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Abstract. Let f : X — Y be a map between simply connected spaces having the homotopy
of finite type CW-complexes, where H*(Y, Q) is finite dimensional and ¢ : (AV,d) —
(B, d) a Sullivan model of f. We consider (B, d) as a module over AV via the mapping ¢.
Let map(X, Y; f) denote the component of f in the space of mappings from X to Y. In this
paper we show that there is a canonical injection 7.(£2 map(X, Y; f))®Q — HH*(AV; B).
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1. INTRODUCTION

We work in the rational homotopy setting for which the standard reference is [6]. In this
section we fix notation and recall a few facts on the Hochschild cohomology of an algebra.
All vector spaces and algebras are taken over a field k of characteristic 0.

Definition 1. A lower graded vector space V is a direct sum of vector spaces, that is,
V = @;V;, where i € Z. We say that element a € V; is homogeneous of degree i and
we write |a|] = i and V = V, is lower or homologically graded. If V = @;>¢V;, then V
is said to be non negatively graded. In the same way V* = @; V' is called cohomologically
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graded. We use the standard convention V' := V_;. Hence if V = ®i>0 Vi, the dual space of
V is denoted V# = IL Hom(V' k) = [, Hom(V_;, k) has a lower non negative grading.

Definition 2. A morphism of graded vector spaces f : V — W of degree r, is a family of
linear maps f,, : V,, = W,4,.

Let (M, d) be a differential (A, d)-bimodule. The Hochschild cohomology of A with
coefficients in M is defined as Ext e(A, M) where A is an A° = A ® A°”’-module under
the action (a; ® ax)a = (—1)4%2lg,aa,, where a, a;, a; € A.

Let (P,dp) — (A, d) be a semifree resolution of A as an A°-module [5], and (M, dj;) an
Ac¢-differential module. Then H H*(A; M) := Extse(A, M) is the homology of the complex
(Homge(P, M), D), where the differential is defined by

(Df)(x) = dy f(x) — (=DY! f(dpx). (1

In the sequel we work in the category of commutative differential graded algebras (cdga’s
for short). This implies that left (or right) modules have a natural bimodule structure. Let
f : A — B be a morphism of cdga’s. Then B is considered as an A-module by the action
induced by f.

Our aim is to study the structure of H H*(A; B). Let (AV, d) be a Sullivan algebra, and
m:AVRAV,d =d®1+1Qd) — (AV,d) the multiplication. Then there is a quasi
isomorphism

(AV® AV @ AV, D) — (AV,d)
making the following diagram commutative.
AV ® AV, d)——s (AV,d)
>
(AV® AV @ AV, D).
Moreover V" = V"+! and the differential D is defined by
D) =v@®1—-1Qv+a, a c AVRAVR ATV,
and ¢ is the canonical inclusion [6, §15]. The quasi isomorphism
(AV @AV ARV, D)5 (AV, d)

is a semifree resolution of (AV,d) as a AV ® AV-module [5,10]. Therefore, for any A
V-module M, HH*(AV; M) is the homology of the complex

(Homnygav(AV & AV ® AV, M), D),

where the differential is defined by (1). B

We consider the cdga (AV & AV, D) where Dv = dv, D(v) = —S(dv) and S is the
unique derivation on AV ® AV defined by Sv = v and St = 0. It is obtained as a push out
in the diagram below.

(AV @AV, dp— (AV @ AV ® AV, D)

FT

(AV,dp————= (AV @ AV, D).
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Moreover, the composition with m’ yields an isomorphism of complexes
Hom,y(AV @ AV, M) > Homuygay (AV @ AV @ AV, M).

As D(AV @ A"V) C AV ® A"V, hence each (Hom,y(AV @ A"V, M), D) is a sub
cochain complex [8]. This gives a Hodge type decomposition of the Hochschild cohomology

HH*(AV; M) = @20 HH(AV; M)

for any AV -differential module (M, d) [11,7].

Let f : X — Y be a map between simply connected spaces having the homotopy of finite
type CW-complexes and assume that H*(Y, Q) is finite dimensional. Let ¢ : (AV,d) —
(B, d) be a cdga model of f. We consider (B, d) as a module over AV via the mapping ¢.
Denote by map(X, Y; f) the component of f in the space of mappings from X to Y. In this
paper we show the following result.

Theorem 3. There is a canonical injection
(2 map(X,Y; /) @k - HH*(AV; B).
Moreover m (map(X,Y; ) @k= HH(’j)(/\V; B).

The result is a generalization of the inclusion 7, ({2 map(X, X; 1x))® k > HH*(AV; A
V). See [7, Theorem 2] and [9, Theorem 1.1].

2. Lo-MODELS OF MAPPING SPACES

The notion of L, algebra was introduced by Lada [14] and L., models of mapping spaces
were used by Félix et al. in [3,4]. We remind here their definition.

Definition 4. A permutation o € S is called an (i, k — i) shuffle if (1) < --- < o(i) and
o(i+1)<---<o(k)wherei = 1,...,n. For graded objects xi, ..., xi, the Koszul sign
€(0) is determined by

XIA - AXp =€(0)Xg1) A - A Xg (k)
It depends not only of the permutation o but also on degrees of x, ..., x.
Definition 5. An L..-algebra or a strongly homotopy Lie algebra is a graded vector space
L = ®;L; withmaps & :=1[,...,]: L® — L of degree k — 2 such that
(1) ¢ is graded skew symmetric, that is, for a k-permutation o
Li(Xo(1)s - -+ Xo(ky) = sg(o)e(0 )i (X1, ..., Xi),

where sgn(o’) is the sign of o,
(2) There are generalized Jacobi identities

D0 @)= (K1) - Xoi): Xa(itiys - -2 Xoy) = O,
i+j=k+1 o

where the second summation extends to all (i, k — i) shuffles of the symmetric group Sk.
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In particular if £;, = O for k > 3, one recovers the notion of differential graded Lie algebra
(L, d) where [x, y] := £,(x,y) and dx = £;(x).

There is a 1-1 correspondence between L., structures on L and codifferentials d, :
AM(sL) — A" "I(sL) of degree —1 on the coalgebra AsL, such that d> = 0, where
d=di+do+---+d,+...[14].

Definition 6 (//2]). Let (A, u) be a commutative algebra and D : A — A an operator.
Define multi-brackets on A as follows.

F)(a) = Da

Fi@ai,....,ap) = (D@ D@1 ®1—-1Qay)...(a, @1 —1®ay,)).

Then D is called an operator of order n if Fjt' = 0.

There is a generalization of multi-brackets to non commutative algebras that is due to
Akman [1].

Definition 7. A Gerstenhaber algebra is a graded commutative algebra A = @; A; together
with a bracket

Ai®A; — Aiyjy1, a®br {a, b},

such that sL is a graded Lie algebra and the bracket acts like a derivation of algebras. That
is, fora, b,c € A,

(1) {a, b} = —(=1)lelFDUPIHDIR g},
(2) {a., {b, c}} = {{a, b}, c} + (= DWaFDHDLL Hg o},
3) {a, bc} = {a, b}c + (—D)PIa+Dpiq ¢},

Definition 8. A Batalin—Vilkovisky algebra (BV-algebra for short) is a graded commutative
algebra A, together with an operator A : A; — A;,; of order 2 and of square 0.

Any BV-algebra (A, A) is a Gerstenhaber algebra with the bracket defined by
{a, b} = (=D"I(A(ab) — A(@)b — (=1)"la A(b)).

Definition 9 (//3,2]). A commutative BV -algebra is a graded commutative algebra
A = ®;czA; together with an operator D = Zilei such that D?> = 0 and each D, is
an operator of order n and of degree 2n — 3.

From the relation D? = 0, one gets D12 = 0, hence D, is a differential on the algebra A.
Moreover DD, + D, D; = 0, therefore D, induces an action on the homology H.(A, D;)
which induces a BV-algebra structure [13]. If D; = 0 for all i > 3, then (A, D; + D) is
called a differential BV-algebra.

Definition 10. Let ¢ : (A,d) — (B,d) be a morphism of cdga’s. A ¢-derivation
of degree k is a linear mapping 6 : A" — B"* such that 8(ab) = 0(a)p(b) +
(—D¥p(a)0(b). We denote by Der,(A, B; ¢) the vector space of ¢-derivations of degree
n and by Der(A, B; ¢) = @,Der, (A, B; ¢) the Z-graded vector space of all ¢-derivations.
The differential on Der(A, B; ¢) is defined by 80 = d6 — (—1)k0d.
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If A = Band ¢ = 14, then we get the Lie algebra of derivations Der A, where the Lie
bracket is the commutator bracket. If V is finite, then Der(AV) = AV ® V*. We have the
following result for ¢-derivations.

Proposition 11. Let ¢ : (AV,d) — (B, d) be a surjective morphism between cdga’s where
V is finite dimensional and I = Ker ¢. Then Der(AV, B; )= AV /I @ V¥,

Proof. Let {v,..., v} be a basis of V. In Der(AV, B; ¢), we denote by (v;, 1) the
¢-derivation 6; such that 6;(v;) = J;;. We observe that v? corresponds to the derivation
0; = (v;, 1). Let 0 be a ¢-derivation. Then 8(v;) = b;, where b; € B. As ¢ is surjective, there
exist ; € AV such that ¢(a;) = b;. Hence 0 = ) ,a,6; = a; vf. By the first isomorphism
theorem Der(AV, B; ) =AV/IQ V¥, O

Define ]%(A, B; ¢) as follows.

Der(A, B; ¢);, i>1,

Der(4, B: ) = {{9 € Dery(A, B;¢): 60 =0}, i=1.

Let A = AV and 6;,...,6, € ]%(AV, B; ¢) be ¢-derivations of respective degrees
ni, ..., ng, define

Or. .. 0d) = (=" Y N ehpur... Dy, .. Dy )OI 1) - Oy,
i

..... i

where dv = Y vy ...y, 9(j) = ny + --- +ni — 1, and € is the corresponding Koszul sign
of the permutation

(vl,...,vm)—>(vl,...,ﬁil,...,ﬁik,...,vm,vil,...,vik).

We note that LQL ..., 6] is of degree n + - - - + ny — 1. Now define linear maps ¢ of degree
k —2ons~'Der(AV, B; ¢) by

0670 = —s7180,  4i(sTion, ... T = (= D%sT6,, ..., 6,
where ¢, = X0 4 SNk — )16, [4].
Proposition 12 (Lemma 3.3,[4]). If ¢ : AV — B is a Sullivan model of a mapping f : X —

Y between simply connected spaces and V is finite dimensional, then (s 'Der(AV, B; ¢), £)
is an Lo, model of map(X, Y; f).

Theorem 13. Let (AV,d) — (B, d) be a cdga model of map f : X — Y between
1-connected spaces of finite type where Y is finite dimensional.
(1) Then there is a natural isomorphism
I': m(2map(X, Y; f)) ® Q — HH((AV; B),
(2) Moreover the following diagram commutes:
mi(aut; ¥) ® Q —— m(map(X, Y; ) ® Q

| |

HH*(AV; A\ V) ———— HH*(AV; B).
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Proof of the theorem. Before we prove the theorem, we need a generalization of derivations.

Definition 14. Let A be a commutative cochain algebra and M a differential A-module
(considered here as an A-bimodule). A derivation 6 from A to M of degree k is a linear map
0 : A* - M* ¥ such that 8(ab) = 0(a)b + (= DXlab(b).

It is easily seen that if 6 : A — M is derivation and f : M — N a morphism of
A-bimodules, then the composition f o6 : A — N is a derivation.

Let (AV, d) be a Sullivan model of a simply connected space. Define V = sV, that is,
V" = v*tl A Sullivan model of the loop space map(S1 X) is given by (A(V & V), D),
the cdga defined in Section 1. For recall, Dv = dv, Do = —S(dv) where S is the unique
derivation defined by Sv = v and Sv = 0 [6].

Consider the linear map S : (AV,d) - (AV ® V, D) defined Sv = ¥ and extended S as
a derivation in the sense of Definition 14. As S(dv) = —D(Sv), then Sd + DS = 0, then S
is a morphism of differential modules of upper degree —1.

We define a map

@ : Hom,y(AV ® V, B) — Der(AV, B; ¢)

such that @(f) is the following composition mapping
AV —5avev LB

that is, @(f)(v) = f(v).

Lemma 15. The map ® commutes with differentials.

Proof. Let f € Hom,y(AV ® V, AV).

(DF)W) =d(f®) — (=D (D))
=d(f®) + (=D f(sdv)),

hence (S(Df))(v) = d(f () + (=DVI(f(sdv)).
On the other hand

(DB()) = d(S(f) (V) — (=) " PN D(f)(dv)
= d(f(sv) + (=D f(sdv).

Hence & is a morphism of chain complexes. [J

Moreover, there are isomorphisms of vector spaces Hom,y(AV ® V, B)=Hom(V, B)
=Der(AV, B). Hence 9 is bijective. Therefore

H.(s"'Der(AV, B) = HH};,(AV, B) — HH*(AV, B).

Remark 16. It was shown that if L is an L.,-algebra, then As~'L is a BV algebra [2]. It
would be interesting to find a link between the BV »,-algebra As~'L and H H*(AV; B).
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