# Hochschild cohomology of Sullivan algebras and mapping spaces 

J.-B. GatsinZi<br>Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Botswana

Received 3 May 2018; revised 6 July 2018; accepted 26 July 2018
Available online 2 August 2018


#### Abstract

Let $f: X \rightarrow Y$ be a map between simply connected spaces having the homotopy of finite type CW-complexes, where $H^{*}(Y, \mathbb{Q})$ is finite dimensional and $\phi:(\wedge V, d) \rightarrow$ $(B, d)$ a Sullivan model of $f$. We consider $(B, d)$ as a module over $\wedge V$ via the mapping $\phi$. Let $\operatorname{map}(X, Y ; f)$ denote the component of $f$ in the space of mappings from $X$ to $Y$. In this paper we show that there is a canonical injection $\pi_{*}(\Omega \operatorname{map}(X, Y ; f)) \otimes \mathbb{Q} \rightarrow H H^{*}(\wedge V ; B)$.


Keywords: Hochschild cohomology; Mapping space; $L_{\infty}$ algebra
2010 Mathematics Subject Classification: primary 55P62; secondary 54C35

## 1. Introduction

We work in the rational homotopy setting for which the standard reference is [6]. In this section we fix notation and recall a few facts on the Hochschild cohomology of an algebra. All vector spaces and algebras are taken over a field $\mathbb{k}$ of characteristic 0 .

Definition 1. A lower graded vector space $V$ is a direct sum of vector spaces, that is, $V=\oplus_{i} V_{i}$, where $i \in \mathbb{Z}$. We say that element $a \in V_{i}$ is homogeneous of degree $i$ and we write $|a|=i$ and $V=V_{\bullet}$ is lower or homologically graded. If $V=\oplus_{i \geq 0} V_{i}$, then $V$ is said to be non negatively graded. In the same way $V^{\bullet}=\oplus_{i} V^{i}$ is called cohomologically

## E-mail address: gatsinzij@biust.ac.bw.

Peer review under responsibility of King Saud University.


[^0]graded. We use the standard convention $V^{i}:=V_{-i}$. Hence if $V=\oplus_{i \geq 0} V^{i}$, the dual space of $V$ is denoted $V^{\#}=\prod_{i} \operatorname{Hom}\left(V^{i}, \mathbb{k}\right)=\prod_{i} \operatorname{Hom}\left(V_{-i}, \mathbb{k}\right)$ has a lower non negative grading.

Definition 2. A morphism of graded vector spaces $f: V \rightarrow W$ of degree $r$, is a family of linear maps $f_{n}: V_{n} \rightarrow W_{n+r}$.

Let $(M, d)$ be a differential $(A, d)$-bimodule. The Hochschild cohomology of $A$ with coefficients in $M$ is defined as $\operatorname{Ext}_{A^{e}}(A, M)$ where $A$ is an $A^{e}=A \otimes A^{o p}$-module under the action $\left(a_{1} \otimes a_{2}\right) a=(-1)^{|a|\left|a_{2}\right|} a_{1} a a_{2}$, where $a, a_{1}, a_{2} \in A$.

Let $\left(P, d_{P}\right) \rightarrow(A, d)$ be a semifree resolution of $A$ as an $A^{e}$-module [5], and $\left(M, d_{M}\right)$ an $A^{e}$-differential module. Then $H H^{*}(A ; M):=\operatorname{Ext}_{A^{e}}(A, M)$ is the homology of the complex $\left(\operatorname{Hom}_{A^{e}}(P, M), D\right)$, where the differential is defined by

$$
\begin{equation*}
(D f)(x)=d_{M} f(x)-(-1)^{|f|} f\left(d_{P} x\right) \tag{1}
\end{equation*}
$$

In the sequel we work in the category of commutative differential graded algebras (cdga's for short). This implies that left (or right) modules have a natural bimodule structure. Let $f: A \rightarrow B$ be a morphism of cdga's. Then $B$ is considered as an $A$-module by the action induced by $f$.

Our aim is to study the structure of $H H^{*}(A ; B)$. Let $(\wedge V, d)$ be a Sullivan algebra, and $m:\left(\wedge V \otimes \wedge V, d^{\prime}=d \otimes 1+1 \otimes d\right) \rightarrow(\wedge V, d)$ the multiplication. Then there is a quasi isomorphism

$$
(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, D) \rightarrow(\wedge V, d)
$$

making the following diagram commutative.


Moreover $\bar{V}^{n}=V^{n+1}$ and the differential $D$ is defined by

$$
D(\bar{v})=v \otimes 1-1 \otimes v+\alpha, \alpha \in \wedge V \otimes \wedge V \otimes \wedge^{+} \bar{V}
$$

and $l$ is the canonical inclusion $[6, \S 15]$. The quasi isomorphism

$$
(\wedge V \otimes \wedge V \wedge \otimes \bar{V}, D) \xrightarrow{p}(\wedge V, d)
$$

is a semifree resolution of $(\wedge V, d)$ as a $\wedge V \otimes \wedge V$-module [5,10]. Therefore, for any $\wedge$ $V$-module $M, H H^{*}(\wedge V ; M)$ is the homology of the complex
$\left(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, M), D\right)$,
where the differential is defined by (1).
We consider the cdga $(\wedge V \otimes \wedge \bar{V}, \tilde{D})$ where $D v=d v, \tilde{D}(\bar{v})=-S(d v)$ and $S$ is the unique derivation on $\wedge V \otimes \wedge \bar{V}$ defined by $S v=\bar{v}$ and $S \bar{v}=0$. It is obtained as a push out in the diagram below.


Moreover, the composition with $m^{\prime}$ yields an isomorphism of complexes

$$
\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge \bar{V}, M) \xrightarrow{\simeq} \operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, M) .
$$

As $\tilde{D}\left(\wedge V \otimes \wedge^{n} \bar{V}\right) \subset \wedge V \otimes \wedge^{n} \bar{V}$, hence each $\left(\operatorname{Hom}_{\wedge V}\left(\wedge V \otimes \wedge^{n} \bar{V}, M\right), \tilde{D}\right)$ is a sub cochain complex [8]. This gives a Hodge type decomposition of the Hochschild cohomology

$$
H H^{*}(\wedge V ; M)=\oplus_{n \geq 0} H H_{(n)}^{*}(\wedge V ; M)
$$

for any $\wedge V$-differential module $(M, d)$ [11,7].
Let $f: X \rightarrow Y$ be a map between simply connected spaces having the homotopy of finite type CW-complexes and assume that $H^{*}(Y, \mathbb{Q})$ is finite dimensional. Let $\phi:(\wedge V, d) \rightarrow$ $(B, d)$ be a cdga model of $f$. We consider $(B, d)$ as a module over $\wedge V$ via the mapping $\phi$. Denote by $\operatorname{map}(X, Y ; f)$ the component of $f$ in the space of mappings from $X$ to $Y$. In this paper we show the following result.

Theorem 3. There is a canonical injection

$$
\pi_{*}(\Omega \operatorname{map}(X, Y ; f)) \otimes \mathbb{k} \rightarrow H H^{*}(\wedge V ; B)
$$

Moreover $\pi_{*}(\operatorname{map}(X, Y ; f)) \otimes \mathbb{k} \cong H H_{(1)}^{*}(\wedge V ; B)$.
The result is a generalization of the inclusion $\pi_{*}\left(\Omega \operatorname{map}\left(X, X ; 1_{X}\right)\right) \otimes \mathbb{k} \rightarrow H H^{*}(\wedge V ; \wedge$ $V)$ See [7, Theorem 2] and [9, Theorem 1.1].

## 2. $\mathrm{L}_{\infty}$-MODELS OF MAPPING SPACES

The notion of $L_{\infty}$ algebra was introduced by Lada [14] and $L_{\infty}$ models of mapping spaces were used by Félix et al. in [3,4]. We remind here their definition.

Definition 4. A permutation $\sigma \in S_{k}$ is called an $(i, k-i)$ shuffle if $\sigma(1)<\cdots<\sigma(i)$ and $\sigma(i+1)<\cdots<\sigma(k)$ where $i=1, \ldots, n$. For graded objects $x_{1}, \ldots, x_{k}$, the Koszul sign $\epsilon(\sigma)$ is determined by

$$
x_{1} \wedge \cdots \wedge x_{k}=\epsilon(\sigma) x_{\sigma(1)} \wedge \cdots \wedge x_{\sigma(k)}
$$

It depends not only of the permutation $\sigma$ but also on degrees of $x_{1}, \ldots, x_{k}$.

Definition 5. An $L_{\infty}$-algebra or a strongly homotopy Lie algebra is a graded vector space $L=\oplus_{i} L_{i}$ with maps $\ell_{k}:=[, \ldots]:, L^{\otimes k} \rightarrow L$ of degree $k-2$ such that
(1) $\ell_{k}$ is graded skew symmetric, that is, for a $k$-permutation $\sigma$

$$
\ell_{k}\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)=\operatorname{sgn}(\sigma) \epsilon(\sigma) \ell_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

where $\operatorname{sgn}(\sigma)$ is the sign of $\sigma$,
(2) There are generalized Jacobi identities

$$
\sum_{i+j=k+1} \sum_{\sigma} \epsilon(\sigma)(-1)^{i(k-i)} \ell_{j}\left(\ell_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right), x_{\sigma(i+1)}, \ldots, x_{\sigma(k)}\right)=0,
$$

where the second summation extends to all $(i, k-i)$ shuffles of the symmetric group $S_{k}$.

In particular if $\ell_{k}=0$ for $k \geq 3$, one recovers the notion of differential graded Lie algebra $(L, d)$ where $[x, y]:=\ell_{2}(x, y)$ and $d x=\ell_{1}(x)$.

There is a 1-1 correspondence between $\mathrm{L}_{\infty}$ structures on $L$ and codifferentials $d_{n}$ : $\wedge^{m}(s L) \rightarrow \wedge^{m-n+1}(s L)$ of degree -1 on the coalgebra $\wedge s L$, such that $d^{2}=0$, where $d=d_{1}+d_{2}+\cdots+d_{n}+\ldots[14]$.

Definition 6 ([12]). Let $(A, \mu)$ be a commutative algebra and $D: A \rightarrow A$ an operator. Define multi-brackets on $A$ as follows.

$$
\begin{aligned}
& F_{D}^{1}(a)=D a \\
& F_{D}^{n}\left(a_{1}, \ldots, a_{n}\right)=\mu\left((D \otimes 1)\left(a_{1} \otimes 1-1 \otimes a_{1}\right) \ldots\left(a_{n} \otimes 1-1 \otimes a_{n}\right)\right)
\end{aligned}
$$

Then $D$ is called an operator of order $n$ if $F_{D}^{n+1}=0$.
There is a generalization of multi-brackets to non commutative algebras that is due to Akman [1].

Definition 7. A Gerstenhaber algebra is a graded commutative algebra $A=\oplus_{i} A_{i}$ together with a bracket

$$
A_{i} \otimes A_{j} \rightarrow A_{i+j+1}, \quad a \otimes b \mapsto\{a, b\}
$$

such that $s L$ is a graded Lie algebra and the bracket acts like a derivation of algebras. That is, for $a, b, c \in A$,
(1) $\{a, b\}=-(-1)^{(|a|+1)(|b|+1)}\{b, a\}$,
(2) $\{a,\{b, c\}\}=\{\{a, b\}, c\}+(-1)^{(|a|+1)(|b|+1)}\{b,\{a, c\}\}$,
(3) $\{a, b c\}=\{a, b\} c+(-1)^{|b||a|+1)} b\{a, c\}$.

Definition 8. A Batalin-Vilkovisky algebra (BV-algebra for short) is a graded commutative algebra $A$, together with an operator $\Delta: A_{i} \rightarrow A_{i+1}$ of order 2 and of square 0 .

Any BV-algebra $(A, \Delta)$ is a Gerstenhaber algebra with the bracket defined by

$$
\{a, b\}=(-1)^{|a|}\left(\Delta(a b)-\Delta(a) b-(-1)^{|a|} a \Delta(b)\right) .
$$

Definition 9 ([13,2]). A commutative $\mathrm{BV}_{\infty}$-algebra is a graded commutative algebra $A=\oplus_{i \in \mathbb{Z}} A_{i}$ together with an operator $D=\sum_{i \geq 1} D_{i}$ such that $D^{2}=0$ and each $D_{n}$ is an operator of order $n$ and of degree $2 n-3$.

From the relation $D^{2}=0$, one gets $D_{1}^{2}=0$, hence $D_{1}$ is a differential on the algebra $A$. Moreover $D_{1} D_{2}+D_{2} D_{1}=0$, therefore $D_{2}$ induces an action on the homology $H_{*}\left(A, D_{1}\right)$ which induces a BV -algebra structure [13]. If $D_{i}=0$ for all $i \geq 3$, then $\left(A, D_{1}+D_{2}\right)$ is called a differential BV-algebra.

Definition 10. Let $\phi:(A, d) \rightarrow(B, d)$ be a morphism of cdga's. A $\phi$-derivation of degree $k$ is a linear mapping $\theta: A^{n} \rightarrow B^{n-k}$ such that $\theta(a b)=\theta(a) \phi(b)+$ $(-1)^{k|a|} \phi(a) \theta(b)$. We denote by $\operatorname{Der}_{n}(A, B ; \phi)$ the vector space of $\phi$-derivations of degree $n$ and by $\operatorname{Der}(A, B ; \phi)=\oplus_{n} \operatorname{Der}_{n}(A, B ; \phi)$ the $\mathbb{Z}$-graded vector space of all $\phi$-derivations. The differential on $\operatorname{Der}(A, B ; \phi)$ is defined by $\delta \theta=d \theta-(-1)^{k} \theta d$.

If $A=B$ and $\phi=1_{A}$, then we get the Lie algebra of derivations Der $A$, where the Lie bracket is the commutator bracket. If $V$ is finite, then $\operatorname{Der}(\wedge V) \cong \wedge V \otimes V^{\#}$. We have the following result for $\phi$-derivations.

Proposition 11. Let $\phi:(\wedge V, d) \rightarrow(B, d)$ be a surjective morphism between cdga's where $V$ is finite dimensional and $I=\operatorname{Ker} \phi$. Then $\operatorname{Der}(\wedge V, B ; \phi) \cong \wedge V / I \otimes V^{\#}$.

Proof. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of $V$. In $\operatorname{Der}(\wedge V, B ; \phi)$, we denote by $\left(v_{i}, 1\right)$ the $\phi$-derivation $\theta_{i}$ such that $\theta_{i}\left(v_{i}\right)=\delta_{i j}$. We observe that $v_{i}^{\#}$ corresponds to the derivation $\theta_{i}=\left(v_{i}, 1\right)$. Let $\theta$ be a $\phi$-derivation. Then $\theta\left(v_{i}\right)=b_{i}$, where $b_{i} \in B$. As $\phi$ is surjective, there exist $a_{i} \in \wedge V$ such that $\phi\left(a_{i}\right)=b_{i}$. Hence $\theta=\sum_{i} a_{i} \theta_{i}=a_{i} v_{i}^{\#}$. By the first isomorphism theorem $\operatorname{Der}(\wedge V, B ; \phi) \cong \wedge V / I \otimes V^{\#}$.

Define $\widetilde{\operatorname{Der}}(A, B ; \phi)$ as follows.

$$
\widetilde{\operatorname{Der}}(A, B ; \phi)_{i}= \begin{cases}\operatorname{Der}(A, B ; \phi)_{i}, & i>1, \\ \left\{\theta \in \operatorname{Der}_{1}(A, B ; \phi): \delta \theta=0\right\}, & i=1\end{cases}
$$

Let $A=\wedge V$ and $\theta_{1}, \ldots, \theta_{k} \in \widetilde{\operatorname{Der}}(\wedge V, B ; \phi)$ be $\phi$-derivations of respective degrees $n_{1}, \ldots, n_{k}$, define

$$
\left[\theta_{1}, \ldots, \theta_{k}\right](v)=(-1)^{\eta(k)} \sum \sum_{i_{1}, \ldots, i_{k}} \epsilon \phi\left(v_{1} \ldots \hat{v}_{i_{1}} \ldots \hat{v}_{i_{k}} \ldots v_{m}\right) \theta_{1}\left(v_{i_{1}}\right) \ldots \theta_{k}\left(v_{i_{k}}\right)
$$

where $d v=\sum v_{1} \ldots v_{m}, \eta(j)=n_{1}+\cdots+n_{k}-1$, and $\epsilon$ is the corresponding Koszul sign of the permutation

$$
\left(v_{1}, \ldots, v_{m}\right) \rightarrow\left(v_{1}, \ldots, \hat{v}_{i_{1}}, \ldots, \hat{v}_{i_{k}}, \ldots, v_{m}, v_{i_{1}}, \ldots, v_{i_{k}}\right)
$$

We note that $\left[\theta_{1}, \ldots, \theta_{k}\right]$ is of degree $n_{1}+\cdots+n_{k}-1$. Now define linear maps $\ell_{k}$ of degree $k-2$ on $s^{-1} \widetilde{\operatorname{Der}}(\wedge V, B ; \phi)$ by

$$
\ell_{1}\left(s^{-1} \theta\right)=-s^{-1} \delta \theta, \quad \ell_{k}\left(s^{-1} \theta_{1}, \ldots, s^{-1} \theta_{k}\right)=(-1)^{\epsilon_{k}} s^{-1}\left[\theta_{1}, \ldots, \theta_{k}\right]
$$

where $\epsilon_{k}=\frac{k(k-1)}{2}+\sum_{i=1}^{k-1}(k-i)\left|\theta_{i}\right|$ [4].
Proposition 12 (Lemma 3.3,[4]). If $\phi: \wedge V \rightarrow B$ is a Sullivan model of a mapping $f: X \rightarrow$ $Y$ between simply connected spaces and $V$ is finite dimensional, then $\left(s^{-1} \widetilde{\operatorname{Der}}(\wedge V, B ; \phi), \ell_{k}\right)$ is an $L_{\infty}$ model of $\operatorname{map}(X, Y ; f)$.

Theorem 13. Let $(\wedge V, d) \rightarrow(B, d)$ be a cdga model of map $f: X \rightarrow Y$ between 1 -connected spaces of finite type where $Y$ is finite dimensional.
(1) Then there is a natural isomorphism

$$
\Gamma: \pi_{*}(\Omega \operatorname{map}(X, Y ; f)) \otimes \mathbb{Q} \rightarrow H H_{(1)}^{*}(\wedge V ; B),
$$

(2) Moreover the following diagram commutes:


Proof of the theorem. Before we prove the theorem, we need a generalization of derivations.
Definition 14. Let $A$ be a commutative cochain algebra and $M$ a differential $A$-module (considered here as an $A$-bimodule). A derivation $\theta$ from $A$ to $M$ of degree $k$ is a linear map $\theta: A^{*} \rightarrow M^{*-k}$ such that $\theta(a b)=\theta(a) b+(-1)^{k|a|} a \theta(b)$.

It is easily seen that if $\theta: A \rightarrow M$ is derivation and $f: M \rightarrow N$ a morphism of $A$-bimodules, then the composition $f \circ \theta: A \rightarrow N$ is a derivation.

Let $(\wedge V, d)$ be a Sullivan model of a simply connected space. Define $\bar{V}=s V$, that is, $\bar{V}^{n}=V^{n+1}$. A Sullivan model of the loop space $\operatorname{map}\left(S^{1}, X\right)$ is given by $(\wedge(V \oplus \bar{V}), \tilde{D})$, the cdga defined in Section 1. For recall, $\tilde{D} v=d v, \tilde{D} \bar{v}=-S(d v)$ where $S$ is the unique derivation defined by $S v=\bar{v}$ and $S \bar{v}=0$ [6].

Consider the linear map $S:(\wedge V, d) \rightarrow(\wedge V \otimes \bar{V}, D)$ defined $S v=\bar{v}$ and extended $S$ as a derivation in the sense of Definition 14. As $S(d v)=-D(S v)$, then $S d+D S=0$, then $S$ is a morphism of differential modules of upper degree -1 .

We define a map

$$
\Phi: \operatorname{Hom}_{\wedge V}(\wedge V \otimes \bar{V}, B) \rightarrow \operatorname{Der}(\wedge V, B ; \phi)
$$

such that $\Phi(f)$ is the following composition mapping

$$
\wedge V \xrightarrow{S} \wedge V \otimes \bar{V} \xrightarrow{f} B
$$

that is, $\Phi(f)(v)=f(\bar{v})$.
Lemma 15. The map $\Phi$ commutes with differentials.
Proof. Let $f \in \operatorname{Hom}_{\wedge V}(\wedge V \otimes \bar{V}, \wedge V)$.

$$
\begin{aligned}
(D f)(\bar{v}) & =d(f(\bar{v}))-(-1)^{|f|} f(D(\bar{v})) \\
& =d(f(\bar{v}))+(-1)^{|f|}(f(s d v)),
\end{aligned}
$$

hence $(\Phi(D f))(v)=d(f(\bar{v}))+(-1)^{|f|}(f(s d v))$.
On the other hand

$$
\begin{aligned}
(D \Phi(f))(v) & =d(\Phi(f)(v))-(-1)^{|\Phi(f)|} \Phi(f)(d v) \\
& =d(f(s v))+(-1)^{|f|} f(s d v) .
\end{aligned}
$$

Hence $\Phi$ is a morphism of chain complexes.
Moreover, there are isomorphisms of vector spaces $\operatorname{Hom}_{\wedge V}(\wedge V \otimes \bar{V}, B) \cong \operatorname{Hom}(\bar{V}, B)$ $\cong \operatorname{Der}(\wedge V, B)$. Hence $\Phi$ is bijective. Therefore

$$
H_{*}\left(s^{-1} \operatorname{Der}(\wedge V, B)\right) \cong H H_{(1)}^{*}(\wedge V, B) \mapsto H H^{*}(\wedge V, B)
$$

Remark 16. It was shown that if $L$ is an $\mathrm{L}_{\infty}$-algebra, then $\wedge s^{-1} L$ is a $\mathrm{BV}_{\infty}$ algebra [2]. It would be interesting to find a link between the $\mathrm{BV}_{\infty}$-algebra $\wedge s^{-1} L$ and $H H^{*}(\wedge V ; B)$.

## Acknowledgement

Partially supported by the Max Planck Institute for Mathematics, Bonn, Germany.

## References

[1] F. Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra 120 (2) (1997) 105-141.
[2] C. Braun, Lazarev, Homotopy BV algebras in Poisson Geometry, Trans. Moscow Math. Soc. (2013) 217-227.
[3] U. Buijs, Y. Félix, A. Murillo, $L_{\infty}$ models of based mapping spaces, J. Math. Soc. Japan 63 (2011) 503-524.
[4] U. Buijs, Y. Félix, A. Murillo, $L_{\infty}$ rational homotopy of mapping spaces, Rev. Mat. Complut. 26 (2013) 573-588.
[5] Y. Félix, S. Halperin, J.-C. Thomas, Differential graded algebras in topology, in: I.M. James (Ed.), Handbook of Algebraic Topology, North-Holland, 1995, pp. 829-865.
[6] Y. Félix, S. Halperin, J.-C. Thomas, Rational Homotopy Theory, in: Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New-York, 2001.
[7] Y. Félix, J.-C. Thomas, Monoid of self equivalences and free loop spaces, Proc. Amer. Math. Soc. 132 (2004) 305-312.
[8] J.-B. Gatsinzi, Derivations, Hochschild cohomology and the Gottlieb group, in: Y. Félix, G. Lupton, S. Smith (Eds.), Homotopy Theory of Function Spaces and Related Topics, in: Contemporary Mathematics, vol. 519, American Mathematical Society, Providence, 2010, pp. 93-104.
[9] J.-B. Gatsinzi, Brackets in the free loop space homology of some homogeneous spaces, Afr. Diaspora J. Math. 16 (2013) 28-36.
[10] J.-B. Gatsinzi, Hochschild cohomology of a Sullivan algebra, Mediterr. J. Math. 13 (2016) 3765-3776.
[11] M. Gerstenhaber, S.D. Schack, A Hodge-type decomposition of the cohomology of a commutative algebra, J. Pure Appl. Algebra 48 (1987) 229-247.
[12] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Astérisque, in: Numéro Hors Série, 1985, pp. 257-271.
[13] O. Kravchenko, Deformations of Batalin-Vilkovisky algebras, in: Poisson Geometry (Warsaw, 1998), in: Banach Center Publ., vol. 51, Polish Acad. Sci. Inst. Math., Warsaw, 2000, pp. 131-139.
[14] T. Lada, M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 32 (1995) 1083-1104.


[^0]:    https://doi.org/10.1016/j.ajmsc.2018.07.002
    1319-5166 © 2018 The Author. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

