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Abstract. A class of third order singularly perturbed convection diffusion type equations
with integral boundary condition is considered. A numerical method based on a finite
difference scheme on a Shishkin mesh is presented. The method suggested is of almost first
order convergent. An error estimate is derived in the discrete norm. Numerical examples are
presented, which validate the theoretical estimates.
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1. INTRODUCTION

We consider the following third order singularly perturbed convection diffusion equations
with integral boundary condition:

−εu′′′(x) + a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f (x), x ∈ (0, 1) = Ω , (1.1)

u(0) = l1, u′(0) = l2, u′(1) = ε

∫ 1

0
g(x)u′(x)dx + l3, (1.2)
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where 0 < ε ≪ 1, a(x) ≥ α > 0, b(x) ≥ β ≥ 0, θ ≤ c(x) ≤ θ0 ≤ 0,
4α + β + 16θ > 0, l1, l2, l3 are real numbers, g(x) is nonnegative with

∫ 1
0 g(x)dx < 1

and a(x), b(x), c(x), f (x), g(x) are sufficiently smooth on [0, 1] = Ω̄ .
Differential equation with a small parameter ε multiplying the leading derivative term is

called Singularly Perturbed Problem (SPP). Traditional numerical methods are not suitable
for SPP because the solutions of such equations have rapid changes in small regions of the
domain. It is necessary to expand appropriate numerical methods for these kinds of problems,
such that the error estimates do not depend on the parameter ε. That is, methods in which the
numerical solutions are convergent ε-uniformly [6,9,13]. One of the easiest and useful ways
to derive such methods consists of using a class of piecewise uniform meshes (Shishkin and
Bakhvalov mesh).

Boundary value problems with integral boundary conditions are an important class of
problems which arise in the fields of electro-chemistry [7], thermo-elasticity [8], heat
conduction [5] etc. The existence and uniqueness of the third order differential equations
with integral boundary conditions and its applications are discussed in [1,2,10,11,14]. The
existence of systems of second order differential equations with integral boundary condition
and its applications are discussed in [3,6,15]. The above mentioned papers are concerned
with regular case (without boundary layers). In [12] and [4] uniform convergence of the
approximate solution on a uniform mesh is proved for second order differential equations
with integral boundary condition. Motivated by the above works, in this paper a fitted finite
difference method is discussed to solve a class of third order singularly perturbed convection
diffusion equations with integral boundary condition (1.1)–(1.2).

This paper is arranged in the following manner. In Section 2 maximum principle, stability
result and derivative estimate are derived for the continuous problem. Discretized problem is
discussed in Section 3. Error estimate for the numerical method is established in Section 4.
Numerical experiments are given in Section 5. The paper concluded with a discussion given
in Section 6.

Throughout the paper, we assume that ε ≤ C N−1, C denotes a positive constant. The
norm used for studying the convergence of the numerical solution is supremum norm defined
by ∥u∥D := supx∈D|u(x)|.

2. PROPERTIES OF THE EXACT SOLUTION

The boundary value problem (1.1)–(1.2) can be transformed into the following equivalent
problem:

L1ū(x) = u′

1(x) − u2(x) = 0, x ∈ Ω ∪ {1} (2.1)

L2ū(x) = −εu′′

2(x) + a(x)u′

2(x) + b(x)u2(x) + c(x)u1(x) = f (x), x ∈ Ω , (2.2)

where ū(x) = (u1(x), u2(x)) with the boundary conditions

u1(0) = l1, u2(0) = l2, Bu2(1) = u2(1) − ε

∫ 1

0
g(x)u2(x)dx = l3. (2.3)

Theorem 2.1 (Maximum Principle). Let ū(x) = (u1(x), u2(x)) be any function satisfying
u1(0) ≥ 0, u2(0) ≥ 0, Bu2(1) ≥ 0, L1ū(x) ≥ 0, x ∈ Ω ∪{1} and L2ū(x) ≥ 0,∀ x ∈ Ω . Then
ū(x) ≥ 0, ∀ x ∈ Ω̄ .
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Proof. Define s̄(x) = (s1(x), s2(x)) as s1(x) = 1 + x , s2(x) =
1
8 +

x
2 . Note that

s̄(x) > 0, x ∈ Ω̄ , L1s̄(x) > 0, L2s̄(x) > 0, s1(0) > 0, s2(0) > 0 and Bs2(1) > 0.
Further we define

µ = max
{

max
x∈Ω̄

(
−u1(x)
s1(x)

)
,max

x∈Ω̄

(
−u2(x)
s2(x)

)}
.

Then there exists at least one x0 ∈ Ω , such that
(

−u1(x0)
s1(x0)

)
= µ or

(
−u2(x0)
s2(x0)

)
= µ or both.

Also (ū +µs̄)(x) ≥ 0, x ∈ Ω̄ . Therefore either (u1 +µs1) or (u2 +µs2) attains minimum at
x = x0. Suppose the theorem is not true, then µ > 0.

Case (i): Assume that (u1 + µs1)(x0) = 0, for x0 = 0. Therefore (u1 + µs1) attains its
minimum at x = x0. Then,

0 = (u1 + µs1)(0) = u1(0) + µs1(0) > 0.

Case (ii): Assume that (u1 + µs1)(x0) = 0, for x0 ∈ Ω ∪ {1}. Therefore (u1 + µs1) attains
its minimum at x = x0. Then,

0 < L1(ū + µs̄)(x0) = (u1 + µs1)′(x0) − (u2 + µs2)(x0) ≤ 0.

Case (iii): Assume that (u2 + µs2)(x0) = 0, for x0 = 0. Therefore (u2 + µs2) attains its
minimum at x = x0. Then,

0 < (u2 + µs2)(0) = u2(0) + µs2(0) = 0.

Case (iv): Assume that (u2 + µs2)(x0) = 0, for x0 ∈ Ω . Therefore (u2 + µs2) attains its
minimum at x = x0. Then,

0 < L2(ū + µs̄)(x0) = −ε(u2 + µs2)′′(x0) + a(x)(u2 + µs2)′(x0)
+ b(x)(u2 + µs2)(x0) + c(x)(u1 + µs1)(x0) ≤ 0.

Case (v): Assume that (u2 + µs2)(x0) = 0, for x0 = 1. Therefore (u2 + µs2) attains its
minimum at x = x0. Then,

0 < B(u2 + µs2)(1) = (u2 + µs2)(1) − ε

∫ 1

0
g(x)(u2 + µs2)(x)dx ≤ 0.

Observe that in all the cases we have a contradiction. Therefore µ > 0 is not possible.
Hence ū(x) ≥ 0,∀ x ∈ Ω̄ . □

Corollary 2.2 (Stability Result). The solution ū(x) of problem (2.1)–(2.3) satisfies the bound

|ui (x)| ≤ C max{|u1(0)|, |u2(0)|, |Bu2(1)|, ∥L1ū∥Ω , ∥L2ū∥Ω }, x ∈ Ω̄ , i = 1, 2.

Proof. Let C > 0 be a constant. Define ψ±

i (x) = C Msi (x) ± ui (x), x ∈ Ω̄ , i = 1,2, where
M = max{|u1(0)|, |u2(0)|, |Bu2(1)|, ∥L1ū∥Ω , ∥L2ū∥Ω }.

Note that ψ±

1 (0) ≥ 0, ψ±

2 (0) ≥ 0, Bψ±

2 (1) ≥ 0 by proper choice of C > 0. It is easy
to see that L1ψ̄

±(x) ≥ 0, L2ψ̄
±(x) ≥ 0. Then by maximum principle, we get the required

result. □

Bounds for the derivatives of the solution ū(x) are given in the following lemma.
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Lemma 2.3. Let ū(x) be the solution of (2.1)–(2.3). Then we have the following bounds:

∥u(k)
1 ∥Ω̄ ≤ Cε1−k, k = 1, 2, 3,

∥u(k)
2 ∥Ω̄ ≤ Cε−k, k = 1, 2, 3.

Proof. Using Corollary 2.2 and applying the arguments as given in [9] this lemma can be
proved. □

The uniform error estimate can be derived using the sharper bounds on the derivatives
of the solution ū(x). To get sharper bounds we write the analytical solution in the form
ū(x) = v̄(x) + w̄(x), where v̄(x) = (v1(x), v2(x)) and w̄(x) = (w1(x), w2(x)). The regular
component v̄(x) can be written as v̄(x) = v̄0(x) + εv̄1(x) + ε2v̄2(x), where v̄0(x) =

(v01(x), v02(x)), v̄1(x) = (v11(x), v12(x)), v̄2(x) = (v21(x), v22(x)) respectively satisfy the
following equations:⎧⎪⎨⎪⎩

v′

01(x) = v02(x),
a(x)v′

02(x) + b(x)v02(x) + c(x)v01(x) = f (x),
v01(0) = u1(0), v02(0) = u2(0),

(2.4)

⎧⎪⎨⎪⎩
v′

11(x) = v′′

12(x),
a(x)v′

12(x) + b(x)v12(x) + c(x)v11(x) = v′′

02(x),
v11(0) = 0, v12(0) = 0,

(2.5)

⎧⎪⎨⎪⎩
L1v̄2(x) = v21(x) = v′′

22(x),
L2v̄2(x) = −εv′′

22(x) + a(x)v′

22(x) + b(x)v22(x) + c(x)v21(x) = v′′

12(x),
v21(0) = 0, v22(0) = 0, Bv22(1) = 0.

(2.6)

Thus the regular component v̄(x) is the solution of⎧⎪⎨⎪⎩
L1v̄(x) = v′

1(x) − v2(x) = 0,
L2v̄(x) = −εv′′

2 (x) + a(x)v′

2(x) + b(x)v2(x) + c(x)v1(x) = f (x),
v1(0) = u1(0), v2(0) = u2(0), Bv2(1) = Bv02(1) + εBv12(1),

(2.7)

and layer component w̄(x) is the solution of⎧⎪⎨⎪⎩
L1w̄(x) = w′

1(x) − w2(x) = 0,
L2w̄(x) = −εw′′

2 (x) + a(x)w′

2(x) + b(x)w2(x) + c(x)w1(x) = 0,
w1(0) = 0, w2(0) = 0, Bw2(1) = Bu2(1) − Bv2(1).

(2.8)

Theorem 2.4. Let ū(x) be the solution of the problem (2.1)–(2.3) and v̄0(x) be its reduced
problem solution defined in (2.4). Then

|u j (x) − v0 j (x)| ≤ C(ε + e−α(1−x)/ε), x ∈ Ω̄ , j = 1, 2.

Proof. Consider the barrier functions ψ̄±(x) = (ψ±

1 (x), ψ±

2 (x)), where

ψ±

j (x) = C(εs j (x) + ε2− j e−α(1−x)/ε) ± (u j (x) − v0 j (x)), x ∈ Ω̄ , j = 1, 2.

It is easy to see that, ψ±

1 (0) ≥ 0, ψ±

2 (0) ≥ 0 for a suitable choice of C > 0.
Let x ∈ Ω . Then

L1ψ̄
±(x) = C

(
ε(1 − s2(x)) + (α − 1)e−α(1−x)/ε)

± L1(ū − v̄0)(x) ≥ 0,
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and

L2ψ̄
±(x) = C[

α

ε
(a(x) − α) + b(x) + εc(x)]e−α(1−x)/ε

+ ε[a(x)s ′

2(x) + b(x)s2(x) + c(x)s1(x)] ± εv′′

02(x) ≥ 0,

by a proper choice of C > 0.
Further

Bψ±

2 (1) = ψ±

2 (1) − ε

∫ 1

0
g(x)ψ±

2 (x)dx

≥ C(2ε + 1) − 2Cε
∫ 1

0
g(x)dx − Cε

∫ 1

0
g(x)dx ± B(u2 − v02)(1) ≥ 0

for a suitable choice of C > 0.
Then by Theorem 2.1, we have ψ̄±

j (x) ≥ 0, x ∈ Ω̄ , j = 1, 2. □

Lemma 2.5. The regular component v̄(x) and the singular component w̄(x) of the solution
ū(x) of the problem (2.1)–(2.3) satisfy the following bounds:

∥v
(k)
1 ∥Ω̄ ≤ C(1 + ε(3−k)), k = 0, 1, 2, 3 (2.9)

∥v
(k)
2 ∥Ω̄ ≤ C(1 + ε(2−k)), k = 0, 1, 2, 3 (2.10)

|w
(k)
1 (x)| ≤ Cε1−ke−α(1−x)/ε, x ∈ Ω̄ , k = 0, 1, 2, 3 (2.11)

|w
(k)
2 (x)| ≤ Cε−ke−α(1−x)/ε, x ∈ Ω̄ , k = 0, 1, 2, 3. (2.12)

Proof. Integrating (2.4), (2.5) and using the stability result one can prove the inequalities
(2.9) and (2.10). To prove the inequalities (2.11) and (2.12) consider the barrier functions
ψ̄±(x) = (ψ±

1 (x), ψ±

2 (x)), where

ψ±

1 (x) = Cεe−α(1−x)/ε
± w1(x), x ∈ Ω̄ ,

ψ±

2 (x) = Ce−α(1−x)/ε
± w2(x), x ∈ Ω̄ .

It is easy to see that ψ±

1 (0) ≥ 0 and ψ±

2 (0) ≥ 0, for a suitable choice of C > 0.
Further

L1ψ̄
±(x) = C[e−α(1−x)/ε

− e−α(1−x)/ε] ± L1w̄ ≥ 0

L2ψ̄
±(x) = C

[α
ε

(a(x) − α) + b(x) + εc(x)
]

e−α(1−x)/ε
± L2w̄ ≥ 0

Bψ±

2 (1) = ψ±

2 (1) − ε

∫ 1

0
g(x)ψ±

1 (x)dx ≥ C(1 − ε

∫ 1

0
g(x)dx) ± Bw2(1) ≥ 0,

for a suitable choice of C > 0. Hence by the maximum principle, we have the desired result.
From the differential equation (2.8), one can derive the rest of derivative estimates (2.11) and
(2.12). □

Note: From the above theorem, it is easy to see that,

|u1(x) − v1(x)| ≤ C(ε2
+ εe−α(1−x)/ε), x ∈ Ω̄ , (2.13)

|u2(x) − v2(x)| ≤ C(ε + e−α(1−x)/ε), x ∈ Ω̄ , (2.14)
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3. MESH AND SCHEME

On Ω̄ a piecewise uniform Shishkin mesh of N (≥ 4) mesh intervals is constructed. The
domain Ω̄ is partitioned into two subintervals [0, 1 − σ ] and [1 − σ, 1], where σ is the
transition parameter defined by σ = min{

1
2 ,

2ε ln N
α

}. On [0, 1 − σ ] and [1 − σ, 1] a uniform
mesh with N

2 mesh intervals is placed. The interior points of the mesh are denoted by

Ω N
= {xi : 1 ≤ i ≤

N
2

} ∪ {xi :
N
2

+ 1 ≤ i ≤ N }.

Clearly, Ω̄ N
= {xi }

N
0 . Let hi = xi − xi−1 be the mesh step and h̄i =

hi+1+hi
2 .

The discrete problem corresponding to (2.1)–(2.3) is:
Find Ū (xi ) = (U1(xi ),U2(xi )) such that

L N
1 Ū (xi ) = D−U1(xi ) − U2(xi ) = 0, (3.1)

L N
2 Ū (xi ) = −εδ2U2(xi ) + a(xi )D−U2(xi ) + b(xi )U2(xi )

+ c(xi )U1(xi ) = f (xi ), (3.2)⎧⎪⎪⎪⎨⎪⎪⎪⎩
U1(x0) = l1,

U2(x0) = l2,

B N U2(xN ) = U2(xN ) − ε

N∑
i=1

g(xi−1)U2(xi−1) + g(xi )U2(xi )
2

hi = l3,∀xi ∈ Ω̄ N .

(3.3)

where

δ2U2(xi ) =
1
h̄i

(
U2(xi+1) − U2(xi )

hi+1
−

U2(xi ) − U2(xi−1)
hi

)
,

D−U2(xi ) =
U2(xi ) − U2(xi−1)

hi
.

4. ANALYSIS OF THE METHOD

Theorem 4.1 (Discrete Maximum Principle). Let Ψ̄ (xi ) = (Ψ1(xi ),Ψ2(xi )) be the mesh
function satisfying Ψ1(x0) ≥ 0, Ψ2(x0) ≥ 0, B NΨ2(xN ) ≥ 0, L N

1 Ψ̄ (xi ) ≥ 0, and
L N

2 Ψ̄ (xi ) ≥ 0. Then Ψ̄ (xi ) ≥ 0, xi ∈ Ω̄ N .

Proof. Define S̄(xi ) = (S1(xi ), S2(xi )), where S1(xi ) = 1 + xi and S2(xi ) =
1
8 +

xi
2 .

Note that Sk(xi ) > 0, xi ∈ Ω̄ N , k = 1, 2, L N
1 S̄(xi ) > 0,∀xi ∈ Ω̄ N

∩ Ω ∪ {xN },

L N
2 S̄(xi ) > 0,∀xi ∈ Ω̄ N . Let

γ = max
{

max
xi ∈Ω̄N

(
−Ψ1(xi )

S1(xi )

)
, max

xi ∈Ω̄N

(
−Ψ2(xi )

S2(xi )

)}
.

Then there exists one xk ∈ Ω̄ N such that Ψ1(xk) + γ S1(xk) = 0 or Ψ2(xk) + γ S2(xk) = 0
or both. We have Ψ j (xi ) + γ S j (xi ) ≥ 0, xi ∈ Ω̄ N , j = 1, 2. Therefore either (Ψ1 + γ S1) or
(Ψ1 + γ S1) attains minimum at xi = xk . Suppose the theorem is not true, then γ > 0.
Case (i): Assume that (Ψ1 + γ S1)(xk) = 0, for xk = 0. Therefore (Ψ1 + γ S1) attains its
minimum at xi = xk . Then,

0 = (Ψ1 + γ S1)(x0) = Ψ1(x0) + γ S1(x0) > 0.
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Case (ii): Assume that (Ψ1 + γ S1)(xk) = 0, for xk ∈ Ω N
∪ {1}. Therefore (Ψ1 + γ S1) attains

its minimum at xi = xk . Then,

0 < L N
1 (Ψ̄ + γ S̄)(xi ) = D−(Ψ1 + γ S1)(xi ) − (Ψ2 + γ S2)(xi ) ≤ 0.

Case (iii): Assume that (Ψ2 + γ S2)(xk) = 0, for xk = 0. Therefore (Ψ2 + γ S2) attains its
minimum at xi = xk . Then,

0 < (Ψ2 + γ S2)(x0) = Ψ2(x0) + γ S2(x0) = 0.

Case (iv): Assume that (Ψ2 + γ S2)(xk) = 0, for xk ∈ Ω N . Therefore (Ψ2 + γ S2) attains its
minimum at xi = xk . Then,

0 < L N
2 (Ψ̄ + µS̄)(xi )

= −εδ2(Ψ2 + µS2)(xi ) + a(xi )D−(Ψ2 + µS2)(xi ) + b(xi )(Ψ2 + µS2)(xi )

+ c(xi )(Ψ1 + µS1)(xi ) ≤ 0.

Case (v): Assume that (Ψ2 + γ S2)(xk) = 0, for xk = xN . Therefore Ψ2 + γ S2 attains its
minimum at xi = xk . Then

0 < B N (Ψ2 + γ S2)(xN )

= (Ψ2 + γ S2)(xN )

− ε

N∑
i=1

(ψ2(xi−1) + γ S2(xi−1))g(xi−1) + (Ψ2(xi ) + γ S2(xi ))g(xi )
2

hi ≤ 0.

Observe that in all the cases we have a contradiction. Therefore γ > 0 is not possible.
Hence Ψ̄ (xi ) ≥ 0,∀ xi ∈ Ω̄ N . □

Lemma 4.2 (Discrete Stability Result). Let Ū (xi ) = (U1(xi ),U2(xi )) be any mesh function.
Then

|Uk(xi )| ≤ C max
{
|U1(x0)|, |U2(x0)|, |BU2(xN ), | max

x j ∈ΩN ∪{xN }

|L N
1 Ū (x j )|

max
x j ∈ΩN

|L N
2 Ū (x j )|

}
, xi ∈ Ω̄ N , k = 1, 2.

Proof. By choosing suitable barrier functions and using Theorem 4.1, one can establish the
above inequality. □

Analogous to the continuous case, the discrete solution Ū (xi ) can be decomposed as

Ū (xi ) = V̄ (xi ) + W̄ (xi ),

where V (xi ) and W (xi ) are respectively the solutions of the problems:⎧⎪⎪⎨⎪⎪⎩
L N

1 V̄ (xi ) = D−Vi (xi ) − V2(xi ) = 0, xi ∈ Ω N
∪ {xN },

L N
2 V̄ (xi ) = −εδ2V2(xi ) + a(xi )D−V2(xi ) + b(xi )V2(xi )

+ c(xi )V1(xi ), xi ∈ Ω N ,

V1(x0) = v1(0), V2(x0) = v2(0), B N V2(xN ) = Bv2(1)

(4.1)
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and ⎧⎪⎪⎨⎪⎪⎩
L N

1 W̄ (xi ) = D−Wi (xi ) − W2(xi ) = 0, xi ∈ Ω N
∪ {xN },

L N
2 W̄ (xi ) = −εδ2W2(xi ) + a(xi )D−W2(xi ) + b(xi )W2(xi )

+ c(xi )W1(xi ), xi ∈ Ω N ,

W1(x0) = w1(0), W2(x0) = w2(0), B N W2(xN ) = Bw2(1)

(4.2)

The following theorem gives an estimate for the difference of the solutions of (3.1)–(3.2)
and (4.1).

Theorem 4.3. Let Ū (xi ) be a numerical solution of (2.1)–(2.3) defined by (3.1)–(3.3) and
V (xi ) be a numerical solution of (2.7) defined by (4.1). Then

|U j (xi ) − V j (xi )| ≤ C

⎧⎪⎨⎪⎩
N−1, i = 0, 1, . . . ,

N
2

N−1
+ |l3 − B N V2(xN )|, i =

N
2

+ 1, . . . , N .
j = 1, 2.

Proof. Consider mesh functions Ψ̄±(xi ) = (Ψ±

1 (xi ),Ψ±

2 (xi )), where

Ψ±

1 (xi ) = C N−1S1(xi ) + Cxiϕ(xi ) ± (U1(xi ) − V1(xi )), xi ∈ Ω̄ N ,

Ψ±

2 (xi ) = C N−1S2(xi ) + Cxiϕ(xi ) ± (U2(xi ) − V2(xi )), xi ∈ Ω̄ N ,

ϕ(xi ) =

⎧⎪⎨⎪⎩
0, i = 0, 1, . . . ,

N
2

|l3 − B N V2(xN )|, i =
N
2

+ 1, . . . , N .

Now

L N
1 Ψ̄

±(xi ) = C N−1[D−S1(xi ) − S2(xi )] + C[1 − xi ]ϕ(xi ) ± 0 ≥ 0,

L N
2 Ψ̄

±(xi ) = C N−1[
a(xi )

2
+ b(xi )S2(xi ) + c(xi )S1(xi )]

+ C N−1ϕ(xi )[a(xi ) + xi (b(xi ) + c(xi ))] ≥ 0, xi ∈ Ω N ,

BΨ±

2 (xN ) = Ψ±

2 (xN ) − ε

i=N∑
i=1

g(xi−1)Ψ±

2 (xi−1) + g(xi ) Ψ±

2 (xi )
2

hi ≥ 0.

Then by Theorem 4.1 we get the result. □

We obtain separate error estimates for each component of the numerical solution.

Lemma 4.4. Let V̄ (xi ) be a numerical solution of (2.7) defined by (4.1). Then

|(v j (xi ) − V j (xi ))| ≤ C N−1, xi ∈ Ω̄ N , j = 1, 2.

Proof. Now

L N
1 (v̄(xi ) − V̄ (xi )) = L N

1 v̄(xi ) − L N
1 V̄ (xi ) =

(
D−

−
d

dx

)
v1(xi ),

L N
2 (v̄(xi ) − V̄ (xi )) = −ε

(
δ2

−
d2

dx2

)
v2(xi ) + a(xi )

(
D−

−
d

dx

)
v2(xi ).
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Therefore

L N
j (v̄(xi ) − V̄ (xi )) ≤ C N−1, xi ∈ Ω N , j = 1, 2.

Further

B N (v2 − V2)(xN ) = B Nv2(xN ) − B N V2(xN )

= B Nv2(xN ) − Bv2(1)

|B N (v2 − V2)(xN )| ≤ Cε(h3
1v

′′(χ1) + · · · + h3
Nv

′′(χN ))

≤ C N−2

where xi−1 ≤ χi ≤ xi , 1 ≤ i ≤ N . Then by discrete stability result, we have
|(v j (xi ) − V j (xi ))| ≤ C N−1, xi ∈ Ω̄ N , j = 1,2. □

Lemma 4.5. Let W̄ (xi ) be a numerical solution of (2.8) defined in (4.2). Then

|(w j − W j )(xi )| ≤ C N−1(ln N )2, xi ∈ Ω̄ N , j = 1, 2.

Proof. Note that

|w j (xi ) − W j (xi )| ≤ |u j (xi ) − U j (xi )| + |v j (xi ) − V j (xi )|, j = 1, 2.

Then by (2.13), (2.14), we have

|u j (xi ) − U j (xi )| ≤ |U j (xi ) − V j (xi )| + |v j (xi ) − V j (xi )|

+ |u j (xi ) − v j (xi )|, j = 1, 2.

Therefore

|w j (xi ) − W j (xi )| ≤ |u j (xi ) − U j (xi )| + |v j (xi ) − V j (xi )|

≤ Ce−α(1−xi )/ε
+ C N−1

≤ Ce−ασ/ε
+ C N−1

≤ C N−1, 0 ≤ i ≤
N
2

Now consider a mesh function Ψ̄±(xi ) = (Ψ±

1 (xi ),Ψ±

2 (xi )), xi ∈ [1 − σ, 1], where

Ψ±

1 (xi ) = C N−1S1(xi ) + 2C N−1 σ

ε2 (xi − (1 − σ )) ± (w1(xi ) − W1(xi )),

Ψ±

2 (xi ) = C N−1S2(xi ) + C N−1 σ

ε2 (xi − (1 − σ )) ± (w2(xi ) − W2(xi )).

It is easy to see that Ψ±

j (xN/2) ≥ 0, j = 1,2 for a proper choice of C > 0.

L N
1 Ψ̄

±(xi ) = C N−1[1 − S2(xi )] + N−1 σ

ε2 (2 − xi − σ ) ± (L N
1 − L1)w̄(xi ) ≥ 0,

L N
1 Ψ̄

±(xi ) = C N−1
[

a(xi )
2

+ b(xi )S2(xi ) + c(xi )S1(xi )
]

+ C N−1 σ

ε2 [a(xi ) + [b(xi ) + 2c(xi )](xi + σ − 1)]

± (L N
2 − L2)(w̄(xi )) ≥ 0,

BΨ±

2 (xN ) = Ψ±

2 (xN ) − ε

i=N∑
i=N/2

g(xi−1)Ψ±

2 (xi−1) + g(xi ) Ψ±

2 (xi )
2

hi ≥ 0.
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Table 1
Numerical results for Example 5.1.

Number of mesh points N

16 32 64 128 256 512 1024

DN
1 2.073e−03 9.842e−04 4.782e−04 2.356e−04 1.169e−04 5.824e−05 2.906e−05

P N
1 1.075 1.041 1.021 1.010 1.005 1.002 –

DN
2 5.184e−03 3.269e−03 2.424e−03 1.652e−03 1.049e−03 6.326e−04 3.673e−04

P N
2 0.665 0.431 0.553 0.654 0.730 0.784 –

Table 2
Numerical results for Example 5.2.

Number of mesh points N

16 32 64 128 256 512 1024

DN
1 2.768e−03 1.322e−03 6.488e−04 3.212e−04 1.596e−04 7.953e−05 3.969e−05

P N
1 1.066 1.027 1.014 1.009 1.005 1.002 –

DN
2 6.268e−03 3.826e−03 2.743e−03 1.815e−03 1.129e−03 6.716e−04 3.868e−04

P N
2 0.712 0.480 0.595 0.684 0.749 0.795 –

Then by discrete maximum principle, we have Ψ±

j (xi ) ≥ 0, xi ∈ [1 − σ, 1], j = 1,2.
Therefore |w j (xi ) − W j (xi )| ≤ C N−1(ln N )2, xi ∈ [1 − σ, 1], j = 1, 2. □

Theorem 4.6. Let Ū (xi ) be the solution of (2.1)–(2.3) defined in (3.1)–(3.2). Then

|u j (xi ) − U j (xi )| ≤ C N−1(ln N )2, xi ∈ Ω̄ N , j = 1, 2.

Proof. Combining Lemmas 4.4 and 4.5, completes the proof. □

5. NUMERICAL RESULTS

The analytical solution of the test problems is not available. Therefore, we estimate the
error using double mesh principle which is defined as DN

ε = maxxi ∈Ω̄N |U N (xi ) − U 2N (xi )|
and DN

= maxεDN
ε where U N (xi ) and U 2N (xi ) denote the numerical solution computed

using N and 2N mesh points. From these quantities the order of convergence is defined as
P N

= log2( DN

D2N ). In Tables 1 and 2, DN
1 and DN

2 denote the maximum pointwise errors of
U1 and U2 respectively, P N

1 and P N
2 denote the order of convergence with respect to U1 and

U2 respectively.

Example 5.1.⎧⎨⎩
−εu′′′(x) + (16 + x)u′′(x) + u′(x) − u(x) = x, x ∈ Ω

u(0) = 0, u′(0) = 0 u′(1) = ε

∫ 1

0

x
2

u′(x)dx .

Example 5.2.⎧⎨⎩
−εu′′′(x) + (12 + x2)u′′(x) − u(x) = x, x ∈ Ω

u(0) = 0, u′(0) = 0 u′(1) = ε

∫ 1

0

x
2

u′(x)dx .



Fitted finite difference method for third order singularly perturbed convection diffusion equations with integral boundary condition 241

Fig. 1. Maximum pointwise errors of the numerical solution of Example 5.1.

Fig. 2. Maximum pointwise errors of the numerical solution of Example 5.2.

6. DISCUSSION

We have solved a class of third order singularly perturbed boundary value problems with
integral boundary condition, using finite difference method on piecewise uniform mesh. Two
examples are presented which authenticate our proposed numerical method. We have proved
that the order of our numerical method is O(N−1ln2 N ) (see Tables 1, 2). Maximum pointwise
errors of Examples 5.1 and 5.2 are given in Figs. 1 and 2.
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