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Abstract. We approximate the fixed points of contraction mappings using the Picard—
Krasnoselskii hybrid iterative process, which is known to converge faster than all of Picard,
Mann and Ishikawa iterations in complex valued Banach spaces. Moreover, we prove
analytically and with a numerical example that the Picard-Mann hybrid iteration and the
Picard—Krasnoselskii hybrid iteration have the same rate of convergence. Furthermore, we
apply our results in finding solutions of delay differential equations in complex valued
Banach spaces.

Keywords: Complex valued Banach spaces; Picard—Krasnoselskii hybrid iterative process;
Delay differential equations; Picard—Mann hybrid iterative process; Stability; Data
dependence

Mathematics Subject Classification: 47H09; 47H10; 49OMO0S; 54H25

1. INTRODUCTION AND PRELIMINARIES

It is known that there is a close relationship between the problem of solving a nonlinear
equation and that of approximating fixed points of a corresponding contractive type operator
(see, e.g. [6,7,25]). Hence, there are practical and theoretical interests in approximating
fixed points of several contractive type operators. We approximate the fixed points of
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contraction mappings using the Picard—Krasnoselskii hybrid iterative process, which is
known to converge faster than all of Picard, Mann and Ishikawa iterations in complex valued
Banach spaces (see, e.g. [24]). Moreover, we prove analytically and with a numerical example
that the Picard—Mann hybrid iteration and the Picard—Krasnoselskii hybrid iteration have
the same rate of convergence. Our results generalize and extend several known results in
literature, including the results of [3,19,20,23,24] among others. Furthermore, we apply our
results in finding the solution of delay differential equations.

Interest in generalized Banach spaces lies in the fact that the metric properties of the
problem at hand can be analyzed more accurately. Moreover, convergence domains and
estimates on the error distances involved are improved, when compared to the real norm
theory (see, e.g. [4,21]). Recently, Argyros et al. [4] presented a weaker convergence analysis
of Newton’s method than in Traub [33], Meyer [21] among others on a generalized Banach
space setting to approximate a locally unique zero of an operator. Their results extend the
applicability of Newton’s method.

The notion of complex valued metric spaces was introduced by Azam et al. [5] in
2011. They established some fixed point theorems for a pair of mappings satisfying rational
inequality. Their results are intended to define rational expressions which are meaningless
in cone metric spaces, hence results in this direction cannot be generalized to cone metric
spaces, but to complex valued metric spaces. It is known that complex valued metric space
is useful in many branches of Mathematics, including number theory, algebraic geometry,
applied Mathematics as well as in physics including hydrodynamics, mechanical engineering,
thermodynamics and electrical engineering (see, e.g. [29]). Several authors have obtained
interesting and applicable results in complex valued metric spaces (see, e.g. [1,2,5,17,27—
30]). Since, the introduction of the notion of complex valued metric spaces by Azam et al. [5]
in 2011, most results obtained in literature by many authors are existential in nature (see,
e.g. [1,2,5,17,27-30]). Consequently, we are motivated to study the approximation of fixed
points of some mappings satisfying certain contractive conditions in complex valued Banach
spaces.

Interest in the study of delay differential equations stems from the fact that several models
in real life problems involve delay differential equations (see, e.g. [24]). For instance, delay
models are common in many branches of biological modeling (see [13]). They have been
used for describing several aspects of infectious disease dynamics: primary infection [9],
drug therapy [22] and immune response [12], among others. Delays have also appeared in the
study of chemostat models [39], circadian rhythms [31], epidemiology [11], the respiratory
system [36], tumor growth [37] and neural networks [8]. Statistical analysis of ecological
data (see e.g. [34,35]) has shown that there is evidence of delay effects in the population
dynamics of many species.

Next, we give the following definitions and notations which will be useful in this research.

Definition 1.1 (/4], [2]1]). A generalized Banach space is a triplet (x, E, |.|) such that
(i) X is a linear space over R(C).

(i) E = (E, K, ||.]|) is a partially ordered Banach space, i.e.

(iiy) (E, ||| is a real Banach space,

(iip) E is partially ordered by a closed convex cone K,

(iii3) The norm ||.|| is monotone on K.



Iterative approximation of fixed points of contraction mappings in complex valued Banach spaces 85

(iii) The operator |.| : X — K satisfies [x| = 0 if and only if x = 0, |0x| = |6]|x],
lx +y| <|x|+]y| foreach x,y € X, 6 € R(C).
(iv) X is a Banach space with respect to the induced norm ||.||; := ||.]|.|.]-

Let C be the set of complex numbers and z;,z, € C. Define a partial order 3 on C as
follows:

71 3 72 ifand only if Re(z;) < Re(z2), Im(zy) < Im(2z).
It follows that
32

if one of the following conditions is satisfied:

(1) Re(z1) = Re(z2), Im(z1) < Im(z2),

(ii) Re(z1) < Re(z2), Im(z1) = Im(22),

(iii) Re(z1) < Re(z2), Im(z1) < Im(22),

(iv) Re(z1) = Re(z2), Im(z1) = Im(22).

In particular, we will write z; 3 z2 if z1 # 25 and one of (i), (ii), and (iii) is satisfied and we
will write z; < z; if only (iii) is satisfied. Note that

0321 222 = lzl < lzal,
21 X 22, 22 <73 == 21 <1Z3.

Definition 1.2 (/5]). Let X be a nonempty set. Suppose that the mappingd : X x X — C,
satisfies:
1.0 2 d(x,y), forall x, y € X and d(x, y) = 0 if and only if x = y;
2.d(x,y)=d(y,x)forall x, y € X;
3.d(x,y) Zdx,2)+d(z,y), forallx, y,z € X.

Then d is called a complex valued metric on X, and (X, d) is called a complex valued
metric space.

Motivated by the results above, we now define a complex valued Banach space as follows:

Definition 1.3. Let E be a linear space over a field K, where K = R (the set of real numbers)
or C (the set of complex numbers). A complex valued norm on E is a complex valued function
I.|l - E — C satisfying the following conditions:
I.|lx|l =0ifand only if x =0, x € E;
2. |lkx|| = |k|.||x|| forallk € K, x € E;
3.0l 4+ ylI S llxll + |yl forall x, y € E.

A linear space with a complex valued norm defined on it is called a complex valued normed
linear space, denoted by (E, ||.||). A point x € E is called an interior point of aset A C E if
there exist 0 < r € C such that

B(x,r)={yeE:|x—yl=<r}cA.
A point x € E is called a limit point of the set A whenever for each 0 < r € C, we have

B(x,r)N(A\ E) £ 0.
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The set A is said to be open if each element of A is an interior point of A. A subset B C E
is said to be closed if it contains each of its limit point. The family

F={Bx,r):xeE, 0<r}

is a sub-basis for a Hausdorff topology t on E.

Suppose x, is a sequence in E and x € E. If for all ¢ € C, with 0 < ¢ there exists np € N
such that for all n > ny, ||x, —X,4+m|l < c, then {x,} is called a Cauchy sequence in (E, |.|)).
If every Cauchy sequence is convergent in (E, ||.||), then (E, ||.||) is called a complex valued
Banach space.

We now give the following examples of complex valued normed linear spaces.

Example 1.1. Let E = C be the set of complex numbers. Define |.|| : C x C — C by

llz1 — z2ll = |x1 — x2| +ily1 — )2 Vz1,22 € C,
where 71 = x1 + iy1, 22 = xp + iyz. Clearly, (C, |.||) is a complex valued normed linear
space.
Example 1.2. Let E = C be the set of complex numbers. Define a mapping ||.|| : CxC — C
by

lz1 — z2ll = €*|z1 —z2l, Vz1,22 € C,

T
where k € [0, E]’ 21 =Xx1+iy1, 22 =x2+ iy

Then (C, ||.]|) is a complex valued normed linear space.

Example 1.3. Let (C[a, b], |.|l) be the space of all continuous complex valued functions
on a closed interval [a, b], endowed with the Chebyshev norm

. T
Ix — Ylloo = max |x(t) — y(t)|e™*, x,y € Cla,bl, kel0,=].
tela,b) 2

Then (Cla, b], ||.]lo0) is a complex valued Banach space, since the elements of C[a, b] are
continuous functions, and convergence with respect to the Chebyshev norm ||. ||« corresponds
to uniform convergence. We can easily show that every Cauchy sequence of continuous
functions converges to a continuous function, i.e. an element of the space Cla, b].

Next, we prove Lemmas 1.1 and 1.2 as an analogue of ([5], Lemma 2) and ([5], Lemma

3) respectively in complex valued Banach spaces.

Lemma 1.1. Let (E, ||.||) be a complex valued Banach space and let {x,} be a sequence in
E. Then {x,} converges to x if and only if |||x, — x||| = Oasn — oo.

Proof. Suppose that x,, converges to x. This means that for arbitrary ¢ > 0 and 0 < ¢ € C,
there exists a natural number N, such that

|lx, — x| < ¢ foreachn > N.
Without loss of generality, let

C

€ +,e
= —+i—.
V2 V2
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Hence,

[llx, — x||| < |c| =€ foreachn > N.
It follows that

[lx, — x||]| = 0 asn — oo.

Conversely, let |||x, — x||| = 0 asn — oo. Then given 0 < ¢ € C, there exists a real
number § > 0 such that for each z € C

Iz]| <6 =2z =<c.
For this § > 0, there exists a natural number N such that
[llx, — x||| <& foreachn > N.
Therefore, ||x, — x|| < ¢ foreachn > N. Hence, {x,} converges to x as desired. [

Lemma 1.2. Let (E, ||.||) be a complex valued Banach space and let {x,} be a sequence in
E. Then {x,} is a Cauchy sequence if and only if |||x, — Xyaml|ll = 0 asn — oo.

Proof. Suppose that {x,} is a Cauchy sequence. This means that for arbitrary ¢ > 0 and
0 < ¢ € C, there exists a natural number N, such that
Xy — Xpamll < ¢ forallm > N.
. . _ e i€
Without loss of generality, let ¢ = 7 +i 7 then
Xy, — Xn+mlll < |c| =€ forallm > N.
Hence,
Xy — Xngmll| = 0 asn — oo.

Conversely, let |||x, — x,4+m ||| = 0 as n — oo. Given arbitrary 0 < ¢ € C, there exists a
real number § > 0, such that for each z € C, we have

z] < =z <c.
For this §, there exists a natural number N such that
X, — Xpamlll < & foreachn > N.
This means that ||x,, — x4 || < ¢ forall n > N. Therefore, {x,} is a Cauchy sequence. [

The Picard iterative process is commonly used to approximate the fixed point of
contraction mappings 7 : D € E — D satisfying the following contractive condition

ITx — Tyl Z8lx —yl, 8€(,1), forall x,ye D CE. (1.1)

If 6 = 1 in relation (1.1), then T is called a nonexpansive mapping. A point x € D is called
a fixed point of the mapping 7 : D — D if Tx = x. The set of all the fixed points of T is
denoted by F(T) :={x € D : Tx = x}.

In 2013, Khan [18] introduced the Picard—Mann hybrid iterative process. The iterative
process for one mapping case is given by the sequence {m, }5 ;.

my=mé€ D,
Myy1 = Tva (12)
an(l_an)mn +anTmn’ neN,
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where {a,}72 | is in (0, 1). Khan [18] proved that this iterative process converges faster than
all of Picard, Mann and Ishikawa iterative processes in the sense of Berinde [7] for contractive
mappings.

Recently, Okeke and Abbas [24] introduced the Picard—Krasnoselskii hybrid iterative
process defined by the sequence {x,};2 , as follows:

x1=x €D,
Xn+1 = Tyna (13)
Yn:(l_)t)xn‘i‘)LTxny nEN’

where A € (0, 1). The authors proved that this new hybrid iteration process converges faster
than all of Picard, Mann, Krasnoselskii and Ishikawa iterative processes in the sense of
Berinde [7]. They also used this iterative process to find the solution of delay differential
equations.

Definition 1.4 ([7]). Let {a,};2,, {bs}2, be two sequences of positive numbers that
converge to a, respectively b. Assume there exists

[ = lim 9=
n—00 |b, — bl
1. If I = 0, then it is said that the sequence {a,},-, converges to a faster than the sequence
{bu}o2 to b
2.If 0 <[ < oo, then we say that the sequences {a,},-, and {b,},°, have the same rate of
convergence.

1.4

Definition 1.5 (/7]). Let T, T : D — D be two operators. We say that 7 is an approximate
operator of T if for all x € D and for a fixed ¢ > 0 we have

|Tx — Tx|| <e. (1.5)

Definition 1.6 (//4-16]). Let D be a nonempty convex subset of E and T : D — D be
an operator. Assume that x; € D and x,+; = f(T, x,) defines an iteration scheme which
produces a sequence {x,} 2, C D. Suppose, furthermore, that {x,}°2, converges strongly to
x* e F(T) # . Let {y,}°2, be any bounded sequence in D and put &, = || y,+1 — f(T, y)ll.
(1) The iteration scheme {x,}52 | defined by x,41 = f(7T, x,,) is said to be T-stable on D if
lim,,_, o€, = 0 implies that lim,, »y, = x*.

(2) The iteration scheme {x,,};2 ; defined by x,+1 = f(T, x,) is said to be almost T -stable on
Dif Y 72 &, < oo implies that lim,_, 5y, = x*.

It is easy to show that an iteration process {x,},2, which is T-stable on D is almost

T-stable on D. However, the converse is not true (see, e.g. [26]).

Lemma 1.3 ([7)). If é is a real number such that 0 < § < 1 and {€,}32, is a sequence
of positive numbers such that lim,_, €, = 0, then for any sequence of positive numbers

{u, )02, satisfying
Upt1 < Su,+e€,, n=0,1,2,...

one has lim,,_, sou, = 0.
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Lemma 1.4 ([38]). Let {B,}:2, and {p}32, be nonnegative real sequences satisfying the
following inequality:

,3n+l =< (1 - )\n),Bn + Pns

where A, € (0,1), for all n > ny, Z;’;l)»n = o0, and ‘;—: — Oasn — oo. Then
lim, 0B, = 0.

Lemma 1.5 ([32]). Let {B,},2, be a nonnegative sequence for which one assumes there
exists ng € N, such that for all n > ny one has satisfied the inequality

Bry1 < (1 — ) Bn + tn ¥,
where u, € (0,1), foralln € N, Z;’;OM” = oo and y, > 0, VN. Then the following
inequality holds

0 < limsup B, < limsup y,.
n—00 n—o00o

2. CONVERGENCE ANALYSIS OF SOME ITERATIVE PROCESSES IN COMPLEX
VALUED BANACH SPACES

We begin this section with the following results which shows that the Picard—Mann hybrid
iterative process (1.2) has the same rate of convergence as the Picard—Krasnoselskii hybrid
iterative process (1.3). We also support our analytical proofs with a numerical example.

Proposition 2.1. Let D be a nonempty closed convex subset of a complex valued normed
space (E, ||.||) and let T : D — D be a contraction mapping. Suppose that each of the
iterative processes (1.2) and (1.3) converges to the same fixed point p of T where {0},
and A are such that 0 < a < A, «a, < 1 forall n € N and for some «a. Then the Picard-
Krasnoselskii hybrid iterative process (1.3) has the same rate of convergence as the Picard—
Mann hybrid iterative process (1.2).

Proof. Using ([18], Proposition 1), we have

lma1 — pll 2 81 = (A1 = e)]*lmy — pl. 2.1)
Let

ap = [6(1 — (1 = &)e)]"[lmy — pll. (2.2)
Similarly, using ([24], Proposition 2.1), we have

lxn+1 = pll S 181 = (1 = e)]"llx1 — plI. (2.3)
Let

by =[6(1 = (1 = &)a)]"llx1 — pll. (2.4)

Now, we compute the rate of convergence of the Picard—Krasnoselskii hybrid iterative process
(1.3) as follows:

by _ B0~ =8y — pl
@ A= (=8l m — pl
b —pl 1 25

llmy — pll”
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Table 2.1

Comparison of the speed of convergence among various iterative

processes.
Step Picard—Krasnoselskii Picard—Mann
1 5.0000000000000 5.0000000000000
2 2.2512843540734 2.2512843540734
3 2.0240689690982 2.0240689690982
4 2.0023366393861 2.0023366393861
5 2.0002271411589 2.0002271411589
6 2.0000220828647 2.0000220828647
7 2.0000021469423 2.0000021469423
8 2.0000002087305 2.0000002087305
9 2.0000000202932 2.0000000202932
10 2.0000000019730 2.0000000019730
11 2.0000000001918 2.0000000001918
12 2.0000000000186 2.0000000000186
13 2.0000000000018 2.0000000000018
14 2.0000000000002 2.0000000000002
15 2.0000000000000 2.0000000000000

Clearly, from (2.1) m; # p, sothat 0 < ||m; — p|| < oo. Similarly, from (2.3) x; # p, so
that 0 < ||x; — p|| < oo. Hence,

N [ [
w=o [l = pll

2.6)

This means that the Picard—Krasnoselskii hybrid iterative process (1.3) has the same rate of
convergence as the Picard—Mann hybrid iterative process (1.2). The proof of Proposition 2.1
is completed. [

Next, we give a numerical example as a support of the analytical results of Proposition 2.1.

Example 2.1. Let E = Rand D = [1,10]. Let T : D — D be an operator defined by
Tx = /2x + 4 for all x € D. Choose a, = A = % for each n € N, with the initial value
x1 = 5. Clearly, T is a contraction mapping with contractive constant § = %4 and a unique
fixed point p = 2. Table 2.1 shows that the Picard—Krasnoselskii hybrid iterative process
(1.3) has the same rate of convergence as the Picard—Mann hybrid iterative process (1.2).

Remark 2.1. Table 2.1 shows that both the Picard—Krasnoselskii hybrid iterative process
(1.3) and the Picard—-Mann hybrid iterative process (1.2) converge to the fixed point p = 2
of T at iteration step number 15. Hence, the iterative processes (1.2) and (1.3) have the same
rate of convergence.

Theorem 2.1. Let D be a nonempty closed convex subset of a complex valued Banach space
(E, |I.D) and T : D — D be a contraction mapping satisfying contractive condition (1.1).
Let {m,} be an iterative sequence generated by (1.2) with real sequence {a,};> in [0, 1]
satisfying Y - ooty = 00. Then {m,} converges strongly to a unique fixed point of T.
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Proof. The famous Banach theorem guarantees the existence and uniqueness of the fixed
point p. We now show that x, — p asn — oco. Using (1.1) and (1.2), we obtain:

zn = pll = 10 — a)my + @y Tm, — pli
S (L =ap)llmy — pll + anllTm, — pll
3 (L =ap)lmy, — pll + apdllm, — pll
= = a1 =8)llm, — pl. 2.7)

Using (1.1), (1.2) and relation (2.7), we have:

lm,p1 — pll = 1Tz, — pll
2 8llzn = pll
380 —a,(1 = 8)|lm, — pll. (2.8)

Using the fact that (1 — «,,(1 —§)) < 1 and § € (0, 1), we obtain the following inequalities
from (2.8).

Imu1 — pll 2601 — o, (1 = 8)llm, — pli
“mn - P|| j 8(1 - an—l(l - 8))“mn—l - P”
lma—1 = pll T 81 = ap_a(l = 8)mu—r — pl (2.9)

llmz — pll 3 8(1 = ay(1 = 8)lmy — pl.

From relation (2.9), we derive

st = pll 3 llmy = pll™ T = o1 = 8), (2.10)
k=1
where (1 — oy (1 —36)) € (0, 1), since 6 € (0, 1) and o; € [0, 1] for all k¥ € N. It is well-known
in classical analysis that 1 — x < e¢™ for all x € [0, 1]. Using these facts together with
relation (2.10), we have

llmy — pl&™*!

— < - 7
s = pll 2 =3y (2.11)
Therefore,
lim |[|mas1 — pll| < w — 5 0asn — oo. (2.12)
n—>oo - |e(1*5) ZZ:I o |

This means that lim,,_, o ||m, — p|| = 0. Thatis m, — p asn — oo as desired. The proof of
Theorem 2.1 is completed. O

Theorem 2.2. Let D be a nonempty closed convex subset of a complex valued Banach space
(E,|I.ID. Let T : D — D be a nonexpansive mapping. Let {x,} be a sequence generated by
the Picard—Krasnoselskii hybrid iterative process (1.3). Then

(i) lim,, _, oo ||x, — p|| exists for all p € F(T).

(ii) limy,— oo | [ X0 — Txull| = 0.
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Proof. Suppose p € F(T), by (1.3) we have
ye =PIl = (1 = )x + AT X, — pll
3 (A =Mlxy = pll+ A Tx, — pll
3 (L =Wllxy = pll + Alx, — pll

= [lx, — pl. (2.13)
Hence,
X041 — Pl = Ty, — pll
2 lye = pl
2 lxa = pll. (2.14)

This shows that the sequence {||x, — p||} is decreasing, hence (i) is proved. Suppose
lim ||x, — p|| = b. (2.15)
n—00

We next prove part (ii). To do this, we first prove that lim,_, ||y, — pll = b. Using (2.14),
ie. [xu41 — pll 2 llx, — plI, we have

liminf ||x,1 — pll T liminf [lx, — pll, (2.16)
n—00 n—00
so that
b 2 liminf ||y, — pll. (2.17)
n—0o0o
Relation (2.14) implies that
limsup ||y, — pll 3 b. 2.18)
n—o00o

Using (2.17) and (2.18), we have

lim ||y, — pll = b. (2.19)
n—o0
Next, | Tx, — pll = |lx, — p|l implies that
limsup |Tx, — p|l 2 b. (2.20)
n—oQ

Using (2.15), (2.19), (2.20) and Lemma 1.1, we have
lim |||x, — Tx,]||| = 0. (2.21)
n—o0o

This completes the proof of Theorem 2.2. [

Next, we obtain the following corollary as a consequence of Theorem 2.2.

Corollary 2.3. Let D be a nonempty closed convex subset of a complex valued Banach space
(E, ||.ID- Let T : D — D be a contraction mapping satisfying contractive condition (1.1).
Let {x,} be a sequence generated by the Picard—Krasnoselskii hybrid iterative process (1.3).
Then

(i) lim,, oo ||l x,, — p|| exists forall p € F(T).

(i) lim,, . oo || X, — T x, ||| = 0.
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Proof. The proof of Corollary 2.3 follows the same line as in Theorem 2.2. [

Next, we prove the following results using a contractive condition satisfying rational
expression.

Proposition 2.2. Let D be a nonempty closed convex subset of a complex valued normed
space (E, ||.])) and let T : D — D be a mapping defined as follows

¢(lx = Tx|) +allx = y|
Tx —Ty| =2 , Vx,yeD,a€l0,1), M=>0, 2.22
ITx = ol 3 = e = 7l x.yeD, acl0.1) (2.22)

where ¢ : C, — C, is a monotone increasing function such that ¢(0) = 0. Suppose that
each of the iterative processes (1.2) and (1.3) converges to the same fixed point p of T where
{an}o2y and A are such that 0 < o < A, o, < 1 forall n € N and for some a. Then the
Picard—Krasnoselskii hybrid iterative process (1.3) has the same rate of convergence as the
Picard—Mann hybrid iterative process (1.2).

Proof. Suppose that p is the fixed point of the mapping 7. We obtain the following using
relations (2.22) and (1.2)

lmupr — pll = 1Tz, — pli
~ ¢llp =Tpl) +allz, — pl
~ L+ Mlp—Tpl
_ ¢ +allzn — pl
1+ M| 0|

= a”(l - an)mn + o, Tm, — P||

2 a(l —ay)llm, — pll + aa, | Tm, — pl|
o(lp—=Tpl)+ allm, — pll]

5 a(l - an)”mn - P” + aa, |:

1+ Mlp—Tpl|
(101D + allm, —pll}
=a(l —ay)||m, — +aay,
( ) Pl [ 15 M0

a(l —ay)|lm, — pll + a*a,lm, — p|

a(l —ay(1 = a))|lm, — pl
S a(l —a(l —a)lm, — pl

A

[a(l —a(l —a)]"lm — pl. (2.23)
Let

cn = la(l —a(l —a)]"lmy — pll. (2.24)
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Similarly, using relations (2.22) and (1.3), we have

X041 = Pl = 1Ty, — pll
< ¢llp =Tpl) +ally. — Pl
~ 1+ Mlp—Tpl
_ (o) +ally, — pll
- 1+ M|0]
= ally. — pll

al|(I = )xp + AT x, — pl
3 a(l = Mlxn — pll +arlTx, — pl

—Tpl) +allx, —
ja(l—)\)||xn—l7||+a)\|:(p(”p plD +all p||}
1+ M|p—Tp|
([0l + allx, _p”}
= a(l = Mlx, — pll +ax
( ! 7l [ 1+ M|0]|

a(l = W)x, — pll + a*Allx, — pl
= a(l — A1 —a)|x, — pl

3 la(l —a(l —a)]"[x; — pll. (2.25)
Let
e, = [a(l —a(l —a)]"|x; — pll. (2.26)

Now, we compute the rate of convergence of the Picard—-Mann hybrid iterative process (1.2)
and the Picard—Krasnoselskii hybrid iterative process (1.3) as follows:

e _ [a(1 —a(l —a)]"llx1 — pli
Cn [a(l — a(l —a)]"|lm; — pl|
k=gl ‘ @27
lmy — pll’

Clearly, from (2.23) m; # p, sothat 0 < ||m; — p|| < oco. Similarly, from (2.25) x; # p, so
that 0 < ||x; — p|| < oo. Hence,

= plll
n=oo |[lmy — pll

l < o0. (2.28)

This means that the Picard—Krasnoselskii hybrid iterative process (1.3) has the same rate of
convergence as the Picard—Mann hybrid iterative process (1.2). The proof of Proposition 2.2
is completed. [

Remark 2.2. Proposition 2.2 is an extension of the results of Proposition 2.1 to contractive
condition satisfying rational expression, which is meaningless in cone metric spaces. This
means that our results cannot be deduced in cone metric spaces.

Theorem 2.4. Let D be a nonempty closed convex subset of a complex valued Banach space
(E,|I.) and T : D — D be a contraction mapping satisfying the following contractive



Iterative approximation of fixed points of contraction mappings in complex valued Banach spaces 95

condition

< ¢(lx = Tx|) +allx — vl
~ 1+ Mlx —Tx||
where ¢ : C, — C, is a monotone increasing function such that ¢(0) = 0. Let {m,}

be an iterative sequence generated by (1.2) with real sequence {a, )2 in [0, 1] satisfying
Y2 yon = 00. Then {m,} converges strongly to a unique fixed point of T.

ITx =Tyl

, Vx,yeD,a€l0,1), M>0, (229

Proof. We now show that x, — p as n — oo. Using (1.2) and (2.29), we obtain:

lmup1 — pll = 1Tz0 — pli
< ¢llp = Tpl) +allz. — pll
~ 1+ Mlp—Tpl|
_edlol) +allz, — pll
B 14+ M|O|

61”(1 - Oln)’/nn +anTmn - P||

3 a(l — a)lm, — pll + ac, | Tm, — p|
—-T +al|m, —
<l —a)my — pll + av, |:g0(||p pl) +all pu]
1+ Mlp—Tpll
o0 + allm, — pl|
=a(l — —
(1( an)”mn P|| + aay, |: 1+ M||0||
= a(l — a)m, — pll + a’a,llm, — pl|
= a(l — a,(1 — a))|lm, — pl. (2.30)

Using the fact that (1 — «,(1 —a)) < 1 and a € [0, 1), we obtain the following inequalities
from (2.30).

M1 = pll 3 a(l —au(1 = a)llm, — pl
lm, — pll 3 a(l — ay—1(1 — a)llmu—1 — pli
lmn—1 — pll :j a(l —a,o(1 —a))|lmy—o — pl (2.31)

lmy — pll 2 a(l — o (1 —a))|m; — pl.
From relation (2.31), we derive

st = pll Z llmy = plla™ ] = el = ), (2.32)
k=1
where (1 —a; (1 —a)) € (0, 1), sincea € [0, 1) and oy € [0, 1] for all k € N. It is well-known
in classical analysis that 1 —x < e~ forall x € [0, 1]. Using these facts together with relation
(2.32), we have

llmy — plla™!
— [ S . —
mnr = pIl 2 oy (2.33)
Therefore,
: [llmy — plla”|
nli)r&|||mn+1 — p||| < {m —> O0asn — oo. (234)

This means that lim,, _, » ||m, — p|| = 0. That is m,, — p as n — oo as desired.
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Next, we show that T has a unique fixed point p € F(T) :={p € D : Tp = p}. Assume
that p* is another fixed point of 7, then we have

lp—p*ll = IITp — Tp*|
< ¢llp =Tpl) +allp — Pl
~ 1+ Mlp—Tpl
_edlol)+allp — p*l
- 1+ M|0|
=allp — p*ll. (2.35)

This implies that p = p*. The proof of Theorem 2.4 is completed. [J

Remark 2.3. Theorem 2.4 is an extension of the results of Theorem 2.1 to contractive
condition satisfying rational expression, which is meaningless in cone metric spaces. This
means that our results cannot be deduced in cone metric spaces.

3. STABILITY RESULTS IN COMPLEX VALUED BANACH SPACES

We begin this section by providing the following numerical example to show that the
Picard—Mann hybrid iterative process (1.2) is T-stable.

Example 3.1. Let £ = [0, 1]. Define T : [0, 1] — [0,1] by Tx = ’5‘ where T satisfies
contractive condition (1.1), with § = % and F(T) = {0}. We now show that the Picard—Mann
hybrid iterative scheme (1.2) is T-stable, and hence, almost T -stable. Suppose {y,} = ﬁ is
an arbitrary sequence in £, p =0 € F(T) and o,, = % foreachn € N.

Then lim,,_, »y, = 0. Put

en = Yur1 — (T, y)l = |yn+1 — Tayl, 3.1
where
an = (1 —ap)yn + o, Ty,. 3.2)
We have,
&n = [Yn+1 — T ay]
ap
= |Yn+1 - ?l
= | (I —ay) ®n Yn |
= [Yn+1 ) Yn ) . D)
= o = 2l
= | Yn+1 4yn 8yn
— | 1 1 1 | (3.3)
Cnd+1 4n 8n '
Hence,
lim ¢, = 0. (3.4)
n—oQ

Therefore, the Picard—Mann hybrid iterative process (1.2) is T -stable. Clearly, (1.2) is almost
T -stable.
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Next, we prove the following stability results for the Picard—-Mann hybrid iterative process
(1.2).

Theorem 3.1. Let (E, ||.||) be a complex valued Banach space and T : D C E — D be the
contraction mapping defined by (1.1). Suppose there exists p € F(T) such that the Picard-
Mann hybrid iterative process {m,}>, (1.2) satisfying Z;’ioa,, =ooand a, < a € (0,1)

for each n € N, converges to p. Then
(1) the Picard—Mann hybrid iterative process (1.2) is T-stable.
(2) the Picard—Mann hybrid iterative process (1.2) is almost T-stable.

Proof. Suppose {y,}°2, C D is an arbitrary bounded sequence, put

&n = | yns1 — Taull, (3.5)

where
a, = —ay)y, + 0o, Ty,. (3.6)
Using (1.1), (1.2) and the fact that § € (0, 1), we obtain:

In+1 = Pl 2 Iynsr = Tanll + 1 Tan — pll

2 &n +6lla, — pl|

=&, +3II(1 — ap)yn + Ty, — pll

2 oen+ 81 —a)llys — pll + @bl Ty, — pli

3 en+ 81— a)llyn — pll + ad’lyn — pll

Zen+ 0 —ay(1 =)y, — pll. (3.7

Since @, <a € (0, 1) foralln € Nand § € (0, 1), we have that (1 — «,,(1 — 3§)) < 1. Hence,
by Lemma 1.3, relation (3.7) yields:

lim y, = p. (3.8)

n—oo

Conversely,

&n = llyns1 — Tanll
Z Nyntr = Pl +llp = Taxll
Z Myn1 — pll +8llan — pll
= [[Yp+1 — pll +8II(1 — @) yn + 2 Tyn — pll
S g1 = Pl 481 = a)llyn — pll + 8l Ty, — pl
3 lynst — pll 480 — a)llyw — pll + 8aullyn — pll
2 Mynsr = pll+8lly. — plI. (3.9)

Hence, we have

&n 3 llynsr — pll + 8llyn — plI. (3.10)
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Therefore,

lim ¢, = 0. (3.11)

n—00

This means that the Picard—Mann hybrid iterative process (1.2) is T-stable.
Next, we prove that iterative process (1.2) is almost T-stable. Suppose that Y - &, < 00,
by (3.7) we have

[Vns1 =PIl 3 &n + (1 = an(1 = )llya — pII. (3.12)

Hence, by Lemmas 1.1 and 1.4, we have

lim |||y, — p|ll = 0. (3.13)
n— 00

This means that y, — p asn — oo.
Conversely, suppose that lim, ..y, = p, by (3.6) and (3.7), we have

&n 3 w1 — Pl + 11Tan — pll
3 ynsr — pll + Sllan — pll
= ynt1 — Pl + 811 —n)yn +oaTy, — pll
3 ynsr = pll+ 81 — ap)llyn — pll + 8l Tyn — pl
3 lynsr = pll+ 801 — @)y — pll + Faullyn — pll
3 s — pll +8llya — pl. (3.14)
Now by Lemmas 1.1 and 1.4, we have that |¢,| — 0 as n — oo. This means that the

Picard—Mann hybrid iterative process (1.2) is almost T-stable. The proof of Theorem 3.1 is
completed. [

Theorem 3.2. Let (E, ||.||) be a complex valued Banach space and T : D — D be a
contraction mapping satisfying the following contractive condition

< ¢Ux = Tx|) +alx —yl

ITx — Tyl
1+ M|x —Tx||

, Vx,yeD,ae[0,1), M>0, (3.15)

where ¢ . C, — C. is a monotone increasing function such that ¢(0) = 0. Suppose there
exists p € F(T) such that the Picard—Mann hybrid iterative process {m,}>> | (1.2) satisfying
Zf,io“n =ooand o, <« € (0, 1) for eachn € N, converges to p. Then

(1) the Picard—Mann hybrid iterative process (1.2) is T -stable.

(2) the Picard—Mann hybrid iterative process (1.2) is almost T -stable.

o]

Proof. Suppose {g,};2; C D is an arbitrary bounded sequence, put

&n = l8n+1 = Thall, (3.16)

where

b, = (Ir— an)gn +a,Tgy. (3.17)
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Using (1.2), (3.15) and the fact that a € [0, 1), we obtain:

lgn+1 — Pl 3 Ign+1 — Tlull + IIThy — pli

< e+ o(lp —Tpl) + allb, — pl
L+Mlp—Tpl
(10l + allb, — pll
=é&,+
14+ M|0|

en +all(l —ay)gn +a,Tgn — pll

jgn +a(l —a,)llg, — pll +aa,lTg, — pll
—Tpl) +allg, —
< entall —aplig — pl +acy [(p(llp pl) +align — pl
1+ M|p—Tpl
elol) + allg, — pll}
=g, +all —a,)llg, — + aay,
( Ngn — pll [ L+ M[0]

en +a(l —align — pll +d*aullgn — pll
=&, +a(l —a,(1—a)lg. — pl
S e+ (1 — a1 —a)llg, — pll-

)
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(3.18)

Since o, < € (0,1)foralln € Nand a € [0, 1), we have that (1 — «,,(1 —a)) < 1. Hence,

by Lemma 1.3, relation (3.18) yields:
lim g, = p.
Conversely,

En = ||gn+1 - Tbn”

3 lgntr = pll+llp = Thyll
eUlp = Tpl) +allb, — pll

3 lignsr — 2l +

I+ Ml|p—Tpl
— e ol + e(101) + allb, — pli
— n+1 —
+ 14+ M|0|

= llgnt1 — pll +alld —a,)g, + @, Tg, — pll
2 gt — pll +a(l —a)lig, — pll + ac,ITg, — pli

o(lp — Tpl) +allg, — pll
2 lgnsr — Pl +a(l —ap)lign — pll + aay, [
* 1+ M|p—Tp|

= lIgns1 — Pl +a(l —a)lign — pll + d*eulign — Pl
= llgn+1 — pll +a(l —a,(1 —a)llg. — pll.
Since a(l — a,(1 — a)) < 1, we have
en 3 gnt1 — pll +a(l — (1 —a)liga — pl.
Therefore,
lim ¢, = 0.
n—o0

This means that the Picard—Mann hybrid iterative process (1.2) is T-stable.

]

(3.19)

(3.20)

(3.21)

(3.22)
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Next, we prove that iterative process (1.2) is almost 7'-stable. Suppose that Y >~ &, < 00,
by (3.18) we have

Ign+1 — Pl 2 &0+ (1 —ay(1 —a))lig, — pl. (3.23)
Hence, by Lemmas 1.1 and 1.4, we have

lim [[lg, — plll = 0. (3.24)

n—0oQ

This means that g, — p asn — oo.
Conversely, suppose that lim,_, g, = p, by (3.17) and (3.18), we have

en 3 llgns1 — Pl + IITD, — pli
o(lp = Tpl) +allb, — pll

S lgnst — Pl +

1+ M|p—Tpl|
— llgner — pll + o0l + allb, — pli
ntl 1+ M0

= llgnt1 — pll +alld —a)gn + o Tgn — pll
w(llp—Tp||)+a||gn—pll}
1+Ml|p—Tpl
(101D +allg, — pll]
= |lgn+1 — +a(l —a,)|g, — +aax,
lgn+1 — Pl + a( Megn — pll [ T+ M[0]

= llgn+1 — Pl +a(l —ay(l —a))llg, — pl- (3.25)

Now by Lemmas 1.1 and 1.4, we have that |¢,| — 0 as n — oo. This means that the
Picard—-Mann hybrid iterative process (1.2) is almost T'-stable. The proof of Theorem 3.2 is
completed. [

2 gn+1 — pll 4+ a(l — an)lign — pll + acy [

Remark 3.1. Theorem 3.2 is an extension of the results of Theorem 3.1 to contractive
condition satisfying rational expression, which is meaningless in cone metric spaces. This
means that our results cannot be deduced in cone metric spaces.

4. DATA DEPENDENCE RESULT

Theorem 4.1. Let T be an approximate operator of a contraction mapping T : D C E —
D. Let {m,};2, be an iterative sequence generated by (1.2) for T and define an iterative
sequence {m,}>> | as follows
I’?ll =mEe€ D,
i1 = Ty, i @.1)
Zn=0—-am, +o,Tm,, neN,
with real sequence {a,},2 | in [0, 1] satisfying the following conditions
(i) % <y, foralln € N, and
(ii) Yoo oty = 00. y
If Tp = pand T p = p such that lim,_, .o, = p, then we have
llp = 5l = =
S1=s
where ¢ > 0 is a fixed number.
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Proof. Using (1.1), (1.2) and (4.1) we have

1z — Znll j (1 = ap)llm, — myll + ap | Tm, — T"hn”
2 (I =ap)lmy, —m || + | Tmy, — T, || + | T, — Ty ||

j (1 = ap)lim, — mull + ap8llm, — iyl + o,

= (1 — a,(1 = 8)|Imy, — iy || + ape. (4.2)
Mps1 = Apsrll = T2y — TZ, + TZ, — T, |l
f/ ”Tzn - Tzn” + ”Tzn - TZn”
=X 8llzn — Znll + & 4.3)

Using (4.2) in (4.3), we have

1 = Ml 3 81 — an(1 = 8)llmy — myll + anel + €
281 — (1 = 8)|lmy, — my, || + 2e. 4.4)

Using the fact that § € (0, 1) and 1 — o, < ¢, we have:

mas1 — gl 3 (1= ota(1 = 8)lImy — iyl 4+ 2(1 — o + atn)e

- S5e
2 (= ay(1 = 8)m, — m,| + (1 —8) . 4.5)
(I=19)
We denote 8, == |m, — m,|l, u, =1 —=38) € (0, 1), y, = (15_85).
It follows from Lemma 1.5 that
- . S5¢
0 < limsup|||m,, — m,||| < limsup ———-. (4.6)
n—00 n—soo (1 —20)
From Theorem 2.1, it is known that lim,_,.m, = p. Using this fact together with the
assumption that lim,_, o1, = p, we have
llp —plll < 4.7)

(1-8)
The proof of Theorem 4.1 is completed. [

5. APPLICATIONS TO DELAY DIFFERENTIAL EQUATIONS

In this section we show that the Picard—Mann hybrid iterative process (1.2) can be used
to find the solution of delay differential equations. Let the space C([a, b]) with endowed
Chebyshev norm

. T
[x — ylloo = max |x(t) — y(t)|e™*, x,y € Cla,bl, kel0, =],
trefa,b] 2

denote the space of all continuous complex valued functions on a closed interval [a, b]. It is
known that (C([a, b)), ||.|ls) is @ complex valued Banach space, see Example 1.3.
In this section, we shall study the following delay differential equation.

xX'@) = f(@t,x@),x(t — 1)), t € [to, b], (5.1)

with initial condition

x(t) = (1), t € [th — 7, o] (5.2)
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Assume that the following conditions are satisfied.
Cty,beR, t>0;

(C2) f € C([to, b] x R*, R);

(C3)p € C([to — 7, b], R);

(Cy) there exist Ly > 0 such that

2
| £t uy,u) = f(t, v, v)| < Ly Y lui —vil, Vui,v; €R,
i=1

i=1,2,t elt,b]; (5.3)

(Cs)2Ls(b—1ty) < 1.

By a solution of problem (5.1)—-(5.2), we mean a function x € C([tp — 7,b],R) N
Cl([to, b], R).

Now, we reformulate problem (5.1)—(5.2) as given in the following integral equation:

o(1), t € lty—1, 1],

x(t) = 5.4

t
o) + / FGs,x(s), x(s — T)s, 1 € [10, bl
o
Okeke and Abbas [24] established the following results.

Theorem 5.1. Assume that conditions (C1)—(Cs) are satisfied. Then problem (5.1)—(5.2) has
a unique solution, say p, in C([ty — 7, b], R) N C'([t, b], R) and the Picard—Krasnoselskii
hybrid iterative process (1.3) converges to p.

Next, we prove the following theorem for the Picard—Mann hybrid iterative process (1.2).

Theorem 5.2. Assume that conditions (C)—(Cs) are satisfied. Then problem (5.1)—(5.2) has
a unique solution, say p, in C([ty — 7, b], R) N C'([ty, b], R) and the Picard—Mann hybrid
iterative process (1.2) converges to p.

Proof. Let {m,};°, be the iterative sequence generated by the Picard-Ishikawa hybrid
iterative process (1.2) for the operator
(p([)v t e [t() - T, to]v
Tx(t) = 1 (5.5)
o)+ [ - ods te bl

fo
Let p denote the fixed point of 7. We will prove that m, — p as n — oc. Itis easy to see
that m,, — p for eacht € [#) — 7, #y]. Now, for each ¢ € [ty, b] we have

lzn — P”oo = |1 —a,)m, +a,Tm, — p”oo
j (I —a)llm, — pllec + anl|Tm, — Tp|lo
2 A =alm, — pllo + €*e, max [Tm,(t) — Tp()|
te[ty—1,b]

= (1 —alm, — pllo + €, max |t
telty—1.b]

+ / f(s,mu(s), my(s — 1))ds —
]
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(1) —/ f (s, p(s), p(s — 1))ds]|

fo
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t
= (1 - an)”mn - P”oo +elkan max |/ f(sv mn(s), my,(s — 7:))ds -
relig—tbl " J

/ Sf(s, p(s), p(s — 7))ds|
Iy

'
3 A =allmy, = plleo + € e, max | f (s, mu(s), mu(s — 7)) —

le[to—‘[,b] Iy

f (s, p(s), p(s — 1))lds

t
3 A =allmy, = plleo + e e, max ]/ Ly(mn(s) — p(s)| +

telty—1.b 1o

|mu(s —7) — p(s — T)]ds

t
S = alim, = pll +eay [ Ly max ) - )]+

1 seltp—t

max |m,(s — 1) — p(s — 1)|)ds
selto—t.b]

&N

Ip

A A

e 1 — (1 = 2L (b — to)1llmy — plloo-

” TZn - Tp”oo

”mn+l - p“oo

telty—1,b] 0

=<
~ telio—r.01 J;y
t
<% max / L1 (12n(s) — p(5)] + 12n(s — ) — pls — T))ds
telio—r.b1 J;,

3 2L (b — 1) 2y = plloo-
Combining (5.6) and (5.7), we have:

Imas1 = plloo 3 2L 5 (b — 10)e* [1 — (1 = 2L s(b — o))l ma — pll.

Using assumption (Cs), we have
[mus1 = plloe 3 € (1 — an(1 = 2L s (b — to)]llm, — pll.
Inductively, we obtain

Imass = plloo 3 [ JI1 = 0 (1 = 2L (b — to))llm1 = pl.
j=1

Since «,, € [0, 1], for all n € N, using assumption (Cs) yields

[1— (1 —2L (b —1))] < 1.

(1 — a)llm, — plleo + 20, L (b — to)e™ lmy — plloo

t
A =ap)llmy, = plloo +€’kan/ Lg(llmn — plloo + llmn — pllcc)ds

(5.6)

e max I/ Lf (s, 2a(5), 2a(s — ) = f(s. p(s), p(s — T))]ds|

e max Lf (s, 2n(s), 2a(s — 7)) = f(s, p(s), p(s — T))Ids

(5.7)

(5.8)

(5.9)

(5.10)

.11
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Using the same argument as in the proof of Theorem 2.1, we obtain

| [lm1 — plloo]

m — < . 5.12
e = pleel = i G (5.12)
Hence,
. . le**|lmy — pllool
lim |||m — < lim —> Qasn — oo. 5.13
A it = pllool < i { |e(1=2Lrb=10) Y02 an| e

This means that lim,,_, o ||m, — p|lcc = 0. The proof of Theorem 5.2 is completed. [

Remark 5.1. Theorem 5.2 generalizes and improves several known results in literature
including the results of Coman et al. [10] and Okeke and Abbas [24].
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