2 . . .

4 + 2k, when x = 9 or 10 or 11, k = 0, 1, 2 . . . .

Observation 2.12. Let C = {v1, v2, . . . , vm} be the central vertices and R = {u1, u2, . . . ,

un} be the rim vertices of Wm,n . Then

1. d(vi , v j ) = 2, f or every i ̸= j ,
2. d(ui , u j ) = 2, f or every i and j ̸= i + 1,
3. d(vi , u j ) = 1, f or every i and j ,
4. d(ui , ui+1) = 1, f or every i .
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3. METRIC DIMENSION OF GENERALIZED WHEELS

In this section, we study some properties of the resolving set of generalized wheels using
which we determine their metric dimension.

Lemma 3.1. Let C and R respectively denote the set of central vertices and rim vertices
of a Generalized Wheel G = Wm,n . Then for any resolving set S of G, S ∩C ̸= φ whenever
m ≥ 2.

Proof. If possible, suppose that m ≥ 2 and S is a resolving set of G = Wm,n such that
S ∩ C = ∅. Then S ⊆ R and hence for the vertices vi , v j ∈ C (exists since |C | = m ≥ 2),
we get d(x, vi ) = d(x, v j ) = 1 for all x ∈ S, a contradiction to the fact that S is a resolving
set. □

Lemma 3.2. Let C be the set of central vertices and S be a resolving set of the graph
Wm,n . Then |C − S| < 2.

Proof. Suppose S is a resolving set of Wm,n and |C − S| ≥ 2. Then there exist distinct
vertices vl , v j ∈ C not in S. Further, d(vl , x) = d(v j , x) = 1 for every x ∈ S − C and
d(vl , x) = d(v j , x) = 2 for every x ∈ S ∩ C , Now, as x ∈ S ⇒ x ∈ (S − C) ∪ (S ∩ C), we
get d(vl , x) = d(v j , x) for every x ∈ S, a contradiction. □

Lemma 3.3. Let S be a resolving set and C be the set of central vertices of Wm,n such
that C ⊆ S. Then S is not a metric basis for Wm,n .

Proof. Let S be a resolving set of G = Wm,n which satisfies the hypothesis of the lemma.
Let vk ∈ C be arbitrary and S′ be the set S′

= S − {vk}. Suppose S is a metric basis of
G. Then, S is a minimal resolving set with minimum cardinality so that by Lemma 2.9
|S′

| ≤ n − 2, that is, there exists u, v ∈ V (G) − S′. Further, as S is a resolving set, there is
a vertex w ∈ S such that d(u, w) ̸= d(v, w). Now, if w ̸= vk for every pair of vertices in
V (G) − S′, then S′ is a resolving set smaller than S, a contradiction to the minimality of
S. Thus, at least one pair u, v ∈ V (G) − S′ is resolved only by vk ∈ C ⊆ S. However, in
such a case, we have the following implications;

I1: Exactly one of u, v is a rim vertex and the other a central vertex (since if u, v ̸∈ C
or u, v ∈ C , then as vk ∈ C , we get d(vk, u) = d(vk, v) ⇒ vk will not resolve
u and v). Without loss of generality, we take v ∈ C ⊆ S and u ̸∈ C . But then,
v ∈ V (G) − S′

= (V (G) − S) ∪ {vk} ⊆ (V (G) − C) ∪ {vk} (since C ⊆ S) implies that
v = vk .

I2: |C | ≥ 2. Otherwise |C | = 1, a contradiction to the hypothesis that C ⊆ S by
Theorem 2.10. So, there exists vl ∈ C with l ̸= k. Now, as C ⊆ S, vl ∈ S and
d(vl , vk) = 2, d(vk, u) = 1 which implies that the pair u, vk is resolved by a vertex in
S, a contradiction to the above implication that vk only resolves u and v(= vk) in S.

Hence the set S′ is a resolving set containing lesser elements than in S, a contradiction to
the minimality of S. □

Using Lemmas 3.1–3.3, we conclude the following.
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Fig. 6. A metric code of W3,3 and W2,6 with a metric basis.

Theorem 3.4. For any m, n ∈ Z+, every metric basis for the graph Wm,n should include
all of its central vertices except one.

Lemma 3.5. Let R be the set of rim vertices of the graph G = Wm,n . If S is a resolving
set for G, then |S ∩ R| ≥ β(W1,n) for all integers n ̸= 3, 6 and |S ∩ R| = 2 otherwise.

Proof. Let G = Wm,n and S be a minimal resolving set of G. We claim that S ∩ R ̸= ∅.
Otherwise, S ⊆ C , where C is the set of all central vertices of G, so that S will not
resolve any pair of rim vertices (since each rim vertex is adjacent to every central vertex),
a contradiction to the assumption that S resolves G. Let vk ∈ C and S′

= (S − C) ∪ {vk}.
Now, as S is a resolving set of Wm,n , it follows that S′ is a resolving set for the graph
W1,n(= (G − V (C)) + vk) containing a central vertex whenever n ̸= 3, 6. However, since a
metric basis of a wheel does not contain its central vertex (by Theorem 2.10), we conclude
that |S′

| > β(W1,n)| ⇒ |S ∩ R| = |S′
− {vk}| = |S′

| − 1 ≥ β(W1,n), for all n ̸= 3, 6.
In the case when n = 3, 6, it is easy to observe that G has a resolving set S containing

any two non-adjacent rim vertices and m − 1 central vertices for all m ≥ 2 as in Fig. 6
shown below. Hence, |S ∩ R| = 2 for all m ≥ 2. □

Corollary 3.6. Let C be the set of central vertices of the graph G = Wm,n , where m ≥ 2
and n ≥ 3. If S is a metric basis for G, then |S| ≥ β(W1,n) + m − 1 for n ̸= 3, 6, and
|S| = m + 1 for n = 3, 6.

Proof. The result follows immediately by Theorem 3.4 and Lemma 3.5. □

Lemma 3.7. Let C be the set of central vertices of the graph G = Wm,n , m ≥ 2, n ≥ 3.
If S is a metric basis for G, then |S| ≤ β(W1,n) + |C | − 1. In particular, when n = 3, 6,
|S| ≤ m + 1.

Proof. Let G ′ be the graph obtained from G by removing any m−1 of its m central vertices.
Then G ′ ∼= W1,n . Let S′ be a metric basis for G ′ and C and C ′ be the set of central vertices
of G and G ′ respectively. Then, by Theorem 2.10, S′

∩ C = ∅ (since the rim vertices of G
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are the rim vertices of G ′), |C | = m, |C ′
| = 1 and |C ∩ C ′

| = 1. Define S1 = S′
∪ (C −C ′).

Due to distance hereditary property of vertices of G ′ in G, S′ resolves all the pairs of
vertices of G which are in G ′. As for each of the remaining pairs of vertices of G, i.e.,
u ∈ V (G) and a vk ∈ C − C ′, we have it resolved by vk . Hence S1 is a resolving set for
G. Thus, for any metric basis S of G, we get |S| ≤ |S1| = |S′

∪ (C − C ′)| = |S′
| + |C | − 1

(since S′
∩ C = ∅ and |C ′

| = 1) implies that |S| ≤ β(W1,n) + |C | − 1. Finally, in the case
n = 3, 6, for m ≥ 2, the set S2 = S1 −{v} where v is any rim vertex of G is also resolving
set for G. Therefore, for n = 3, 6, |S| ≤ |S2| = |S1| − 1 ≤ β(W1,m) + |C | − 1 − 1 = m + 1.
Hence the proof. □

From Lemma 3.7 and Corollary 3.6, we conclude the following;

Theorem 3.8. For any two integers m ≥ 2, n ≥ 3,

β(Wm,n) =

{
m + 1, if n = 3, 6
β(W1,n) + m − 1, if n ̸= 3, 6

To conclude, using Theorem 2.11 of B. Shanmukha et al. [7], the metric dimension of
the generalized wheel is as follows.

Theorem 3.9. For any positive integers m ≥ 1, n ≥ 3 and n > m,

β(Wm,n) =

⎧⎨⎩
3, i f m = 1 and n = 3, 6

m + 1, i f m ≥ 2 and n = 3, 6
⌊

5m+2n−3
5 ⌋, i f m ≥ 1 and n ̸= 3, 6

4. METRIC DIMENSION OF CORONA PRODUCT OF GRAPHS

In this section, we discuss some of the properties of the metric dimension of corona
product of graphs. We also obtain the metric dimension of the corona product of any graph
with some standard graphs.

Theorem 4.1 ([1]). β(G) ≤ β(G ⊙ K1) ≤ β(G) + 1.

Observation 4.2. If |V (G)| = n and |V (H )| = m, then |V (G ⊙ H )| = n(m + 1).

Proof. Since G ⊙ H contains n copies of H and a copy of G, so it contains n × (m +1) =

n(m + 1) vertices. □

Observation 4.3. If G and H are any two graphs such that diameter of G is d, then
d + 2 ≤ |V (G ⊙ H )| − β(G ⊙ H ) ≤ (d + 2)β(G⊙H ).

Proof. If the diameter of G is d then we have the diameter of G ⊙ H to be d + 2. The
remaining part follows by Theorems 2.6 and 2.8. □

Lemma 4.4. Let G and H be two connected graphs of order n ≥ 2 and m ≥ 2 respectively.
Then for any resolving set S of G ⊙ H, V (Hi ) ∩ S ̸= ∅, for every i, 1 ≤ i ≤ n.
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Proof. Let v1, v2, . . . , vn be the vertices of the graph G. Suppose to contrary that G ⊙ H
has a resolving set S with V (Hi ) ∩ S = ∅, for some 1 ≤ i ≤ n. Since m ≥ 2, for any two
vertices x, y ∈ V (Hi ) and for every vertex u ∈ S, we have

d(x, u) = d(x, vi ) + d(vi , u)

= d(y, vi ) + d(vi , u)

= d(y, u),

a contradiction to the fact that S is a resolving set. □

Lemma 4.5. Let G and H be two connected graphs of order n ≥ 2 and m ≥ 2 respectively.
Then for any metric basis S of G ⊙ H, V (G) ∩ S = ∅.

Proof. Let G and H be connected graphs and S be a metric basis for G ⊙ H . Let
M = S − V (G). In order to prove that M = S, we show that M is a resolving set for
G ⊙ H .

Let x and y be any two vertices of G ⊙ H . Then, we have the following cases;

Case 1: x, y ∈ V (Hi )

As every vertex u ∈ G ⊙ H which are not in V (Hi ) is equidistant from x and y, there
exists a vertex v ∈ V (Hi ) ∩ M such that d(x, v) ̸= d(y, v).

Case 2: x, y ∈ V (G)

Let x = vi and y = v j . In this case, by Lemma 4.4, we have v ∈ V (Hi )∩ M . Further,
d(x, v) = d(vi , v) = 1 < 1 + d(v j , vi ) = d(y, v) so that d(x, v) ̸= d(y, v).

Case 3: x ∈ V (Hi ) and y ∈ V (H j ), for i ̸= j

Again, by Lemma 4.4, we have v ∈ V (Hi ) ∩ M . For this vertex v, d(x, v) ≤ 2 < 3 ≤

d(y, v) so that d(x, v) ̸= d(y, v).

Case 4: x ∈ V (Hi ) and y ∈ V (G).

Subcase 1: x is adjacent to y.
In this case, y = vi . Choose an existing vertex v ∈ V (H j ) ∩ M . For this vertex,
d(x, v) = 1 + d(y, v) > d(y, v). Hence d(x, v) ̸= d(y, v).

Subcase 2: x is not adjacent to y
Let y = vk where k ̸= i . Choose an existing vertex v ∈ V (Hk) ∩ M . For this
vertex d(x, v) = d(x, y) + d(y, v) > d(y, v). Hence d(x, v) ̸= d(y, v).

Thus, M is a resolving set for G ⊙ H so that S is not a metric basis (being a minimal
resolving set with minimum cardinality) of G ⊙ H unless M = S. Therefore, V (G) ∩ S =

∅. □

Lemma 4.6. Let G and H be two connected graphs and S be a resolving set for G ⊙ H.
Then for 1 ≤ i ≤ n, S ∩ V (Hi ) is a resolving set of Hi .

Proof. Let Si = S ∩ V (Hi ). Then, by Lemma 4.4, Si ̸= ∅. Let us suppose that
x, y ∈ V (Hi ) − Si . Then, as S is a resolving set of G ⊙ H , there exists u ∈ S which
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resolves x and y (i.e. r (x |S) ̸= r (y|S)). But for every vertex u ∈ S − V (Hi ), we have

d(x, u) = d(x, vi ) + d(vi , u)
= d(y, vi ) + d(vi , u)
= d(y, u).

Therefore, to resolve x, y ∈ V (Hi ), the resolving vertex u ∈ S ∩ V (Hi ) = Si . Thus, Si is a
resolving set for Hi . □

Remark 4.7. The vertex u in the proof of Lemma 4.6 is adjacent to exactly one of the
two vertices x and y since u resolves x and y. In particular, if u is adjacent to x and not
adjacent to y, then dG⊙H (x, u) = dHi (x, u) = 1 and dG⊙H (y, u) = 2 ≤ dHi (y, u). The other
case follows similarly.

Theorem 4.8. If G and H are two graphs of order n and m respectively with m, n ≥ 2,
then β(G ⊙ H ) ≥ nβ(H ). In particular, if diam(H ) = 2, β(G ⊙ H ) = nβ(H ).

Proof. Let G be a graph and S be a metric basis for G ⊙ H . Let {v1, v2, . . . , vn} be the set
of vertices of G and Hi be the copy of H at the vertex vi of G for each i , 1 ≤ i ≤ n. Then
by Lemma 4.5, we have S ∩ V (G) = φ and by Lemma 4.6, S ∩ V (Hi ) = Si is a resolving
set for V (Hi ), i = 1, 2, 3, . . . , n. Therefore,

⋃n
i=1 Si is a resolving set for G ⊙ H . Hence

|S| = |
⋃n

i=1 Si | =
∑n

i=1 |Si | = n|Si | ≥ nβ(Hi ) = nβ(H ) ⇒ β(G ⊙ H ) ≥ nβ(H ).
Further, if diam(H ) = 2, then dH (u, v) = dG⊙H (u, v) for all u, v ∈ V (H ). Let S′

be a metric basis for H , Si be the copy of the set S′ of vertices in Hi . Consider the set
M =

⋃n
i=1 Si . We show that S will resolve all the vertices in G ⊙ H . Let u, v ∈ V (G ⊙ H )

be arbitrary. Then we have the following cases;

Case 1: u, v ∈ V (Hi ), for some i, 1 ≤ i ≤ n.
In this case w ∈ Si will resolve u and v (by the choice of Si and dH (u, v) =

dG⊙H (u, v) for all u, v ∈ H ).
Case 2: u, v ∈ V (G).

In this case, as S resolves G, there is a vertex w ∈ S which resolves u and v.
Choose a vertex u′

∈ Sk ∩ M , where Hk is the copy of H at a vertex w. For this
vertex u′, we have

d(u′, u) = d(u′, w) + d(w, u)
= 1 + d(w, u)
̸= 1 + d(w, v)
= d(u′, w) + d(w, v)
= d(u′, v)

Hence there exists u′
∈ M which resolves u and v.

Case 3: u ∈ V (G) and v ∈ V (H j ), for some j, 1 ≤ j ≤ n.
In this case, u = vi , for some i, 1 ≤ i ≤ n.

Subcase 1: i = j .
In this case, choose an existing vertex w ∈ V (Hk) ∩ M , where k ̸= j . For
this vertex, d(v, w) = 1 + d(v, w) > d(v, w). Hence d(u, w) ̸= d(v, w),
w will resolve u and v in this case
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Subcase 2: i ̸= j .
Similar to the above subcase, the existing vertex w ∈ V (Hi ) ∩ M will
resolve u and v in this case.

Hence in each of the above cases, there exists w ∈ M which resolves u and v, for
each pair u, v ∈ G ⊙ H whenever diam(H ) = 2 so that it is a resolving set for
G ⊙ H . Thus, |M | ≥ β(G ⊙ H ) ⇒ |

⋃n
i=1 Si | ≥ β(G ⊙ H ) ⇒

∑n
i=1 |Si | ≥ β(G ⊙

H ) ⇒
∑n

i=1 |S′
| ≥ β(G ⊙ H ) ⇒

∑n
i=1 β(H ) ≥ β(G ⊙ H ) ⇒ nβ(H ) ≥ β(G ⊙ H ).

Thus, as nβ(H ) ≤ β(G ⊙ H ) and nβ(H ) ≥ β(G ⊙ H ), it follows that nβ(H ) = β(G ⊙ H )
whenever diam(H ) = 2. □

Using the results on the metric dimension of some known graphs, we conclude the
following;

Corollary 4.9. For any non-trivial connected graph G of order n

1. β(G ⊙ Pm) = n, whenever 2 ≤ m ≤ 3.
2. β(G ⊙ Cm) = 2n, whenever 3 ≤ m ≤ 5.
3. β(G ⊙ Km) = n(m − 1), whenever m ≥ 2.
4. β(G ⊙ Kr,s) = n(r + s − 2).

5. β(G ⊙ W1,m) =

⎧⎨⎩
3n, i f m = 3, 6
2n, i f m = 4, 5
⌊

2m+2
5 ⌋n, i f m ≥ 7

.

6. For the fan graph F1,m , m ≥ 4,

β(G ⊙ F1,m) =

{
3n, i f m = 6
⌊

2m+2
5 ⌋n, otherwise

.

Theorem 4.10. Let G be a connected graph of order n ≥ 2 and let H be a graph of order
m ≥ 2. Then if nβ(H ) ≤ β(G ⊙ H ) ≤ nβ(K1 ⊙ H ), β(H ) ≤ β(K1 ⊙ H ).

Proof. The lower bound follows by Theorem 4.8. To prove the upper bound, we first see
that K1 ⊙ Hi is the subgraph of G ⊙ H obtained by joining the vertex vi ∈ V (G) with
all vertices of Hi . Now, for every vi ∈ V (G), let Si be a metric basis of K1 ⊙ Hi and let
S = ∪

n
i=1Si . By Lemma 4.5, vi does not belong to any basis for K1 ⊙ Hi . So S does not

contain any vertex from G. We show that S is a resolving set for G ⊙ H . Let x, y be two
distinct vertices of G ⊙ H .

Case 1: x, y ∈ V (Hi ).
In this case there exists u ∈ Si such that dK1⊙Hi (x, v) ̸= dK1⊙Hi (y, u) which shows
dG⊙H (x, v) ̸= dG⊙H (y, u).

Case 2: x ∈ V (Hi ) and y ∈ V (H j ) and i ̸= j .
In this case, let v ∈ Si , then we have dG⊙H (x, v) ≤ 2 < 3 ≤ dG⊙H (y, v)

Case 3: x, y ∈ V (G).
In this case, let x be adjacent to the vertices of Hi which is a copy at x . So, for
every v ∈ Si , we have dG⊙H (x, v) = 1 < dG⊙H (y, x) + 1 = dG⊙H (y, v).

Case 4: x ∈ V (Hi ) and y ∈ V (G).
If x is adjacent y, then for every v ∈ S j , j ̸= i , we have dG⊙H (x, v) =

1 + dG⊙H (y, v) > dG⊙H (y, v). Else x is not adjacent to y, so there exists v ∈ S j
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adjacent to y and j ̸= i , we have dG⊙H (x, v) = dG⊙H (x, y) + 1 = dG⊙H (x, y) +

dG⊙H (y, v) > dG⊙H (y, v).

Then there exists x, y ∈ G⊙H such that r (x |S) ̸= r (y|S). It gives β(G⊙H ) ≤ nβ(K1⊙H ).
Hence we have nβ(H ) ≤ β(G ⊙ H ) ≤ nβ(K1 ⊙ H ). □

5. A GENERALIZATION OF CORONA PRODUCT OF GRAPHS

In this section, we obtain bounds on the metric dimension of generalized corona product
of graphs.

Lemma 5.1. Let G be a connected graph of order n and H be any graph having n
ordered components H1, H2, . . . , Hn . Let S be a metric basis of G ⊙

′ H. Then there exists
M ⊆ V (G ∩ H ) which resolves vertices in G such that |M | ≤ |S|.

Proof. Let M =
⋃n

i=1 {ui ∈ V (G) :ui be a maximum degree vertex in Hi and S∩Hi ̸= ∅}.
We show that M is a resolving set for G.

Let x, y be any two vertices of G. Since G is a subgraph of G ⊙
′ H , the vertices x, y

are vertices of G ⊙
′ H and hence there exists w in the metric basis S of G such that

d(x, w) ̸= d(y, w). But then, w ∈ V (Hi ), for some i, 1 ≤ i ≤ n. Suppose ui be the
vertex of Hi common to G in G ⊙

′ H , then d(x, ui ) + d(ui , w) = d(x, w) ̸= d(y, w) =

d(y, ui )+d(ui , w) so that d(x, ui ) ̸= d(y, ui ) and ui ∈ M . (Because each ui is a cut vertex
and Hi is a block of the graph G ⊙

′ H containing ui ). Hence ui ∈ M resolves x and y.
Since x and y are the arbitrary vertices in G, we conclude that M is a resolving set for
G. Finally, by the construction of M and the fact that S ∩ Hi ̸= ∅, if m ∈ M , then there
exists m ′

∈ S ∩ Hi so that m ′
∈ S. Further, this m ′ will not correspond to any other m ∈ M .

Hence |M | ≤ |S|. □

Lemma 5.2. Let S be a metric basis for the graph G of order n and S′ be any subset of
V (G ⊙

′ H ) such that |S′
| < |S|. Then there exists a pair of vertices u, v ∈ V (G) with the

property that d(u, w) = d(v, w) for every w ∈ S′.

Proof. On the contrary, suppose that for every pair of vertices u, v ∈ V (G ⊙
′ H ) − S′,

we can find a w ∈ S′ such that d(u, w) ̸= d(v, w). Then, S′ is resolving set of G ⊙
′ H .

However, by above Lemma 5.1 we get a resolving set M for G with |M | ≤ |S′
| < |S|

which is a contradiction to the fact that S is a metric basis of G. □

Theorem 5.3. Let G be a connected graph of order n and H1, H2, . . . , Hn be the
components of a graph H. Then we have

β(G) ≤ β(G ⊙
′ H ) ≤

n∑
i=1

β(Hi ).

Proof. If G and H are trivial graphs, then G⊙
′ H is a trivial graph and hence β(G⊙

′ H ) =

1.
Otherwise, let G be a graph of order n and Hi be the i th component of H with ui being

a maximum degree vertex in Hi . Then we have the following cases.
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Fig. 7. The graph G.

Fig. 8. The graph H.

Case 1: H is a totally disconnected graph.
In this case, G ⊙

′ H ∼= G and hence, β(G ⊙
′ H ) = β(G) ≤ n −1 < n =

∑n
i=1 1 =∑m

i=1 β(Hi ).
Case 2: Hi ∼= K2 for each i , 1 ≤ i ≤ n.

In this case G ⊙
′ H ∼= G ⊙ K1 and hence by Theorem 4.1, its follows that

β(G) ≤ β(G ⊙
′ H ) ≤ β(G) + 1 ≤ n − 1 + 1 = n =

∑n
i=1 1 =

∑m
i=1 β(Hi ).

Case 3: Hi ≇ K1, K2 for some i , i ≤ i ≤ n.
Let S be a metric basis of G and S′ be any subset of vertices of G ⊙

′ H such that
|S′

| ≤ |S|. Then by Lemma 5.2, S′ is not a resolving set of G ⊙
′ H . Therefore,

β(G ⊙
′ H ) > |S′

|. Hence β(G ⊙
′ H ) ≥ |S| = β(G).

Thus, we see that β(G) ≤ β(G ⊙
′ H ) for all the graphs G.

Now to prove the other inequality for the cases Hi ≇ K1, K2 for any i , 1 ≤ i ≤ n, let
Si be the metric basis of Hi , the i th component of H and S =

⋃n
i=1 Si .

Claim : S is a resolving set of β(G ⊙
′ H ).

Let u and v be any two vertices of G ⊙
′ H .

Subcase (i): Both u, v ∈ V (Hi ) for some i , 1 ≤ i ≤ n. Since Si is metric basis for the
component Hi of H and u, v ∈ V (Hi ), we can find w ∈ S ∩ V (Hi ) such
that d(u, w) ̸= d(v, w).

Subcase (ii): u ∈ V (Hi ) and v ∈ V (H j ) for some i, j (i ̸= j). If v ̸= v j , then for
w ∈ S ∩ V (Hi ), d(u, w) ≤ 2 and d(v, w) > 2 so that d(u, w) ̸= d(v, w).
If v = v j , then for w ∈ S ∩ V (H j ), d(u, w) ≥ 2 and d(v, w) = 1 and
hence d(u, w) ̸= d(v, w).

Thus for any two vertices u and v of G ⊙
′ H , we have w ∈ S such that

d(u, w) ̸= d(v, w).

Since S = ∪
n
i=1Si , Si is the metric basis of Hi and by the above claim, it follows that, we

have β(G ⊙
′ H ) ≤ |S| = |

∑n
i=1 Si | =

∑n
i=1 |Si | =

∑n
i=1 β(Hi ). □

Remark 5.4. Let G = P3 and H be the graph having components Hi = P3, 1 ≤ i ≤ 3.
Then β(G) = 3 and β(G ⊙

′ H ) = 3 (Fig. 9). This shows that the bound obtained for
β(G ⊙

′ H ) in the above Theorem 5.3 is tight.

6. CONCLUSION

The metric dimension of the family of generalized wheels has been obtained in this paper.
Also, some results on the metric bases of the corona product of graphs have been established
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Fig. 9. The graph G ⊙
′ H of the graphs G of Fig. 7 and H of Fig. 8.

using which the metric dimension of the corona product of any graph G with some standard
graphs has been obtained. Further, some relations between the metric dimension of a graph
and its generalized corona product have been established.
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