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Abstract. Let f : X → Y be a map between simply connected spaces having the homotopy
of finite type CW-complexes, where H∗(Y,Q) is finite dimensional and φ : (∧V, d) →

(B, d) a Sullivan model of f . We consider (B, d) as a module over ∧V via the mapping φ.
Let map(X, Y ; f ) denote the component of f in the space of mappings from X to Y . In this
paper we show that there is a canonical injection π∗(Ω map(X, Y ; f ))⊗Q → H H∗(∧V ; B).
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1. INTRODUCTION

We work in the rational homotopy setting for which the standard reference is [6]. In this
section we fix notation and recall a few facts on the Hochschild cohomology of an algebra.
All vector spaces and algebras are taken over a field k of characteristic 0.

Definition 1. A lower graded vector space V is a direct sum of vector spaces, that is,
V = ⊕i Vi , where i ∈ Z. We say that element a ∈ Vi is homogeneous of degree i and
we write |a| = i and V = V• is lower or homologically graded. If V = ⊕i≥0Vi , then V
is said to be non negatively graded. In the same way V •

= ⊕i V i is called cohomologically
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graded. We use the standard convention V i
:= V−i . Hence if V = ⊕i≥0V i , the dual space of

V is denoted V #
=

∏
i Hom(V i ,k) =

∏
i Hom(V−i ,k) has a lower non negative grading.

Definition 2. A morphism of graded vector spaces f : V → W of degree r , is a family of
linear maps fn : Vn → Wn+r .

Let (M, d) be a differential (A, d)-bimodule. The Hochschild cohomology of A with
coefficients in M is defined as ExtAe (A, M) where A is an Ae

= A ⊗ Aop-module under
the action (a1 ⊗ a2)a = (−1)|a| |a2|a1aa2, where a, a1, a2 ∈ A.

Let (P, dP ) → (A, d) be a semifree resolution of A as an Ae-module [5], and (M, dM ) an
Ae-differential module. Then H H∗(A; M) := ExtAe (A, M) is the homology of the complex
(HomAe (P, M), D), where the differential is defined by

(D f )(x) = dM f (x) − (−1)| f | f (dP x). (1)

In the sequel we work in the category of commutative differential graded algebras (cdga’s
for short). This implies that left (or right) modules have a natural bimodule structure. Let
f : A → B be a morphism of cdga’s. Then B is considered as an A-module by the action
induced by f .

Our aim is to study the structure of H H∗(A; B). Let (∧V, d) be a Sullivan algebra, and
m : (∧V ⊗ ∧V, d ′

= d ⊗ 1 + 1 ⊗ d) → (∧V, d) the multiplication. Then there is a quasi
isomorphism

(∧V ⊗ ∧V ⊗ ∧V̄ , D) → (∧V, d)

making the following diagram commutative.

(∧V ⊗ ∧V, d ′)↓↓

ı
↓↓

m →→ (∧V, d)

(∧V ⊗ ∧V ⊗ ∧V̄ , D).

p

≃

→→

Moreover V̄ n
= V n+1 and the differential D is defined by

D(v̄) = v ⊗ 1 − 1 ⊗ v + α, α ∈ ∧V ⊗ ∧V ⊗ ∧
+V̄ ,

and ı is the canonical inclusion [6, §15]. The quasi isomorphism

(∧V ⊗ ∧V ∧ ⊗V̄ , D)
p

→ (∧V, d)

is a semifree resolution of (∧V, d) as a ∧V ⊗ ∧V -module [5,10]. Therefore, for any ∧

V -module M , H H∗(∧V ; M) is the homology of the complex

(Hom∧V ⊗∧V (∧V ⊗ ∧V ⊗ ∧V̄ , M), D),

where the differential is defined by (1).
We consider the cdga (∧V ⊗ ∧V̄ , D̃) where Dv = dv, D̃(v̄) = −S(dv) and S is the

unique derivation on ∧V ⊗ ∧V̄ defined by Sv = v̄ and Sv̄ = 0. It is obtained as a push out
in the diagram below.

(∧V ⊗ ∧V, d ′) →→ ı →→

m

↓↓

(∧V ⊗ ∧V ⊗ ∧V̄ , D)

m′

↓↓
(∧V, d) →→ →→ (∧V ⊗ ∧V̄ , D̃).
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Moreover, the composition with m ′ yields an isomorphism of complexes

Hom∧V (∧V ⊗ ∧V̄ , M)
≃
→ Hom∧V ⊗∧V (∧V ⊗ ∧V ⊗ ∧V̄ , M).

As D̃(∧V ⊗ ∧
n V̄ ) ⊂ ∧V ⊗ ∧

n V̄ , hence each (Hom∧V (∧V ⊗ ∧
n V̄ , M), D̃) is a sub

cochain complex [8]. This gives a Hodge type decomposition of the Hochschild cohomology

H H∗(∧V ; M) = ⊕n≥0 H H∗

(n)(∧V ; M)

for any ∧V -differential module (M, d) [11,7].
Let f : X → Y be a map between simply connected spaces having the homotopy of finite

type CW-complexes and assume that H∗(Y,Q) is finite dimensional. Let φ : (∧V, d) →

(B, d) be a cdga model of f . We consider (B, d) as a module over ∧V via the mapping φ.
Denote by map(X, Y ; f ) the component of f in the space of mappings from X to Y . In this
paper we show the following result.

Theorem 3. There is a canonical injection

π∗(Ω map(X, Y ; f )) ⊗ k → H H∗(∧V ; B).

Moreover π∗(map(X, Y ; f )) ⊗ k∼= H H∗

(1)(∧V ; B).

The result is a generalization of the inclusion π∗(Ω map(X, X; 1X )) ⊗ k → H H∗(∧V ; ∧

V ). See [7, Theorem 2] and [9, Theorem 1.1].

2. L∞-MODELS OF MAPPING SPACES

The notion of L∞ algebra was introduced by Lada [14] and L∞ models of mapping spaces
were used by Félix et al. in [3,4]. We remind here their definition.

Definition 4. A permutation σ ∈ Sk is called an (i, k − i) shuffle if σ (1) < · · · < σ (i) and
σ (i + 1) < · · · < σ (k) where i = 1, . . . , n. For graded objects x1, . . . , xk , the Koszul sign
ϵ(σ ) is determined by

x1 ∧ · · · ∧ xk = ϵ(σ )xσ (1) ∧ · · · ∧ xσ (k).

It depends not only of the permutation σ but also on degrees of x1, . . . , xk .

Definition 5. An L∞-algebra or a strongly homotopy Lie algebra is a graded vector space
L = ⊕i L i with maps ℓk := [, . . . , ] : L⊗k

→ L of degree k − 2 such that

(1) ℓk is graded skew symmetric, that is, for a k-permutation σ

ℓk(xσ (1), . . . , xσ (k)) = sgn(σ )ϵ(σ )ℓk(x1, . . . , xk),

where sgn(σ ) is the sign of σ ,
(2) There are generalized Jacobi identities∑

i+ j=k+1

∑
σ

ϵ(σ )(−1)i(k−i)ℓ j (ℓi (xσ (1), . . . , xσ (i)), xσ (i+1), . . . , xσ (k)) = 0,

where the second summation extends to all (i, k − i) shuffles of the symmetric group Sk .
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In particular if ℓk = 0 for k ≥ 3, one recovers the notion of differential graded Lie algebra
(L , d) where [x, y] := ℓ2(x, y) and dx = ℓ1(x).

There is a 1-1 correspondence between L∞ structures on L and codifferentials dn :

∧
m(sL) → ∧

m−n+1(sL) of degree −1 on the coalgebra ∧sL , such that d2
= 0, where

d = d1 + d2 + · · · + dn + . . . [14].

Definition 6 ([12]). Let (A, µ) be a commutative algebra and D : A → A an operator.
Define multi-brackets on A as follows.

F1
D(a) = Da

Fn
D(a1, . . . , an) = µ((D ⊗ 1)(a1 ⊗ 1 − 1 ⊗ a1) . . . (an ⊗ 1 − 1 ⊗ an)).

Then D is called an operator of order n if Fn+1
D = 0.

There is a generalization of multi-brackets to non commutative algebras that is due to
Akman [1].

Definition 7. A Gerstenhaber algebra is a graded commutative algebra A = ⊕i Ai together
with a bracket

Ai ⊗ A j → Ai+ j+1, a ⊗ b ↦→ {a, b},

such that sL is a graded Lie algebra and the bracket acts like a derivation of algebras. That
is, for a, b, c ∈ A,

(1) {a, b} = −(−1)(|a|+1)(|b|+1)
{b, a},

(2) {a, {b, c}} = {{a, b}, c} + (−1)(|a|+1)(|b|+1)
{b, {a, c}},

(3) {a, bc} = {a, b}c + (−1)|b|(|a|+1)b{a, c}.

Definition 8. A Batalin–Vilkovisky algebra (BV-algebra for short) is a graded commutative
algebra A, together with an operator ∆ : Ai → Ai+1 of order 2 and of square 0.

Any BV-algebra (A,∆) is a Gerstenhaber algebra with the bracket defined by

{a, b} = (−1)|a|(∆(ab) − ∆(a)b − (−1)|a|a∆(b)).

Definition 9 ([13,2]). A commutative BV∞-algebra is a graded commutative algebra
A = ⊕i∈ZAi together with an operator D =

∑
i≥1 Di such that D2

= 0 and each Dn is
an operator of order n and of degree 2n − 3.

From the relation D2
= 0, one gets D2

1 = 0, hence D1 is a differential on the algebra A.
Moreover D1 D2 + D2 D1 = 0, therefore D2 induces an action on the homology H∗(A, D1)
which induces a BV-algebra structure [13]. If Di = 0 for all i ≥ 3, then (A, D1 + D2) is
called a differential BV-algebra.

Definition 10. Let φ : (A, d) → (B, d) be a morphism of cdga’s. A φ-derivation
of degree k is a linear mapping θ : An

→ Bn−k such that θ (ab) = θ (a)φ(b) +

(−1)k|a|φ(a)θ (b). We denote by Dern(A, B; φ) the vector space of φ-derivations of degree
n and by Der(A, B; φ) = ⊕nDern(A, B; φ) the Z-graded vector space of all φ-derivations.
The differential on Der(A, B; φ) is defined by δθ = dθ − (−1)kθd.
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If A = B and φ = 1A, then we get the Lie algebra of derivations Der A, where the Lie
bracket is the commutator bracket. If V is finite, then Der(∧V ) ∼= ∧V ⊗ V #. We have the
following result for φ-derivations.

Proposition 11. Let φ : (∧V, d) → (B, d) be a surjective morphism between cdga’s where
V is finite dimensional and I = Ker φ. Then Der(∧V, B; φ) ∼= ∧V/I ⊗ V #.

Proof. Let {v1, . . . , vk} be a basis of V . In Der(∧V, B; φ), we denote by (vi , 1) the
φ-derivation θi such that θi (vi ) = δi j . We observe that v#

i corresponds to the derivation
θi = (vi , 1). Let θ be a φ-derivation. Then θ (vi ) = bi , where bi ∈ B. As φ is surjective, there
exist ai ∈ ∧V such that φ(ai ) = bi . Hence θ =

∑
i aiθi = aiv

#
i . By the first isomorphism

theorem Der(∧V, B; φ) ∼= ∧V/I ⊗ V #. □

Define D̃er(A, B; φ) as follows.

D̃er(A, B; φ)i =

{
Der(A, B; φ)i , i > 1,

{θ ∈ Der1(A, B; φ) : δθ = 0}, i = 1.

Let A = ∧V and θ1, . . . , θk ∈ D̃er(∧V, B; φ) be φ-derivations of respective degrees
n1, . . . , nk , define

[θ1, . . . , θk](v) = (−1)η(k)
∑ ∑

i1,...,ik

ϵφ(v1 . . . v̂i1 . . . v̂ik . . . vm)θ1(vi1 ) . . . θk(vik ),

where dv =
∑

v1 . . . vm , η( j) = n1 + · · · + nk − 1, and ϵ is the corresponding Koszul sign
of the permutation

(v1, . . . , vm) → (v1, . . . , v̂i1 , . . . , v̂ik , . . . , vm, vi1 , . . . , vik ).

We note that [θ1, . . . , θk] is of degree n1 + · · · + nk − 1. Now define linear maps ℓk of degree
k − 2 on s−1D̃er(∧V, B; φ) by

ℓ1(s−1θ ) = −s−1δθ, ℓk(s−1θ1, . . . , s−1θk) = (−1)ϵk s−1[θ1, . . . , θk],

where ϵk =
k(k−1)

2 +
∑k−1

i=1 (k − i)|θi | [4].

Proposition 12 (Lemma 3.3,[4]). If φ : ∧V → B is a Sullivan model of a mapping f : X →

Y between simply connected spaces and V is finite dimensional, then (s−1D̃er(∧V, B; φ), ℓk)
is an L∞ model of map(X, Y ; f ).

Theorem 13. Let (∧V, d) → (B, d) be a cdga model of map f : X → Y between
1-connected spaces of finite type where Y is finite dimensional.

(1) Then there is a natural isomorphism

Γ : π∗(Ω map(X, Y ; f )) ⊗ Q → H H∗

(1)(∧V ; B),

(2) Moreover the following diagram commutes:

π∗(aut1 Y ) ⊗ Q

↓↓

→→ π∗(map(X, Y ; f )) ⊗ Q

↓↓
H H∗(∧V ; ∧V ) →→ H H∗(∧V ; B).
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Proof of the theorem. Before we prove the theorem, we need a generalization of derivations.

Definition 14. Let A be a commutative cochain algebra and M a differential A-module
(considered here as an A-bimodule). A derivation θ from A to M of degree k is a linear map
θ : A∗

→ M∗−k such that θ (ab) = θ (a)b + (−1)k|a|aθ (b).

It is easily seen that if θ : A → M is derivation and f : M → N a morphism of
A-bimodules, then the composition f ◦ θ : A → N is a derivation.

Let (∧V, d) be a Sullivan model of a simply connected space. Define V̄ = sV , that is,
V̄ n

= V n+1. A Sullivan model of the loop space map(S1, X ) is given by (∧(V ⊕ V̄ ), D̃),
the cdga defined in Section 1. For recall, D̃v = dv, D̃v̄ = −S(dv) where S is the unique
derivation defined by Sv = v̄ and Sv̄ = 0 [6].

Consider the linear map S : (∧V, d) → (∧V ⊗ V̄ , D) defined Sv = v̄ and extended S as
a derivation in the sense of Definition 14. As S(dv) = −D(Sv), then Sd + DS = 0, then S
is a morphism of differential modules of upper degree −1.

We define a map

Φ : Hom∧V (∧V ⊗ V̄ , B) → Der(∧V, B; φ)

such that Φ( f ) is the following composition mapping

∧V S →→ ∧V ⊗ V̄
f →→ B,

that is, Φ( f )(v) = f (v̄).

Lemma 15. The map Φ commutes with differentials.

Proof. Let f ∈ Hom∧V (∧V ⊗ V̄ , ∧V ).

(D f )(v̄) = d( f (v̄)) − (−1)| f | f (D(v̄))
= d( f (v̄)) + (−1)| f |( f (sdv)),

hence (Φ(D f ))(v) = d( f (v̄)) + (−1)| f |( f (sdv)).
On the other hand

(DΦ( f ))(v) = d(Φ( f )(v)) − (−1)|Φ( f )|Φ( f )(dv)
= d( f (sv)) + (−1)| f | f (sdv).

Hence Φ is a morphism of chain complexes. □

Moreover, there are isomorphisms of vector spaces Hom∧V (∧V ⊗ V̄ , B) ∼= Hom(V̄ , B)
∼= Der(∧V, B). Hence Φ is bijective. Therefore

H∗(s−1 Der(∧V, B)) ∼= H H∗

(1)(∧V, B) ↣ H H∗(∧V, B).

Remark 16. It was shown that if L is an L∞-algebra, then ∧s−1L is a BV∞ algebra [2]. It
would be interesting to find a link between the BV∞-algebra ∧s−1L and H H∗(∧V ; B).
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