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Abstract. This paper deals with the existence of solutions for quasilinear random impulsive
neutral functional differential evolution equation in Banach spaces and the results are derived
by using the analytic semigroup theory, fractional powers of operators and the Schauder fixed
point approach. An application is provided to illustrate the theory.
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1. INTRODUCTION

In many fields of science and engineering the accurate analysis, design and assessment
of systems subjected to realistic environments must take into account the potential of white
noise random forces in the system properties. Randomness is acquired by a dynamical system
from outside in the form of certain random action. It is this action that causes the randomness
of change in the state of the system and in many other quantities determined which enables
us to represent a dynamical system as a certain transformation of random inputs into random
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outputs. Randomness is intrinsic to the mathematical formulation of many phenomena, such
as: fluctuations in the stock market, noise in population systems, communication networks in
observed signals, etc.

The use of deterministic equations that ignore the randomness of the parameters or replace
them by their mean values can result in gross errors. It is more important to consider the
case when the perturbation term is rather widely impulsive in character and it is natural
to expect such a situation in biological systems such as heart beats, blood flows, pulse
frequency modulated systems, models for biological neural nets and automatic control
problems. Therefore, perturbations of impulsive type are more realistic. This makes the study
interesting.

In this paper we consider the following quasilinear random impulsive neutral differential
evolution equation in a Banach space X

[u(t) + g(t, u(t))]′ + A(t, u)u(t) = f (t, u(t)), t ∈ [0, T ], t ̸= ξk,

u(0) = u0,

u(ξk) = bk(τk)u(ξ−

k ), k = 1, 2, . . . ,

⎫⎬⎭ (1.1)

where −A(t, u) is the infinitesimal generator of an analytic semigroup of operators in a
Banach space X.

Now we make the system (1.1) more precise: The function f : J × X → X is uniformly
bounded and continuous in all of its arguments and u0 ∈ X and g : J × X → X. Take
J = [0, T ], T ∈ R is any constant. Assume that ∆ be a non-empty set and τk is a random
variable defined from ∆ to Dk ≡ (0, dk), for k = 1, 2, . . . where 0 < dk < +∞. Also
assume that τi and τ j are independent from each other as i ̸= j for i, j = 1, 2, . . .. Let
bk : Dk → R, for each k = 1, 2, . . .; ξ0 = t0 and ξk = ξk−1 + τk for k = 1, 2, . . .; here
t0 ∈ J is an arbitrary real number. Obviously, t0 = ξ0 < ξ1 < · · · < limk→∞ξk = ∞;
u(ξ−

k ) = limt→ξk u(t) according to their paths with the norm ∥u∥ = sup0≤s≤T |u(s)|, for each
t satisfying 0 ≤ t ≤ T , ∥ · ∥ is any given norm in X.

The problem of existence of solutions for quasilinear equation in Banach spaces has been
studied by many authors. Furuya [7] and Kato [8] studied the non-homogeneous quasilinear
evolution equation and the analyticity of solution in 1980’s. Bahuguna [3,4] proved the
existence, uniqueness and continuous dependence of a strong and local solutions to the
quasilinear integrodifferential equations and also the regularity of solutions to the quasilinear
equations. Oka and Tanaka [10] implemented the existence of classical solutions of abstract
quasilinear integrodifferential equations. Kato [9] concentrated on the applications to PDE
for the quasilinear evolution equations.

Many researchers have investigated the qualitative properties of fixed-type impulses
in [15,16]. Radhakrishnan et al. [13] studied the impulsive neutral functional evolution
integrodifferential systems with infinite delay. Wu et al. [17] first introduced the existence
and uniqueness of solutions to random impulsive functional differential equations. Anguraj
et al. [2] proved the existence and exponential stability of semilinear functional differential
equations with random impulses under non-uniqueness. Yong and Wu [20] investigated the
solutions of stochastic differential equations with Random impulse using Lipschitz condition.
Wu et al. [19,18] discussed the boundedness and exponential stability of differential equations
with random impulses.

Recently, Balachandran and Park [5] investigated the existence of solutions of quasilinear
integrodifferential evolution equations by Schauder fixed point approach. Balachandran and
Uchiyama [6] discussed the existence of solutions to quasilinear integrodifferential equation
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with nonlocal condition. Radhakrishnan [12] investigated the existence of quasilinear neutral
impulsive integrodifferential equations in Banach space. Radhakrishnan et al. [14] discussed
about the various types of equations such as semilinear, quasilinear and its controllability
results. For the application of analytic semigroups to related quasilinear evolution equations
we refer to Amann [1] and references therein. The study of random impulsive differential
equations has attracted a great attention nowadays.

Motivated by this fact, in this paper we make a first attempt to study the existence and
uniqueness results for random impulsive quasilinear neutral functional differential evolution
equation by using the fixed point approach.

2. PRELIMINARIES

Consider the Cauchy problem for the quasilinear initial value problem

u′(t) + A(t, u)u(t) = f (t, u(t)), 0 ≤ s ≤ t ≤ T,

u(s) = v,

}
(2.1)

with an operator −A(t, u) which is the infinitesimal generator of an analytic semigroup on a
Banach space X. We make the following assumptions.

(E1) The domain D(A(t, u(t))) = D of A(t, u(t)), 0 ≤ t ≤ T is dense in X.
(E2) For t ∈ J , the resolvent R(λ; A(t, u(t))) = (λI − A(t, u(t)))−1, of A(t, u(t)) exists for

all λ with Reλ ≤ 0 and there is a constant C such that for Reλ ≤ 0, t ∈ J ,

∥R(λ; A(t, u(t)))∥ ≤ C[∥λ∥ + 1]−1.

(E3) There exists constants L and 0 ≤ α ≤ 1 such that for t, s ∈ J,

∥A(t, u(t)) − A(s, u(t))∥ ≤ L|t − s|α.

Theorem 2.1 ([11]). Let B ⊂ X and A(t, b), (t, b) ∈ I ×B be a family of operators satisfying
(E1)–(E3), there is a unique evolution system Su(t, s) on 0 ≤ s ≤ t ≤ T, satisfying

(i) Su(t, s) ≤ M0, for 0 ≤ s ≤ t ≤ T .
(ii) For 0 ≤ s ≤ t ≤ T , Su(t, s) : X → D and t → Su(t, s) is strongly differentiable in

X. The derivative ∂
∂t Su(t, s) ∈ B(X) and it is strongly continuous on 0 ≤ s ≤ t ≤ T .

Moreover,

∂

∂t
Su(t, s) + A(t, u)Su(t, s) = 0, for 0 ≤ s ≤ t ≤ T,

∥
∂

∂t
Su(t, s)∥ = ∥A(t, u(s))Su(t, s)∥ ≤ M0(t − s)−1 and

∥A(t, u)Su(t, s)A−1(s, u)∥ < M0, for 0 < s < t < T .

(iii) For every w ∈ D, t ∈ J , Su(t, s)w is differentiable with respect to s on 0 ≤ s ≤ t ≤ T ,

∂

∂s
Su(t, s)w = −Su(t, s)A(s, u(s))w.
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(iv) Su(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T and

Su(t, r ) = Su(t, s)Su(s, r ), for r ≤ s ≤ t,

Su(t, t) = I.

From the condition (E2) and the fact that D is dense in X implies that for every t ∈ [0, T ],
−A(t, u(t)) is the infinitesimal generator of an analytic semigroup.

Define the classical solution of (2.1) as a function u : [s, T ] → X which is continuous for
s ≤ t ≤ T , continuously differentiable for s < t ≤ T , u(t) ∈ D for s < t ≤ T , u(s) = v

and u′(t) + A(t, u)u(t) = f (t, u(t)) holds for s < t ≤ T . We will call the function u(t) as a
solution of the initial value problem (2.1) if it is a classical solution of the problem.

Theorem 2.2. Let A(t, u(t)), 0 ≤ t ≤ T satisfy the conditions (E1)–(E3) and let Su(t, s)
be the evolution system in Theorem 2.1 If f is Holder continuous on [0, T ], then the initial
value problem (2.1) has, for every v ∈ X, a unique solution u(t) given by

u(t) = Su(t, s)v +

∫ t

s
Su(t, τ ) f (τ, u(τ ))dτ.

The proofs of the above theorems can be found in (Ref. [11]).
A function u ∈ C(I : X) such that u(t) ∈ D(A(t, u(t))) for t ∈ (0, a], u ∈ C1((0, a] : X)

and satisfied (2.1) in X is called a classical solution of (2.1) on I. Further there exists a
constant K > 0 such that for every u, v ∈ C(I : X) with values in B and every w ∈ E we
have

∥Su(t, s)w − Sv(t, s)w∥ ≤ K∥w∥Y

∫ t

s
∥u(τ ) − v(τ )∥dτ.

3. EXISTENCE AND UNIQUENESS

In this section, we discuss about the existence of solutions for quasilinear differential
equation with random impulsive condition by using fractional powers of operators and the
Schauder fixed point approach.

Let r > 0 and take Br = {v ∈ X; ∥v∥PC < r}, and assume the following conditions.

(A1) The operator A0 = A(0, u0) is a closed operator with domain D, dense in X and
∥(λI − A0)−1

∥ ≤ C1[∥λ∥ + 1]−1, for all λ with Reλ ≤ 0.
(A2) The operator A−1

0 is a completely continuous operator in X.
(A3) For some α ∈ [0, 1) and for any v ∈ Br , the operator A(t, A−α

0 v) is well defined on D
for all t ∈ J . Also for any t, τ ∈ J and for v, w ∈ Br ,

∥[A(t, A−α
0 v) − A(τ, A−α

0 w)]A−1
0 ∥ ≤ C2[|t − τ |

ϵ
+ ∥v − w∥

ρ],

where 0 < ϵ ≤ 1, 0 < ρ ≤ 1.
(A4) For every t, τ ∈ J and v, w ∈ Br ,

∥g(t, A−α
0 v) − g(τ, A−α

0 w)∥ ≤ C3[|t − τ |
ϵ
+ ∥v − w∥

ρ].

(A5) For every t, τ ∈ J and v, w ∈ Br ,

∥ f (t, A−α
0 v) − f (τ, A−α

0 w)∥ ≤ C4[|t − τ |
ϵ
+ ∥v − w∥

ρ].
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(A6) x0 ∈ D(Aβ

0 ), for any β > α and ∥Aα
0 x0∥ < r .

(A7) maxi,k{
∏k

j=i∥b j (τ j )∥} ≤ M1.

From these assumptions, we have the following [Kato]

(K1) ∥A(t, u)α Su(t, s)∥ ≤ (β − α)−1 N1(t − s)−α, for N1 > 0, 0 ≤ α < β.

(K2) ∥A(0, u)α A(t, u)−α
∥ ≤ M2, for M2 > 0, 0 ≤ t ≤ T .

(K3) ∥Aα
0 [Su(t, 0) − Su(τ, 0)]A(0)−β

∥ ≤ C5|t − τ |
β−α, for t, τ ∈ J , 0 ≤ α < β.

(K4) ∥Aα
0 [Su(t, ξk) − Su(τ, ξk)]∥ ≤ C6|t − τ |

1−α(τ − ξk)−1, for every k = 1, 2, . . ..

For convenience, choose fu(t) = f (t, A−α
0 u(t)) and gu(t) = g(t, A−α

0 u(t)).
Then it follows that the functions fu(t), gu(t) are Holder continuous such that

∥ fu(t) − fu(τ )∥ ≤ C7|t − τ |
µ, for t, τ ∈ J

∥gu(t) − gu(τ )∥ ≤ C8|t − τ |
µ, for t, τ ∈ J,

where µ = min{ϵ, ηρ}, 0 < η < β − α.

Lemma 3.1. Let the functions fu(t) and gu(t) are continuous on [0, T ]. Then for any
0 ≤ t2 ≤ t1 ≤ T , 0 ≤ α < β, the following inequality holds.

∥Aα
0

[∫ t1

0
Su(t1, s) fu(s)ds −

∫ t2

0
Su(t2, s) fu(s)ds

]
∥

≤ C9|t1 − t2|1−α
(
|log(t1 − t2)| + 1

)
∥Aα

0

[∫ t1

0
Su(t1, s)A(s, u)gu(s)ds −

∫ t2

0
Su(t2, s)A(s, u)gu(s)ds

]
∥

≤ C10|t1 − t2|1−α
(
|log(t1 − t2)| + 1

)
.

Let us also define the operator Au(t) = A(t, A−α
0 u(t)) such that for u(0) = Aα

0 u0,

Au(0) = A(0, A−α
0 u(0)) = A(0, A−α

0 Aα
0 u0) = A(0, u0) = A0.

Theorem 3.1. If the assumptions (A1)–(A7) are satisfied then there exists at least one
continuously differentiable solution u(t) of Eq. (1.1).

Proof. To study the existence problem, we must introduce a set B of function u(t), for t ∈ J
and a transformation zu = Ωu defined as zu = Aα

0 z, where z is the unique solution (see
Pazy [11], 6.3.1) of the equation

∂

∂t
[z + gu(t)] + Au(t)z = f (t, A−α

0 u(t)),

z(0) = u0,

z(ξk) = bk(τk)A−α
0 u(ξ−

k ), k = 1, 2, . . .

⎫⎪⎪⎬⎪⎪⎭ . (3.1)

We show that Ω has a fixed point, that is, there is a function y ∈ B such that Ω y = y and so
u = A−α

0 y is the required solution of our Eq. (1.1).
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Define the set

B = {u ∈ E : ∥u(t) − u(τ )∥ ≤ C11|t − τ |
η, for t, τ ∈ J, u(0) = Aα

0 u0},

where η is any number satisfying 0 < η < β − α and E is a Banach space PC(J : X)
with usual sup norm. From assumption (A6), and the definition of B it follows that if T is
sufficiently small (depending on C9, η, ∥Aα

0 u0∥), then ∥u(t)∥C < r, for t ∈ J.

Since Au(t) is well defined, it satisfies the condition

∥ (Au(t) − Au(τ ))A−1
0 = C2[|t − τ |

ϵ
+ ∥u(t) − u(τ )∥ρ

PC] ∥

≤ C2[|t − τ |
ϵ
+ C11|t − τ |

ηρ]

≤ C12|t − τ |
µ,

where µ = min{ϵ, ηρ} and it follows that for every t ∈ J and λ with Reλ ≤ 0,

∥[λI − Au(t)]−1
∥ ≤ C13[|λ| + 1]−1

∥[Au(t) − Au(τ )]A−1
u (s)∥ ≤ C14|t − τ |

µ, for every t, τ, s ∈ J.

By the assumptions, there exists a fundamental solution Su(t, s) corresponding to Au(t),
and all estimates for the fundamental solutions derived in Theorem 2.1 hold uniformly with
respect to u ∈ B. Since, fu(0) = f (0, A−α

0 u(0)) and gu(0) = g(0, A−α
0 u(0)) is independent

of u, we have from the above inequalities ∥ fu(t)∥ ≤ M3 and ∥gu(t)∥ ≤ M4, where M3 > 0
and M4 > 0 from lemma (3.1) and using (K3) & (K4) we get

∥

[ ∞∑
k=0

k∑
i=0

k∏
j=i

b j (τ j )Aα
0

(∫ ξi

ξi−1

Su(t1, s) fu(s)ds −

∫ ξi

ξi−1

Su(t2, s) fu(s)ds
)]

∥

+ ∥

[ ∞∑
k=0

Aα
0

(∫ t1

ξk

Su(t1, s) fu(s)ds −

∫ t2

ξk

Su(t2, s) fu(s)ds
)]

∥

− ∥

[ ∞∑
k=0

k∑
i=0

k∏
j=i

b j (τ j )Aα
0

( ∫ ξi

ξi−1

A(s, u)Su(t1, s)gu(s)ds

−

∫ ξi

ξi−1

A(s, u)Su(t2, s)gu(s)ds
)]

∥

− ∥

[ ∞∑
k=0

Aα
0

(∫ t1

ξk

A(s, u)Su(t1, s)gu(s)ds −

∫ t2

ξk

A(s, u)Su(t2, s)gu(s)ds
)]

∥

− ∥

[ ∞∑
k=0

k∏
j=1

b j (τ j )Aα
0

(
gu(t1) − gu(t2)

)]
∥

≤ M3C15|t1 − t2|1−α(t2 − ξk)−1
+ C16|t1 − t2|1−α[|log(t1 − t2)| + 1]

− M4C17|t1 − t2|1−α(t2 − ξk)−1
− C18|t1 − t2|1−α[|log(t1 − t2)| + 1]

− M1C3|t1 − t2|ϵ .
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We shall check that the operator Ω : B → E defined by

Ωu(t) =

∞∑
k=0

k∏
j=1

b j (τ j )Aα
0 Su(t, 0)[u0 − g(0, u(0))]

−

∞∑
k=0

k∏
j=1

b j (τ j )Aα
0 .g(t, u(t))

−

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )Aα
0

∫ ξi

ξi−1

Su(t, s)A(s, u)g(s, u(s))ds

−

∞∑
k=0

Aα
0

∫ t

ξk

Su(t, s)A(s, u)g(s, u(s))ds

+

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )Aα
0

∫ ξi

ξi−1

Su(t, s) f (s, u(s))ds

+

∞∑
k=0

Aα
0

∫ t

ξk

Su(t, s) f (s, u(s))ds,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

has a fixed point. This fixed point is the solution of Eq. (1.1). Here B is closed convex and
bounded set of E. First we prove that Ω maps B into itself. Obviously Ωu(0) = Aα

0 u0. For
any 0 ≤ t1 ≤ t2 ≤ T , 0 ≤ α ≤ β ≤ 1, we get

∥Ωu(t1) − Ωu(t2)∥

=

∞∑
k=0

k∏
j=1

∥b j (τ j )∥∥A−β

0 (u0 − g(0, u(0)))∥∥Aα
0 [Su(t1, 0) − Su(t2, 0)]Aβ

0 ∥

+

∞∑
k=0

k∏
j=1

∥b j (τ j )∥∥Aα
0 .[g(t1, u(t1)) − g(t2, u(t2))]∥ +

∞∑
k=0

k∑
i=1

∥

k∏
j=i

b j (τ j )∥

× ∥Aα
0

∫ ξi

ξi−1

[Su(t1, s)A(s, u)g(s, u(s)) − Su(t2, s)A(s, u)g(s, u(s))]ds∥

+

∞∑
k=0

∥Aα
0 [

∫ t1

ξk

Su(t1, s)A(s, u)g(s, u(s))ds −

∫ t2

ξk

Su(t2, s)A(s, u)g(s, u(s))ds]∥

+

∞∑
k=0

k∑
i=1

∥

k∏
j=i

b j (τ j )∥∥Aα
0

∫ ξi

ξi−1

[Su(t1, s) − Su(t2, s)] f (s, u(s))ds∥

+

∞∑
k=0

∥Aα
0 [

∫ t1

ξk

Su(t1, s) f (s, u(s))ds −

∫ t2

ξk

Su(t2, s) f (s, u(s))ds]∥.

For sufficiently small T ,

∥Ωu(t1) − Ωu(t2)∥ ≤ rC19|t1 − t2|β−α
+ M2C20|t1 − t2|1−α(t2 − ξk)−1

+ C21|t1 − t2|1−α
+ M3C22|t1 − t2|1−α(t2 − ξk)−1

+ C23|t1 − t2|1−α
+ M1C3|t1 − t2|ϵ,

for η < β − α and k = 1, 2, . . .. Hence Ω maps B into itself.
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Next we prove this operator is continuous on the space E. Let u1, u2 ∈ B and set
z1 = A−α

0 Ωu1, z2 = A−α
0 Ωu2, then

∂

∂t
[zm + gum (t)] + Aum (t)zm = fum (t),

zm(0) = u0, m = 1, 2, . . .

z(ξk) = bk(τk)A−α
0 um(ξ−

k ), k = 1, 2, . . .

⎫⎪⎪⎬⎪⎪⎭ . (3.3)

Therefore,

∂

∂t
[z1 − z2 + gu1 (t) − gu2 (t)] + Au1 (t)(z1 − z2)

= [Au2 (t) − Au1 (t)]z2 + fu1 (t) − fu2 (t).

It is easy to see that the function Au1 (t)z2(t) and A0 A−1
u2

are uniformly Holder continuous, and
so A0z2(t) = [A0 A−1

u2
]Au1 (t)z2(t) is uniformly Holder continuous. Similarly the functions

fu1 (t) − fu2 (t) and gu1 (t) − gu2 (t), are also uniformly Holder continuous in [δ, T ], δ > 0.
Hence we have

z1(t) − z2(t)

=

∞∑
k=0

k∏
j=1

b j (τ j )Su1 (t, δ)[z1(δ) − z2(δ)] + [gu1 (0) − gu2 (0)]

−

∞∑
k=0

k∏
j=1

b j (τ j )[gu1 (δ) − gu2 (δ)]

−

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )
∫ ξi

ξi−1

Au1 (s)Su1 (t, s)[gu1 (s) − gu2 (s)]ds

−

∞∑
k=0

∫ t

ξk

Au1 (s)Su1 (t, s)[gu1 (s) − gu2 (s)]ds

+

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )
∫ ξi

ξi−1

Su1 (t, s)

×

(
[Au2 (s) − Au1 (s)]z2(s) + [ fu1 (s) − fu2 (s)]

)
ds

+

∞∑
k=0

∫ t

ξk

Su1 (t, s)[Au2 (s) − Au1 (s)]z2(s) + [ fu1 (s) − fu2 (s)]ds.

Since Aα
0

∫ t
0 Su2 (t, s) fu2 (s)ds is bounded, it follows that ∥A0z2(t)∥ ≤ C24T β−α.

Hence we can take δ → 0 in the above equation, we have

z1(t) − z2(t) =

∞∑
k=0

k∏
j=1

b j (τ j )Su1 (t, 0)[gu1 (0) − gu2 (0)]

−

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )
∫ ξi

ξi−1

Au1 (s)Su1 (t, s)[gu1 (s) − gu2 (s)]ds
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−

∞∑
k=0

∫ t

ξk

Au1 (s)Su1 (t, s)[gu1 (s) − gu2 (s)]ds

+

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )

×

∫ ξi

ξi−1

Su1 (t, s)
(

[Au2 (s) − Au1 (s)]z2(s) + [ fu1 (s) − fu2 (s)]
)

ds

+

∞∑
k=0

∫ t

ξk

Su1 (t, s)[Au2 (s) − Au1 (s)]z2(s) + [ fu1 (s) − fu2 (s)]ds.

Since z1 = A−α
0 Ωu1 and z2 = A−α

0 Ωu2 and from (A3)–(A6), it follows that

∥Ωu1(t) − Ωu2(t)∥

≤

∞∑
k=0

k∏
j=1

∥b j (τ j )∥∥Aα
0 Su1 (t, 0)[gu1 (0) − gu2 (0)]∥

+

∞∑
k=0

k∑
i=1

k∏
j=i

∥b j (τ j )∥
∫ ξi

ξi−1

∥Aα
0 Au1 (s)Su1 (t, s)[gu1 (s) − gu2 (s)]∥ds

+

∞∑
k=0

∫ t

ξk

∥Aα
0 Au1 (s)Su1 (t, s)[gu1 (s) − gu2 (s)]∥ds

+

∞∑
k=0

k∑
i=1

k∏
j=i

∥b j (τ j )∥
∫ ξi

ξi−1

∥Aα
0 Su1 (t, s)[Au2 (s) − Au1 (s)]z2(s)∥ds

+

∞∑
k=0

k∑
i=1

k∏
j=i

∥b j (τ j )∥
∫ ξi

ξi−1

∥Aα
0 Su1 (t, s)[ fu1 (s) − fu2 (s)]∥ds

+

∞∑
k=0

∫ t

ξk

∥Aα
0 Su1 (t, s)[Au2 (s) − Au1 (s)]z2(s) + [ fu1 (s) − fu2 (s)]∥ds

≤ M1∥Aα
0 [Su1 (t, 0) − Su1 (τ, 0)]∥∥gu1 (0) − gu2 (0)∥

+ M1∥Aα
0 Su1 (τ, 0)∥∥gu1 (0) − gu2 (0)∥

+ C10|t − ξk |
1−α(|log(t − ξk)| + 1)∥u1 − u2∥

ρ

+ C11|t − ξk |
1−α(|log(t − ξk)| + 1)∥u1 − u2∥

ρ
+ M1C2∥u1 − u2∥

ρ
|t − ξk |

µ

≤

(
C25|t − τ |

β−α
+ C26|t − ξk |

1−α(|log(t − ξk)| + 1) + C27|t − ξk |
µ
)

× ∥u1 − u2∥
ρ . (3.4)

This shows that Ω : B → E is continuous. We shall prove that this operator is completely
continuous. We now claim that the set ΩB is contained in a compact subset of E. Also, the
function u(t) of B is uniformly bounded and equicontinuous. By Arzela–Ascoli’s theorem, it
is sufficient to show that, for each t the set {Ωu(t) : u ∈ B} is contained in a compact subset
of X. For each t ∈ [0, T ], we can write Ωu(t) = A−ω

0 Aω
0 Ωu(t), (0 < ω < β − α). Since

{Aω
0 Ωu(t) : u ∈ B} is a bounded subset of X, and since A−ω

0 is completely continuous, it
follows that the set {Ωu(t) : u ∈ B} is contained in a compact subset of X. Therefore, by the
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Schauder fixed point theorem, Ω has a fixed point z ∈ B such that Ω z(t) = z(t) which is a
solution of Eq. (3.1) satisfies

z(t) =

∞∑
k=0

k∏
j=1

b j (τ j )Aα
0 Sz(t, 0)[u0 − gz(0)] −

∞∑
k=0

k∏
j=1

b j (τ j )Aα
0 gz(t)

−

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )Aα
0

∫ ξi

ξi−1

Sz(t, s)A(s, u, )gz(s)ds

+

∞∑
k=0

Aα
0

∫ t

ξk

Sz(t, s) fz(s)ds

−

∞∑
k=0

Aα
0

∫ t

ξk

Sz(t, s)A(s, u)gz(s)ds

+

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )Aα
0

∫ ξi

ξi−1

Sz(t, s) fz(s)ds.

Then u(t) = A−α
0 z(t) satisfies

u(t) =

∞∑
k=0

k∏
j=1

b j (τ j )SAα
0 u(t, 0)[u0 − gAα

0 u(0)] −

∞∑
k=0

k∏
j=1

b j (τ j )gAα
0 u(t)

−

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )
∫ ξi

ξi−1

SAα
0 u(t, s)A(s, u)gAα

0 u(s)ds

−

∞∑
k=0

∫ t

ξk

SAα
0 u(t, s)A(s, u)gAα

0 u(s)ds

+

∞∑
k=0

k∑
i=1

k∏
j=i

b j (τ j )
∫ ξi

ξi−1

SAα
0 u(t, s) f Aα

0 u(s)ds +

∞∑
k=0

∫ t

ξk

SAα
0 u(t, s) f Aα

0 u(s)ds.

Thus, u(t) is the solution of our Eq. (1.1). Hence the proof is completed. □

Theorem 3.2 ([5]). If the assumptions (A1)–(A7) are satisfied with ρ = 1 then the assertion
of Theorem 3.1 is valid and the solution is unique.

Proof. If ρ = 1, then from Eq. (3.4), shows that for sufficiently small T , Ω is Lipschitz
continuous which is a particular case of Holder continuous, that is, ∥Ωu1(t) − Ωu2(t)∥ ≤

N∥u1 − u2∥ for some N < 1. Then by the Banach contraction principle, Ω has a unique
fixed point. □

4. APPLICATION

The purpose of this section is to provide an example to show applications of our obtained
results.
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Example 4.1. Consider the following nonlinear parabolic random impulsive differential
equation

∂u
∂t

+

∑
|α|=2n

aα(x, t, u, Du, . . . , D2n−1u)Dαu = f (x, t, u, Du, . . . , D2n−1u),

∂ j u
∂v j

= 0 on ST = {(x, t) : x ∈ ∂Ω , 0 ≤ t ≤ T }, 0 ≤ j ≤ n − 1,

u(x, 0) = 0 on Ω0 = {(x, 0) : x ∈ ∂Ω},

u(ξk) = qk(τk)u(ξ−

k ), k = 1, 2, . . . ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.1)

in a cylinder QT = Ω × (0, T ) with coefficients in Q̄T , where Ω is a bounded domain in
Rn , ∂Ω the boundary of Ω , v is the outward normal. Here the parabolicity means that for any
vector z ̸= 0 and for arbitrary values of x, t, u, Du, . . . , D2n−1u,

(−1)nRe{
∑

|α|=2n

aα(x, t, u, Du, . . . , D2n−1u)zα
} ≥ C |z|2m, C > 0.

Assume that τk is the random variable defined on Dk ≡ (0, dk) for k = 1, 2, . . ., where
0 < dk < +∞. Further, assume that τi and τ j are independent of each other as i ̸= j for
i, j = 1, 2, . . .; ξ0 = t0; ξk = ξk−1 + τk , for k = 1, 2, . . . and maxi,k

∏k
j=i∥qk(τ j )∥2 < ∞.

Here t0 ∈ Rη is an arbitrarily given real number.
If u0(x) ∈ C2n−1(Ω̄ ), then A0u =

∑
|α|=2naα(x, t, u, Du, . . . , D2n−1u)Dαu is a strongly

elliptic operator with continuous coefficients. So the condition (A1) holds. Let us take X to
be L p(Ω ), 1 < p < ∞. Then A−1

0 maps bounded subsets of L p(Ω ) in to bounded subsets of
W 2n,p(Ω ), so it is a completely continuous operator in L p(Ω ). Further, if (2n −1)/2n < α <

1, then |Dβ A0 − αu|
Ω
0,p ≤ C |u|

Ω
0,p, 0 ≤ |β| ≤ 2n − 1, where C depends only on a bound

on the coefficients A0, on a module of strong ellipticity and on a modulus of continuity of the
leading coefficients. Here the norm is defined as

|u|
Ω
0,p = {

∑
|α|≤ j

∫
Ω

|Dαu(x)|pdx}
1
p

for any nonnegative integer j and a real number p, 1 ≤ p < ∞. It follows that if f and aα

are continuously differentiable in all variables, then (A3)–(A4) hold with σ = ρ = 1. Hence
there exist fundamental operator solution Sx (t, s) for Eq. (4.1). The nonlinear function f
satisfies the conditions (A4)–(A6). Hence by the above theorem there exists a local solution
for Eq. (4.1).
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