

Hochschild cohomology of Sullivan algebras and mapping spaces

J.-B. GATSINZI

Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Botswana

Received 3 May 2018; revised 6 July 2018; accepted 26 July 2018 Available online 2 August 2018

Abstract. Let $f: X \to Y$ be a map between simply connected spaces having the homotopy of finite type CW-complexes, where $H^*(Y, \mathbb{Q})$ is finite dimensional and $\phi : (\land V, d) \to$ (B, d) a Sullivan model of f. We consider (B, d) as a module over $\land V$ via the mapping ϕ . Let map(X, Y; f) denote the component of f in the space of mappings from X to Y. In this paper we show that there is a canonical injection $\pi_*(\Omega \max(X, Y; f)) \otimes \mathbb{Q} \to HH^*(\land V; B)$.

Keywords: Hochschild cohomology; Mapping space; L_{∞} algebra

2010 Mathematics Subject Classification: primary 55P62; secondary 54C35

1. INTRODUCTION

We work in the rational homotopy setting for which the standard reference is [6]. In this section we fix notation and recall a few facts on the Hochschild cohomology of an algebra. All vector spaces and algebras are taken over a field k of characteristic 0.

Definition 1. A lower graded vector space V is a direct sum of vector spaces, that is, $V = \bigoplus_i V_i$, where $i \in \mathbb{Z}$. We say that element $a \in V_i$ is homogeneous of degree i and we write |a| = i and $V = V_{\bullet}$ is lower or homologically graded. If $V = \bigoplus_{i \ge 0} V_i$, then V is said to be non negatively graded. In the same way $V^{\bullet} = \bigoplus_i V^i$ is called cohomologically

E-mail address: gatsinzij@biust.ac.bw. Peer review under responsibility of King Saud University.

https://doi.org/10.1016/j.ajmsc.2018.07.002

^{1319-5166 © 2018} The Author. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

graded. We use the standard convention $V^i := V_{-i}$. Hence if $V = \bigoplus_{i \ge 0} V^i$, the dual space of V is denoted $V^{\#} = \prod_i \operatorname{Hom}(V^i, \Bbbk) = \prod_i \operatorname{Hom}(V_{-i}, \Bbbk)$ has a lower non negative grading.

Definition 2. A morphism of graded vector spaces $f : V \to W$ of degree r, is a family of linear maps $f_n : V_n \to W_{n+r}$.

Let (M, d) be a differential (A, d)-bimodule. The Hochschild cohomology of A with coefficients in M is defined as $\operatorname{Ext}_{A^e}(A, M)$ where A is an $A^e = A \otimes A^{op}$ -module under the action $(a_1 \otimes a_2)a = (-1)^{|a| |a_2|}a_1aa_2$, where $a, a_1, a_2 \in A$.

Let $(P, d_P) \rightarrow (A, d)$ be a semifree resolution of A as an A^e -module [5], and (M, d_M) an A^e -differential module. Then $HH^*(A; M) := \text{Ext}_{A^e}(A, M)$ is the homology of the complex (Hom_{A^e}(P, M), D), where the differential is defined by

$$(Df)(x) = d_M f(x) - (-1)^{|f|} f(d_P x).$$
(1)

In the sequel we work in the category of commutative differential graded algebras (cdga's for short). This implies that left (or right) modules have a natural bimodule structure. Let $f : A \rightarrow B$ be a morphism of cdga's. Then *B* is considered as an *A*-module by the action induced by *f*.

Our aim is to study the structure of $HH^*(A; B)$. Let $(\wedge V, d)$ be a Sullivan algebra, and $m : (\wedge V \otimes \wedge V, d' = d \otimes 1 + 1 \otimes d) \rightarrow (\wedge V, d)$ the multiplication. Then there is a quasi isomorphism

 $(\land V \otimes \land V \otimes \land \overline{V}, D) \rightarrow (\land V, d)$

making the following diagram commutative.

Moreover $\overline{V}^n = V^{n+1}$ and the differential D is defined by

 $D(\bar{v}) = v \otimes 1 - 1 \otimes v + \alpha, \ \alpha \in \wedge V \otimes \wedge V \otimes \wedge^+ \bar{V},$

and ι is the canonical inclusion [6, §15]. The quasi isomorphism

$$(\wedge V \otimes \wedge V \wedge \otimes \overline{V}, D) \xrightarrow{p} (\wedge V, d)$$

is a semifree resolution of $(\land V, d)$ as a $\land V \otimes \land V$ -module [5,10]. Therefore, for any $\land V$ -module $M, HH^*(\land V; M)$ is the homology of the complex

 $(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \overline{V}, M), D),$

where the differential is defined by (1).

We consider the cdga $(\wedge V \otimes \overline{N}, \tilde{D})$ where Dv = dv, $\tilde{D}(\bar{v}) = -S(dv)$ and S is the unique derivation on $\wedge V \otimes \overline{N}$ defined by $Sv = \bar{v}$ and $S\bar{v} = 0$. It is obtained as a push out in the diagram below.

Moreover, the composition with m' yields an isomorphism of complexes

 $\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge \overline{V}, M) \xrightarrow{\simeq} \operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \overline{V}, M).$

As $\tilde{D}(\wedge V \otimes \wedge^n \bar{V}) \subset \wedge V \otimes \wedge^n \bar{V}$, hence each $(\text{Hom}_{\wedge V}(\wedge V \otimes \wedge^n \bar{V}, M), \tilde{D})$ is a sub cochain complex [8]. This gives a Hodge type decomposition of the Hochschild cohomology

$$HH^*(\wedge V; M) = \bigoplus_{n>0} HH^*_{(n)}(\wedge V; M)$$

for any $\wedge V$ -differential module (M, d) [11,7].

Let $f : X \to Y$ be a map between simply connected spaces having the homotopy of finite type CW-complexes and assume that $H^*(Y, \mathbb{Q})$ is finite dimensional. Let $\phi : (\wedge V, d) \to (B, d)$ be a cdga model of f. We consider (B, d) as a module over $\wedge V$ via the mapping ϕ . Denote by map(X, Y; f) the component of f in the space of mappings from X to Y. In this paper we show the following result.

Theorem 3. There is a canonical injection

 $\pi_*(\Omega \operatorname{map}(X, Y; f)) \otimes \Bbbk \to HH^*(\wedge V; B).$

Moreover $\pi_*(\operatorname{map}(X, Y; f)) \otimes \Bbbk \cong HH^*_{(1)}(\wedge V; B).$

The result is a generalization of the inclusion $\pi_*(\Omega \operatorname{map}(X, X; 1_X)) \otimes \mathbb{k} \to HH^*(\wedge V; \wedge V)$. See [7, Theorem 2] and [9, Theorem 1.1].

2. L_{∞} -models of mapping spaces

The notion of L_{∞} algebra was introduced by Lada [14] and L_{∞} models of mapping spaces were used by Félix et al. in [3,4]. We remind here their definition.

Definition 4. A permutation $\sigma \in S_k$ is called an (i, k - i) shuffle if $\sigma(1) < \cdots < \sigma(i)$ and $\sigma(i + 1) < \cdots < \sigma(k)$ where $i = 1, \dots, n$. For graded objects x_1, \dots, x_k , the Koszul sign $\epsilon(\sigma)$ is determined by

 $x_1 \wedge \cdots \wedge x_k = \epsilon(\sigma) x_{\sigma(1)} \wedge \cdots \wedge x_{\sigma(k)}.$

It depends not only of the permutation σ but also on degrees of x_1, \ldots, x_k .

Definition 5. An L_{∞} -algebra or a strongly homotopy Lie algebra is a graded vector space $L = \bigoplus_i L_i$ with maps $\ell_k := [, ...,] : L^{\otimes k} \to L$ of degree k - 2 such that

(1) ℓ_k is graded skew symmetric, that is, for a k-permutation σ

$$\ell_k(x_{\sigma(1)},\ldots,x_{\sigma(k)}) = \operatorname{sgn}(\sigma)\epsilon(\sigma)\ell_k(x_1,\ldots,x_k),$$

where $sgn(\sigma)$ is the sign of σ ,

(2) There are generalized Jacobi identities

$$\sum_{i+j=k+1}\sum_{\sigma}\epsilon(\sigma)(-1)^{i(k-i)}\ell_j(\ell_i(x_{\sigma(1)},\ldots,x_{\sigma(i)}),x_{\sigma(i+1)},\ldots,x_{\sigma(k)})=0,$$

where the second summation extends to all (i, k-i) shuffles of the symmetric group S_k .

In particular if $\ell_k = 0$ for $k \ge 3$, one recovers the notion of differential graded Lie algebra (L, d) where $[x, y] := \ell_2(x, y)$ and $dx = \ell_1(x)$.

There is a 1-1 correspondence between L_{∞} structures on L and codifferentials d_n : $\wedge^m(sL) \rightarrow \wedge^{m-n+1}(sL)$ of degree -1 on the coalgebra $\wedge sL$, such that $d^2 = 0$, where $d = d_1 + d_2 + \cdots + d_n + \cdots + 14$].

Definition 6 (*[12]*). Let (A, μ) be a commutative algebra and $D : A \to A$ an operator. Define multi-brackets on A as follows.

$$F_D^1(a) = Da$$

$$F_D^n(a_1, \dots, a_n) = \mu((D \otimes 1)(a_1 \otimes 1 - 1 \otimes a_1) \dots (a_n \otimes 1 - 1 \otimes a_n)).$$

Then D is called an operator of order n if $F_D^{n+1} = 0$.

There is a generalization of multi-brackets to non commutative algebras that is due to Akman [1].

Definition 7. A Gerstenhaber algebra is a graded commutative algebra $A = \bigoplus_i A_i$ together with a bracket

$$A_i \otimes A_j \to A_{i+j+1}, \quad a \otimes b \mapsto \{a, b\},\$$

such that *sL* is a graded Lie algebra and the bracket acts like a derivation of algebras. That is, for $a, b, c \in A$,

(1) $\{a, b\} = -(-1)^{(|a|+1)(|b|+1)} \{b, a\},\$

(2) $\{a, \{b, c\}\} = \{\{a, b\}, c\} + (-1)^{(|a|+1)(|b|+1)} \{b, \{a, c\}\},\$

(3) $\{a, bc\} = \{a, b\}c + (-1)^{|b|(|a|+1)}b\{a, c\}.$

Definition 8. A Batalin–Vilkovisky algebra (BV-algebra for short) is a graded commutative algebra A, together with an operator $\Delta : A_i \to A_{i+1}$ of order 2 and of square 0.

Any BV-algebra (A, Δ) is a Gerstenhaber algebra with the bracket defined by

$$\{a, b\} = (-1)^{|a|} (\Delta(ab) - \Delta(a)b - (-1)^{|a|} a \Delta(b)).$$

Definition 9 ([13,2]). A commutative BV_{∞} -algebra is a graded commutative algebra $A = \bigoplus_{i \in \mathbb{Z}} A_i$ together with an operator $D = \sum_{i \ge 1} D_i$ such that $D^2 = 0$ and each D_n is an operator of order *n* and of degree 2n - 3.

From the relation $D^2 = 0$, one gets $D_1^2 = 0$, hence D_1 is a differential on the algebra A. Moreover $D_1D_2 + D_2D_1 = 0$, therefore D_2 induces an action on the homology $H_*(A, D_1)$ which induces a BV-algebra structure [13]. If $D_i = 0$ for all $i \ge 3$, then $(A, D_1 + D_2)$ is called a differential BV-algebra.

Definition 10. Let ϕ : $(A, d) \rightarrow (B, d)$ be a morphism of cdga's. A ϕ -derivation of degree k is a linear mapping θ : $A^n \rightarrow B^{n-k}$ such that $\theta(ab) = \theta(a)\phi(b) + (-1)^{k|a|}\phi(a)\theta(b)$. We denote by $\text{Der}_n(A, B; \phi)$ the vector space of ϕ -derivations of degree n and by $\text{Der}(A, B; \phi) = \bigoplus_n \text{Der}_n(A, B; \phi)$ the \mathbb{Z} -graded vector space of all ϕ -derivations. The differential on $\text{Der}(A, B; \phi)$ is defined by $\delta\theta = d\theta - (-1)^k \theta d$.

126

If A = B and $\phi = 1_A$, then we get the Lie algebra of derivations Der A, where the Lie bracket is the commutator bracket. If V is finite, then $Der(\wedge V) \cong \wedge V \otimes V^{\#}$. We have the following result for ϕ -derivations.

Proposition 11. Let $\phi : (\land V, d) \rightarrow (B, d)$ be a surjective morphism between cdga's where V is finite dimensional and $I = \text{Ker } \phi$. Then $\text{Der}(\land V, B; \phi) \cong \land V/I \otimes V^{\#}$.

Proof. Let $\{v_1, \ldots, v_k\}$ be a basis of V. In $\text{Der}(\wedge V, B; \phi)$, we denote by $(v_i, 1)$ the ϕ -derivation θ_i such that $\theta_i(v_i) = \delta_{ij}$. We observe that $v_i^{\#}$ corresponds to the derivation $\theta_i = (v_i, 1)$. Let θ be a ϕ -derivation. Then $\theta(v_i) = b_i$, where $b_i \in B$. As ϕ is surjective, there exist $a_i \in \wedge V$ such that $\phi(a_i) = b_i$. Hence $\theta = \sum_i a_i \theta_i = a_i v_i^{\#}$. By the first isomorphism theorem $\text{Der}(\wedge V, B; \phi) \cong \wedge V/I \otimes V^{\#}$. \Box

Define $\widetilde{\text{Der}}(A, B; \phi)$ as follows.

$$\widetilde{\operatorname{Der}}(A, B; \phi)_i = \begin{cases} \operatorname{Der}(A, B; \phi)_i, & i > 1, \\ \{\theta \in \operatorname{Der}_1(A, B; \phi) : \delta\theta = 0\}, & i = 1. \end{cases}$$

Let $A = \wedge V$ and $\theta_1, \ldots, \theta_k \in \widetilde{\text{Der}}(\wedge V, B; \phi)$ be ϕ -derivations of respective degrees n_1, \ldots, n_k , define

$$[\theta_1,\ldots,\theta_k](v)=(-1)^{\eta(k)}\sum_{i_1,\ldots,i_k}\epsilon\phi(v_1\ldots\hat{v}_{i_1}\ldots\hat{v}_{i_k}\ldots v_m)\theta_1(v_{i_1})\ldots\theta_k(v_{i_k}),$$

where $dv = \sum v_1 \dots v_m$, $\eta(j) = n_1 + \dots + n_k - 1$, and ϵ is the corresponding Koszul sign of the permutation

$$(v_1,\ldots,v_m) \rightarrow (v_1,\ldots,\hat{v}_{i_1},\ldots,\hat{v}_{i_k},\ldots,v_m,v_{i_1},\ldots,v_{i_k})$$

We note that $[\theta_1, \ldots, \theta_k]$ is of degree $n_1 + \cdots + n_k - 1$. Now define linear maps ℓ_k of degree k - 2 on $s^{-1} Der(\wedge V, B; \phi)$ by

$$\ell_1(s^{-1}\theta) = -s^{-1}\delta\theta, \quad \ell_k(s^{-1}\theta_1, \dots, s^{-1}\theta_k) = (-1)^{\epsilon_k}s^{-1}[\theta_1, \dots, \theta_k],$$

where $\epsilon_k = \frac{k(k-1)}{2} + \sum_{i=1}^{k-1} (k-i)|\theta_i|$ [4].

Proposition 12 (Lemma 3.3,[4]). If $\phi : \wedge V \to B$ is a Sullivan model of a mapping $f : X \to Y$ between simply connected spaces and V is finite dimensional, then $(s^{-1}\widetilde{\text{Der}}(\wedge V, B; \phi), \ell_k)$ is an L_{∞} model of map(X, Y; f).

Theorem 13. Let $(\land V, d) \rightarrow (B, d)$ be a cdga model of map $f : X \rightarrow Y$ between *1*-connected spaces of finite type where Y is finite dimensional.

(1) Then there is a natural isomorphism

$$\Gamma: \pi_*(\Omega \operatorname{map}(X, Y; f)) \otimes \mathbb{Q} \to HH^*_{(1)}(\wedge V; B),$$

(2) Moreover the following diagram commutes:

Proof of the theorem. Before we prove the theorem, we need a generalization of derivations.

Definition 14. Let *A* be a commutative cochain algebra and *M* a differential *A*-module (considered here as an *A*-bimodule). A derivation θ from *A* to *M* of degree *k* is a linear map $\theta : A^* \to M^{*-k}$ such that $\theta(ab) = \theta(a)b + (-1)^{k|a|}a\theta(b)$.

It is easily seen that if $\theta : A \to M$ is derivation and $f : M \to N$ a morphism of *A*-bimodules, then the composition $f \circ \theta : A \to N$ is a derivation.

Let $(\wedge V, d)$ be a Sullivan model of a simply connected space. Define $\overline{V} = sV$, that is, $\overline{V}^n = V^{n+1}$. A Sullivan model of the loop space map (S^1, X) is given by $(\wedge (V \oplus \overline{V}), \widetilde{D})$, the cdga defined in Section 1. For recall, $\widetilde{D}v = dv$, $\widetilde{D}\overline{v} = -S(dv)$ where S is the unique derivation defined by $Sv = \overline{v}$ and $S\overline{v} = 0$ [6].

Consider the linear map $S : (\land V, d) \rightarrow (\land V \otimes \overline{V}, D)$ defined $Sv = \overline{v}$ and extended S as a derivation in the sense of Definition 14. As S(dv) = -D(Sv), then Sd + DS = 0, then S is a morphism of differential modules of upper degree -1.

We define a map

$$\Phi: \operatorname{Hom}_{\wedge V}(\wedge V \otimes \overline{V}, B) \to \operatorname{Der}(\wedge V, B; \phi)$$

such that $\Phi(f)$ is the following composition mapping

 $\wedge V \xrightarrow{S} \wedge V \otimes \bar{V} \xrightarrow{f} B,$

that is, $\Phi(f)(v) = f(\bar{v})$.

Lemma 15. The map Φ commutes with differentials.

Proof. Let $f \in \operatorname{Hom}_{\wedge V}(\wedge V \otimes \overline{V}, \wedge V)$.

 $\begin{aligned} (Df)(\bar{v}) &= d(f(\bar{v})) - (-1)^{|f|} f(D(\bar{v})) \\ &= d(f(\bar{v})) + (-1)^{|f|} (f(sdv)), \end{aligned}$

hence $(\Phi(Df))(v) = d(f(\bar{v})) + (-1)^{|f|}(f(sdv)).$

On the other hand

$$(D\Phi(f))(v) = d(\Phi(f)(v)) - (-1)^{|\Phi(f)|} \Phi(f)(dv) = d(f(sv)) + (-1)^{|f|} f(sdv).$$

Hence Φ is a morphism of chain complexes. \Box

Moreover, there are isomorphisms of vector spaces $\operatorname{Hom}_{\wedge V}(\wedge V \otimes \overline{V}, B) \cong \operatorname{Hom}(\overline{V}, B)$ $\cong \operatorname{Der}(\wedge V, B)$. Hence Φ is bijective. Therefore

$$H_*(s^{-1}\operatorname{Der}(\wedge V, B)) \cong HH^*_{(1)}(\wedge V, B) \rightarrow HH^*(\wedge V, B).$$

Remark 16. It was shown that if *L* is an L_{∞} -algebra, then $\wedge s^{-1}L$ is a BV_{∞} algebra [2]. It would be interesting to find a link between the BV_{∞}-algebra $\wedge s^{-1}L$ and $HH^*(\wedge V; B)$.

ACKNOWLEDGEMENT

Partially supported by the Max Planck Institute for Mathematics, Bonn, Germany.

REFERENCES

- F. Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra 120 (2) (1997) 105–141.
- [2] C. Braun, Lazarev, Homotopy BV algebras in Poisson Geometry, Trans. Moscow Math. Soc. (2013) 217–227.
- [3] U. Buijs, Y. Félix, A. Murillo, L_{∞} models of based mapping spaces, J. Math. Soc. Japan 63 (2011) 503–524.
- [4] U. Buijs, Y. Félix, A. Murillo, L_{∞} rational homotopy of mapping spaces, Rev. Mat. Complut. 26 (2013) 573–588.
- [5] Y. Félix, S. Halperin, J.-C. Thomas, Differential graded algebras in topology, in: I.M. James (Ed.), Handbook of Algebraic Topology, North-Holland, 1995, pp. 829–865.
- [6] Y. Félix, S. Halperin, J.-C. Thomas, Rational Homotopy Theory, in: Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New-York, 2001.
- [7] Y. Félix, J.-C. Thomas, Monoid of self equivalences and free loop spaces, Proc. Amer. Math. Soc. 132 (2004) 305–312.
- [8] J.-B. Gatsinzi, Derivations, Hochschild cohomology and the Gottlieb group, in: Y. Félix, G. Lupton, S. Smith (Eds.), Homotopy Theory of Function Spaces and Related Topics, in: Contemporary Mathematics, vol. 519, American Mathematical Society, Providence, 2010, pp. 93–104.
- [9] J.-B. Gatsinzi, Brackets in the free loop space homology of some homogeneous spaces, Afr. Diaspora J. Math. 16 (2013) 28–36.
- [10] J.-B. Gatsinzi, Hochschild cohomology of a Sullivan algebra, Mediterr. J. Math. 13 (2016) 3765–3776.
- [11] M. Gerstenhaber, S.D. Schack, A Hodge-type decomposition of the cohomology of a commutative algebra, J. Pure Appl. Algebra 48 (1987) 229–247.
- [12] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Astérisque, in: Numéro Hors Série, 1985, pp. 257–271.
- [13] O. Kravchenko, Deformations of Batalin-Vilkovisky algebras, in: Poisson Geometry (Warsaw, 1998), in: Banach Center Publ., vol. 51, Polish Acad. Sci. Inst. Math., Warsaw, 2000, pp. 131–139.
- [14] T. Lada, M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 32 (1995) 1083–1104.