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Abstract. A nonlinear modified form of Bass model involving the interactions of non-
adopter and adopter populations has been proposed to describe the process of diffusion
of a new technology in the presence of evaluation period (time delay). The basic aim is
to model the diffusion of those technologies which require higher investments, and which
require government subsidies for promotions in the various markets. We use government
incentives and the costs in the form of external factors, as well as the internal word of
mouth that considerably influence the non-adopters decisions. A qualitative analysis has
been performed to determine the stability of the various equilibria. The Hopf bifurcation
occurs near the positive equilibrium when the time delay passes some critical values. By
applying the normal form theory and the center manifold reduction for functional differential
equations, explicit formulae presenting stability properties of bifurcating periodic solutions
have been computed. Moreover, the intra-specific competition has played an important role
in establishing the maturity stage in the innovation diffusion model. Numerical analysis has
been carried out to justify the correctness of our analytical findings.
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1. INTRODUCTION

To forecast social feedback to different innovations, innovation diffusion models can be
utilized. Many researchers have studied the innovation diffusion models of new products [5,
7–9,12–14,16–18,20,33,34,36,37,41,44,45,48,49]. But due to the advancements of science,
economics, and different techniques, the competition of products in various markets is quite
common. It is an important task to study the market in which n products compete. It is
hard to make an analysis of behavior of higher dimensional systems; for example, there
can be complex behavior and chaotic attractors, and the analysis of the models with higher
dimension is very challenging as compared to two-dimensional models [23,24,50]. Hirsch
investigated the dynamical behavior of the systems having cooperative and competitive
nature, and are commonly used in various applied fields such as epidemiology, economics
and ecology etc. Roger’s innovation adoption process could not be described by the Bass
model in the realistic manner. Bass states that there is always an early impact of external
as well as internal influences on the minds of the population and the maximum number of
adopters can easily be reached [2]. A model representing five stages of the adoption process
was given by Roger’s [41], and through the behavior research, researcher’s found that the
stages of diffusion can be reduced to two-step, i.e., print and electronic media affects the
innovative leaders to accept the new product, these leaders make their influence people to
use the product [10,11,25,35]. A number of delayed models explaining the evaluation stage
of a product are proposed by researchers [16,27,28,51]. Beretta et al. have also considered
the evaluation stage for explaining the diffusion process [3] and applied mathematical
methods to study stability switches and find periodic solutions for certain parameters. Wang
et al. [51] proposed models with and without evaluation period and explained the stages of
information, evaluation and the final decision. They have supposed a system which involves
the information and final decision-making stages and find that the model admits a threshold
below which the process is unsuccessful and above which the innovation diffusion will be
successful. A mathematical study is proposed to describe the dynamics of adopters of a
single product in two distinct patches [54]. The stability of an innovation diffusion model
having competitive nature is explained in [50,58]. For distinct n products, the global analysis
is discussed by researchers in [56]. A model for three competitive innovations in a market
with nonlinear acceptance is discussed in [57]. For a variable size market, a binomial market
compartmental innovation diffusion model of the entrance exit demographic processes was
investigated by F. Centrone [6], Shukla et al. proved that the product diffusion process is
influenced by various demographic processes and specifically explained the role of external
influences, to make the equilibrium level of adopter density at higher speed [47]. Kumar
et al. in [29] analyzed the effect of an evaluation period and proved that it is responsible
for periodic orbits in the form of limit cycle via Hopf bifurcation in the innovation diffusion
system. Wijeratne et al. in [55] discussed the modified form of Bass model by incorporating a
diffusion term and a delay and observed the negative impact of initiation parameter (negative-
word-of-mouth) which results in the existence of Hopf bifurcation.

Price [40] firstly suggested that the higher values of products affect the adoption of a latest
technology until it is properly upgraded. Moreover, the time period between the invention of a
latest technology and its final adoption is often associated with the distrust about the technical
changes in the future, or the distrust developed by more technical advancements. Models of
technical distrust argue that if there is a faster technological improvement, then there always
is a very opportunity that the industry can regain its initial expenditure which has been used
to evolve the technology. Fanelli et al. in [15] recommended another model with time delay
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for presenting the stages of the adoption process.

d P(t)
dt

= δA(t) + γ A(t)A(t − τ ) −

[
eη(i−c)

+ αA(t − τ )
]

P(t − τ )e−ρτ ,

d A(t)
dt

=

[
eη(i−c)

+ αA(t − τ )
]

P(t − τ )e−ρτ
− δA(t) − γ A(t)A(t − τ ).

where the number of potential adopters and adopters are given by P(t) and A(t) respectively.
The authors have analyzed the model with the assumption of constant population, i.e., A(t)+
P(t) = C , (C is a constant). By applying Poincare–Lyapunov theorem, the equilibrium point
A∗
τ is proved as locally stable, whereas Ballestra et al. in [1] analyzed the same model system

and established the stability switches in the model, and justified the stability properties of
periodic orbits. In these studies, authors have considered a fixed number of potential adopter
population. It means no new individual can become the member of the system.

Motivated by the above developments in the field of innovation diffusion and extending
our previous work [29,30], we proposed a more realistic nonlinear mathematical model with
delay and constant input of population to explain the innovation diffusion process. We seek
to model the technologies which are used for the production of renewable energy such as
solar cells. These are made by using a variety of materials viz., silicon, solar dyes, solar inks,
etc. Also, the latest solar cells use lenses or mirrors to concentrate sunlight onto a very small
piece of high efficiency photovoltaic material. The cost of photovoltaic material is normally
very high and hence the manufacturing cost of these technologies are on higher side, but
incentives are significantly less. Thus, the innovation diffusion process is usually blocked at
the initial stage and technology cannot take off. These factors lead us to assume the factor of
government support (incentives) in the form of external influences.

It is assumed here that the members are well exposed to the technology and get awareness
about the positive and negative of the new innovation (technology). We assume that the
potential adopters are entering the system at the growth rate of r and the total population
comprises of the individuals who have already established their manufacturing units for the
technology (technology developers) and the other class comprises of those persons who are
still taking their time to evaluate the technology (potential technology developers). Let A(t)
be defined as a class of persons who have established their technological units (adopters), and
those who are still evaluating the technology defined as non-adopter and are denoted by N (t)
at time t . Further, if c represents the production costs of the innovation, and i is some type of
government incentive needed to promote the innovative technology, so we assume that eη(i−c)

is the external factor applied on potential technology adopter’s, where η, c, and i are positive
constants. The factor of government subsidies has helped us to decide the form of external
factor by taking well into consideration its utility for the environment friendly society. Let α
be the internal word of mouth of technology developers with potential technology developers,
and it reflects the imitation effect (interpersonal communication). Also, let δ be the death rate
(or emigration rate) of the populations and v is the rate at which the technology developers
going back to potential technology developers N (t), who may join later on. In the light of
above facts, we state the model in the form of difference–differential equations:

d N (t)
dt

= r (N0 − N )+ γ A(t)A(t − τ ) −

(
eη(i−c)

+ αA(t − τ )
)

N (t − τ )e−(δ+ϱ)τ

+ vA(t) − δN (t),

(1)
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d A(t)
dt

=

(
eη(i−c)

+ αA(t − τ )
)

N (t − τ )e−(δ+ϱ)τ

−(δ + v)A(t) − γ A(t)A(t − τ ), (2)

Here τ represents the average time for potential technology adopter to make evaluation,
i.e., to evolve (develop) it or not. Here, the knowledge about the technology take place at t −τ
time and during the period [t − τ, t], the potential technology developers decide whether to
evolve the technology or not. In other words, the potential developers are capable to examine
the technology in order to make the final adoption. Moreover, the probability of the survival
of a potential technology developers through the evaluation stage has been considered as
e−δτ . Also, here ϱ is supposed as the rate at which the population left the evaluation stage
because of the negative approach of the population about the adoption after the test period,
then e−ϱτ is the portion that the people are having interest in the innovation after completing
the testing period. Therefore, the probability of success through the evaluation stage, i.e., the
probability that a potential technology developer who has awareness about the technology at
time t − τ does not die and does not lose interest in that particular technology at time t is
taken as e−(δ+ϱ)τ . The factor

[
eη(i−c)

+ αA(t − τ )
]
N (t − τ )e−(δ+ϱ)τ represents the number

of technology developers who move from the “non-adopter class” to the “adoption class”,
i.e., those who have knowledge about the technology at t − τ and make final decision to
adopt the technology.

The novelty of this work lies in the fact that we have analyzed the role of intra-specific
competition between the technology developers at time t and with the technology developers
at time t − τ , which determinants for the growth of A(t). This competition coefficient is
detrimental for the growth of technological units. Let γ be the contact rate of competition
coefficient between the technology developers in the present time t , and those at time t − τ .
It is really affecting the growth of technology developers due to advertisement such that it
decreases as the number of technology developers increases. The parameters supposed here
are to be considered as constants with positive values.

The system (1)–(2) may be rewritten as follows:
d N (t)

dt
= r (N0 − N )+ γ A(t)A(t − τ ) −

(
κ + αA(t − τ )

)
× N (t − τ )h(τ ) + vA(t) − δN (t),

(3)

d A(t)
dt

=
(
κ + αA(t − τ )

)
N (t − τ )h(τ ) − (δ + v)A(t) − γ A(t)A(t − τ ), (4)

where κ = eη(i−c) and h(τ ) = e−(δ+ϱ)τ , which is a function of delay (τ ).
Here, the system (3)–(4) will be studied with the initial conditions

N (θ ) = φ1(θ ), A(θ ) = φ2(θ ), φ1(0) > 0, φ2(0) > 0, (5)

where φ1(θ ), φ2(θ ) are continuous bounded function in the interval [−τ, 0] and φ1(θ ),
φ2(θ ) ∈ C([−τ, 0],R2

+
), the Banach space of continuous functions mapping the interval

[−τ, 0] into R2
+

, where

R2
+

= {(N , A) : N ≥ 0, A ≥ 0}.

By applying the fundamental theory of functional differential equations [21], that system
(3)–(4) has a unique solution (N (t), A(t)) justifying the initial conditions (5). It is quite
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convenient to prove that the solutions of the model (3)–(4) with respect to initial conditions
are defined on [0,+∞) and remain positive for all t ≥ 0.

The article is organized as follows. Section 2 deals with basic preliminaries such as
positivity and boundedness of solutions. In Section 3, we prove the existence of the various
equilibria, exclusively the existence of interior equilibrium. The stability properties of various
equilibrium points, along with the global stability of non-negative equilibrium point for τ = 0
have also been mentioned in this section. In Section 4, we analyzed the delayed innovation
diffusion model for the existence of Hopf bifurcation around the positive equilibrium E∗

with delay as bifurcation parameter. The stability properties of Hopf bifurcating periodic
solutions are established by applying the technique based upon center manifold theorem and
normal form theory in Section 5. Section 6 is related to the verification of analytical results
with the help of numerical simulations. The key findings of our mathematical model and
their importance with respect to innovation diffusion modeling has been explained in the
concluding Section 7.

2. POSITIVITY AND BOUNDEDNESS OF SOLUTIONS

Setting X = (N , A)T
∈ R2, we may write (3)–(4) in vector form as

F(X ) = [F1(X ), F2(X )]T

Let R2
= [0,+∞)2 be nonnegative octant in R2, where F : C+ → R2 and F ∈ C∞(R2).

Then (3)–(4) is rewritten as below:

Ẋ = F(X ),

and X (0) = X0 ∈ R2
+

. It is convenient to check in F(X ) that whenever choosing X (0) ∈ R2
+

so that X i = 0 then Fi (X )|Xi =0 ≥ 0, (i = 1, 2). Now any solution of Ẋ = F(X ), with
X0 ∈ R2

+
, say X (t) = X (t, X0), is such that X (t) ∈ R2

+
for all t > 0 [38].

Next, we present boundedness of solutions in the system (3)–(4).

Lemma 2.1. The solutions of the system (3)–(4) with conditions (5) in R2
+

are uniformly
bounded.

Proof. Let us assume
(
N (t), A(t)

)
be an arbitrary solution of the model (3)–(4).

Define V (t) = N (t) + A(t), for all t > 0.
Thus, we shall get

dV
dt

+ δV ≤ r N0 δ > 0,

for any δ > 0.
Now integrating the inequality and applying the theory of differential inequalities due to

Birkhoff and Rota [4], we have

0 ≤ V
(
N , A

)
≤

r N0

δ
+

V
(
N (0), A(0)

)
eδt

.

When t → ∞, we obtain 0 ≤ V
(
N , A

)
≤

r N0
δ

.
Therefore, all the solutions of (3)–(4) that initiating at R2

+
are confined in the region

Φ =
{
(N (t), A(t)) : 0 ≤ V (t) ≤

r N0
δ

+ ϵ
}
, for small ϵ > 0 and t → ∞. Hence, we may
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Fig. 1. Non-existence and existence of A∗ for parametric values r = 0.5245, N = 10, γ = 0.1, κ = 1.003,
α = 0.4253, v = 0.12. (a) when δ ≥ 0.31 and (b) when δ < 0.31.

say that all the solutions of the system (3)–(4) are positive and uniformly bounded in Φ for
all positive times. □

3. STABILITY PROPERTIES OF VARIOUS EQUILIBRIA

Regardless of the various parameter’s, the model (3)–(4) maintain three appropriate
equilibrium points in the closed positive quadrant of R2

+
= {(x1, x2) : xi > 0, 1 ≤ i ≤ 2}:

(i) the trivial equilibrium E0(0, 0); At E0(0, 0), the system is locally stable provided δ > r ,
i.e., death rate of the population is more than the intrinsic growth rate of the non-adopter
population and this condition is obvious.

(ii) the adopter free equilibrium E ′(N ′, 0), where N ′
=

r N0
r+δ+κh(τ ) . It is easy to see that

N ′ > 0 and the necessary and sufficient condition for local asymptotic stability of equilibrium
point E ′ is v > αN ′h(τ )e−λτ .

(iii) the positive equilibrium point E∗(N ∗, A∗), where N ∗
=

r N0−A∗δ

r+δ
and A∗ are the roots

of the equation

ψ1 A∗2
+ ψ2 A∗

+ ψ3 = 0,

such that A∗
=

−ψ2±

√
ψ2

2 −4ψ1ψ3

2ψ1
is positive provided r > 1

αN0

{
κδ +

(r+δ)(δ+v)
h(τ )

}
, where⎧⎪⎪⎨⎪⎪⎩

ψ1 =
{
α(r + δ) + αδh(τ )

}
,

ψ2 =
{
(r + δ)(δ + v)

}
+
(
κδ − rαN0

)
h(τ ),

ψ3 = −rκN0h(τ ).

It is not easy to detect the correct unique positive equilibrium in form of various parameters
mandatory for more examination. By analyzing the relative locations of nullclines, we can
easily dream up the non-existence and existence of positive equilibrium point (Fig. 1).

For further results, we inspect the positive equilibrium point. So, we assume here that
N ∗ > 0, A∗ > 0 for any time t > 0.
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3.1. Characteristic equation

Linearize the system (3)–(4) around E∗(N ∗, A∗) presents the following set of equations,⎧⎪⎨⎪⎩
d X
dt

= a11 X (t) + a12 X (t − τ ) + a13Y (t) + a14Y (t − τ ),

dY
dt

= a21 X (t − τ ) + a22Y (t) + a23Y (t − τ ),
(6)

where a11 = −(r + δ), a12 = −
(
κ + αA∗

)
h(τ ), a13 = γ A∗

+ v, a14 = −αN ∗h(τ ) + γ A∗,
a21 =

(
κ + αA∗

)
h(τ ), a22 = −(δ + v) − γ A∗, and a23 = αN ∗h(τ ) − γ A∗.

The characteristic equation obtained from variational matrix J ∗ at E∗ has the form

∆(λ, τ ) = ∆1(λ, τ ) + ∆2(λ, τ )e−λτ
= 0, (7)

where{
∆1(λ, τ ) = λ2

− (a11 + a22)λ+ a11a22,

∆2(λ, τ ) = (a11a23 + a12a22 − a13a21) − (a12 + a23)λ.

In the absence of evaluation period (τ = 0), Eq. (7) becomes:

λ2
− tr (J ∗)λ+ det(J ∗) = 0, (8)

Here tr (J ∗) = a11 + a22 + a12 + a23, and det(J ∗) = a11a22 + a11a23 + a12a22 − a13a21.
By applying Routh–Hurwitz criterion, all the roots of Eq. (8) will have negative real parts,
i.e., the positive equilibrium E∗ is locally asymptotically stable (LAS) if

(H0) : tr (J ∗) < 0 and det(J ∗) > 0 hold.

Remark 1. The condition (H0) in parametric forms implies that if N0 <
1

rα

{
2γ (r + δ) +

αδ
}

A∗ is satisfied, then the model (3)–(4) remained locally stable around E∗.

Moreover, let us investigate about the global stability of E∗(N ∗, A∗) without any
evaluation period (τ = 0) in the following lemma by considering an important result
from [52].

Theorem 3.1. Suppose that the positive equilibrium point E∗ exists and the condition (H0)
hold good. Then the system (3)–(4) has no non-constant periodic orbits.

Proof. For τ = 0 and (H0) is true, it is evident that E∗ is asymptotically stable. For more
examination about the non-existence of periodic orbits, i.e., global stability of the equilibrium
E∗, let us make an effort to apply the Dulac criteria to debar the possibility of a limit cycle.
Rename the model equations as follows:

Φ1(N , A) = r (N0 − N )+ γ A2(t) −
(
κ + αA(t)

)
N (t) + vA(t) − δN (t),

Φ2(N , A) =
(
κ + αA(t)

)
N (t) − (δ + v)A(t) − γ A2(t).

Suppose the Dulac function as

Ω =
1

N A
,

we shall have
∂(Φ1Ω )
∂N

+
∂(Φ2Ω )
∂A

= −
r N0

N 2 A
−
γ A + v

N 2 −
κ

A2 −
γ

N
< 0.
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Applying the Dulac criteria, the system (3)–(4) with zero delay (τ = 0) does not have any
limit cycle in the region R2

+
, i.e., the system is globally stable. Hence, the result. □

4. ANALYSIS OF THE DELAYED INNOVATION DIFFUSION MODEL

Here, we are to find out the stability of the model (3)–(4) about E∗ with nonzero delay
(τ > 0.)

Theorem 4.1. The positive equilibrium point E∗ is conditionally stable if (H0) holds for the
system (3)–(4).

In order to examine, how delay alters the stability characteristics of the interior equilibrium
E∗, we assume τ as the bifurcation parameter. To observe the instability generated by the
parameter τ , consider that for the positive delay (τ > 0), λ = iω (ω > 0, i =

√
−1) is

an entirely imaginary solution of the exponential Eq. (7). So by using λ = iω into (7) and
following the framework of [43,46] to figure out real and imaginary parts, we get that

(a11a23 + a12a22 − a13a21)cosωτ − (a12 + a23)ωsinωτ = ω2
− a11a22, (9)

− (a12 + a23)ωcosωτ − (a11a23 + a12a22 − a13a21)sinωτ = (a11 + a22)ω. (10)

Eliminating trigonometric functions from (9)–(10), we may obtain a fourth degree equation
in ω as below:

ω4
+[(a11+a22)2

−2a11a22−(a12+a23)2]ω2
+[a2

11a2
22−(a11a23+a12a22−a13a21)2] = 0.

(11)

Let v = ω2, then Eq. (11) becomes

T (v) = v2
+ T1v + T2 = 0, (12)

where

T1 = (a11 + a22)2
− 2a11a22 − (a12 + a23)2,

T2 = a2
11a2

22 − (a11a23 + a12a22 − a13a21)2.

The asymptotic stability conditions are according to Routh–Hurwitz criterion for a
characteristic polynomial of a two-dimensional system [32]. Therefore, all the solutions of
Eq. (12) are negative if T1 > 0 and T2 > 0, i.e., no positive root of (11) exists. Thus, Eq.
(7) will not have pure imaginary solutions. Also (H0) ensure that the solutions of (7) have
negative real parts. Using Rouche’s Theorem, we observe that all solutions of (11) will have
negative real parts too.

For any time delay τ > 0, the positive equilibrium E∗ is locally asymptotically stable.
Hence, we mention the subsequent result.

Theorem 4.2. Consider that T1 > 0 and T2 > 0 hold, so that the interior equilibrium point
E∗

= (N ∗, A∗) is locally asymptotically stable for any time delay τ > 0.
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4.1. Estimation for the length of delay to preserve stability

Here, we will apply Nyquist criterion for getting the estimates on the length of τ for
protecting the stability of model (3)–(4).

Let X (t) = N (t) − Ñ ∗, Y (t) = A(t) − Ã∗, and we linearize the system (3)–(4) about the
equilibrium point E∗(N ∗, A∗).⎧⎪⎨⎪⎩

d X
dt

= −

(
r − δ

)
X −

(
κ + α Ã∗

)
h(τ )Xτ + (γ Ã∗ + v)Y + (γ Ã∗ − α Ñ ∗h(τ ))Yτ ,

dY
dt

=
(
κ + α Ã∗

)
h(τ )Xτ − (δ + v + γ Ã∗)Y + (α Ñ ∗h(τ ) − γ Ã∗)Yτ .

Taking the Laplace transform, we shall get

sL[X ] − X (0) = −

(
r − δ

)
L[u1] −

(
κ + α Ã∗

)
h(τ )L[u1τ ]

+ (γ Ã∗ + v)L[u2] + (γ Ã∗ − α Ñ ∗h(τ ))L[u2τ ] , (13)

sL[Y ] − Y (0) =
(
κ + α Ã∗

)
h(τ )L[Xτ ]

− (δ + v + γ Ã∗)L[Y ] + (α Ñ ∗h(τ ) − γ Ã∗)L[Yτ ] , (14)

where in Eq. (13), we have

L[Xτ ] =

∫
∞

0
e−st X (t − τ ) dt

=

∫ τ

0
e−st X (t − τ ) dt +

∫
∞

τ

e−st X (t − τ ) dt

or on setting t = t1 + τ

L[Xτ ] =

∫ 0

−τ

e−s(t1+τ ) X (t1)t.1 +

∫
∞

0
e−s(t1+τ ) X (t1) dt1

= e−sτ M1 + e−sτ L[X ] ,

where

M1 =

∫ 0

−τ

e−st X (t) dt.

Similarly, in Eq. (14) we have

L[Yτ ] =

∫ 0

−τ

e−s(t1+τ )Y (t1)dt1 +

∫
∞

0
e−s(t1+τ )Y (t1) dt1

= e−sτ M2 + e−sτ L[Y ] ,

where

M2 =

∫ 0

−τ

e−st Y (t) dt.

Thus the system (13)–(14) can be rewritten

(A1 − s I )
(

L[X ]
L[Y ]

)
= A2 ,
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where

A1 =

(
−r − δ −

(
κ + α Ã∗

)
h(τ )e−sτ (γ Ã∗ + v) + (γ Ã∗ − α Ñ ∗h(τ ))e−sτ(

κ + α Ã∗
)
h(τ )e−sτ

−(δ + v + γ Ã∗) + (α Ñ ∗h(τ ) − γ Ã∗)e−sτ

)
,

A2 =

(
X (0) − (M1 + M2)e−sτ

Y (0) − (M1 + M2)e−sτ

)
.

The inverse Laplace of L[X ] and L[Y ] contains terms which rise exponentially with the
increase of time if L[X ] and L[Y ] contain poles with the value of real parts greater than zero.
For E∗(Ñ ∗, Ã∗) to justify the LAS (locally asymptotic stable), a necessary and sufficient
condition is that all poles of L[X ] and L[Y ] have negative real parts. We will apply the
Nyquist criteria, it defines that if the length of arc of a curve encircling the right half plane is
X, the curve L[X ] will encircle the origin a number of times equal to the difference between
the numbers of poles and zeros of L[X ] in the right half plane. This criteria is applied to X
and Y .

Let

G(s) = s2
+ a1s + a0 + (b1s + b0)−sτ

= 0 ,

where a1 = −(a11 +a22), a0 = a11a22, b1 = −(a12 +a23), and b0 = a11a23 +a12a22 −a13a21.
Note that G(s) = 0 is the characteristic equation of model (3)–(4) for equilibrium E∗ and
the zeros are the poles of L[X ] and L[Y ]. The LAS properties of E∗ detailed in [19] are
ℜ G(iv0) = 0 and ℑ G(iv0) > 0, i.e.,

− v2
0 + a0 + b0 cos(v0τ ) + b1v0 sin(v0τ ) = 0 , (15)

a1v0 + b1v0 cos(v0τ ) − b0 sin(v0τ ) > 0 , (16)

where v0 is the smallest positive root for which ℜ [G(iv0)] = 0 and ℑ [G(iv0)] > 0.
To estimate the length of delay, we need the conditions (15) and (16) that are sufficient to
guarantee stability i.e. to estimate τ , we seek an upper bound v+ of v0, without any τ , such
that (16) justifies for v ∈ [0, v+], specifically for v = v0. From Eq. (15) we have

v2
0 = a0 + b0 cos(v0τ ) + b1v0 sin(v0τ ), (17)

such that

v2
0 − |b1| v0 − |a0| + |b0| ≤ 0 . (18)

so if

v+
=

|b1| +

√
|b1|

2
+ 4(|a0| + |b0|)
2

(19)

then v0 ≤ v+. From the inequality (18), we have

v2
0 >

b1v
2
0

a1
cos(v0τ ) −

b0v0

a1
sin(v0τ ) (20)

and from Eq. (17) and inequality (20), we obtain

−

(
b1v0 +

b0v0

a1

)
sin(v0τ ) +

(
b1v

2
0 − b0

a1

)[
cos(v0τ ) − 1

]
< a0 −

b1v
2
0

a1
+ b0 .
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Using the inequalities sin(vτ ) ≤ vτ and 1 − cos(vτ ) ≤ v2τ 2/2, after simplification we get

Θ1τ
2
+ Θ2τ < Θ3,

where

Θ1 =

⏐⏐b1v
2
0 − b0

⏐⏐
2 |a1|

(v+)2,Θ2 =
|a1b1 + b0|

|a1|
v+,Θ3 = a0 −

b1v
2
0

a1
+ b0 ,

when (15) and (16) may be verified. The exact nonnegative value of τ can be given by

τ+ =
1

2Θ1

(
−Θ2 +

√
Θ2

1 + 4Θ1Θ3

)
, (21)

so the Nyquist criteria holds for 0 ≤ τ ≤ τ+, and for preserving the stability, τ+ is the proper
estimation of delay. Here τ+ is entirely depending on the different parameters of the system.
Therefore, we may state the following theorem:

Theorem 4.3. If there exists a time delay τ+ given by Eq. (21), then for any τ such that
0 ≤ τ ≤ τ+, the equilibrium E∗(N ∗, A∗) is locally asymptotically stable.

4.2. Hopf bifurcation analysis

Here, we shall conclude some criterion for Hopf bifurcation to occur in the model (3)–(4)
with the use of the bifurcation parameter τ .

We give the following assumption (H1): Eq. (12) has a minimum of one positive solution.
Without loss of generality, we consider that it has two positive solutions, say v1, v2. Then
Eq. (11) has two positive roots ωi =

√
vi , i = 1, 2. Using λ = iωi in (7), and figure out the

critical value of delay (τ ) for which E∗ will lose its stability is stated as follows:

τ
(k)
i =

1
ωik

arccos

×

[{(ω2
ik

− a11a22)(a11a23 + a12a22 − a13a21) − (a11 + a22)(a12 + a23)ω2
ik

}
(a11a23 + a12a22 − a13a21)2 + (a12 + a23)2ω2

ik

]
+

2kπ
ωik

; k = 0, 1, 2, . . . ; i = 1, 2.

(22)

Let

τ0 = min
{
τ

(0)
i

}
, i = 1, 2, ω0 = ωi0 .

Thus, at τ = τ0, the characteristic equation (7) will have a couple of imaginary values of
the type ±iω0.

The characteristic equation (7) can be rewritten as(
λ2

+ A22λ+ A21
)
+
(
B22λ+ B21

)
e−λτ

= 0, (23)

where⎧⎪⎪⎨⎪⎪⎩
A22 = −(a11 + a22),
A21 = a11a22,

B22 = −(a12 + a23),
B21 = a11a23 + a12a22 − a13a21.
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For the occurrence of Hopf bifurcation in the system (3)–(4), it is necessary to verify

transversality condition, i.e., Re
[

dλ
dτ

]−1

λ=iω0

̸= 0, at τ = τ0. Differentiating Equation (23)

with respect to bifurcation parameter τ , we shall have:[
dλ
dτ

]−1

= −
2λ+ A22

λ(λ2 + A22λ+ A21)
+

B22

λ(B22λ+ B21)
−
τ

λ
.

On solving, we get

Re
[

dλ
dτ

]−1

λ=iω0

= Re
{
−

2λ+ A22

λ(λ2 + A22λ+ A21)

}
λ=iω0

+ Re
{

B22

λ(B22λ+ B21)

}
λ=iω0

=
A2

22 + 2(ω2
0 − A21)

A2
22ω

2
0 + (ω2

0 − A21)2
−

B2
22

B2
22ω

2
0 + B2

21
.

With the help of Eq. (11), we can obtain

A2
22ω

2
0 + (ω2

0 − A21)2
= B2

22ω
2
0 + B2

21.

Therefore,

Re
[

dλ
dτ

]−1

λ=iω0

=
A2

22 + 2(ω2
0 − A21) − B2

22

B2
22ω

2
0 + B2

21

=
T ′(v∗)

B2
22ω

2
0 + B2

21
,

where T (v) = v2
+ T1v + T2, and v∗

= ω2
0. Besides these, Re[dλ/dτ ]−1 and [d Re(λ)/dτ ]

have the same sign. Hence, if (H2) : T ′(v∗) ̸= 0 satisfies, then the transversality condition
holds and the conditions for Hopf bifurcation [22] are verified for τ = τ0, and this is the
minimum positive value of τ (k)

i provided by (22). Hence, as τ crosses over the critical value
τ0, the values of Eq. (7) cross the imaginary axis. The locations of the these values of (7)
help us to find the stability of the zero solution of system (3)–(4). The zero solution is stable
when all the values spot in the complex plane with negative real part; and unstable when real
part is positive. For the examination of roots of the exponential equation (7), the subsequent
lemma is helpful.

Lemma 4.4 (Ruan and Wei [42]). For the transcendental equation

P
(
λ, e−λτ1 , . . . ., e−λτm

)
= λn

+ p(0)
1 λ

n−1
+ · · · + p(0)

n−1λ+ p(0)
n

+

[
p(1)

1 λ
n−1

+ · · · ..+ p(1)
n−1λ+ p(1)

n

]
e−λτ1

+ ..+
[

p(m)
1 λn−1

+ · · · + p(m)
n−1λ+ p(m)

n

]
e−λτm

= 0,

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of

P
(
λ, e−λτ1 , . . . ., e−λτm

)
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in the open right half-plane can change, and one zero appears only on or crosses the
imaginary axis.

Based on the lemma 4.4, and the analysis of Hopf bifurcation, we may define the following
theorem:

Theorem 4.5. For the system (3)–(4), if the conditions (H0) − (H2) are satisfied, then the
nonnegative equilibrium E∗(N ∗, A∗) is LAS for τ ∈ [0, τ0) and becomes unstable for τ > τ0,
model (3)–(4) experiences Hopf bifurcation at E∗(N ∗, A∗) for τ0, and

τ0 =
1
ω0

arccos

×

[{
(ω2

0 − a11a22)(a11a23 + a12a22 − a13a21) − (a11 + a22)(a12 + a23)ω2
0

}
(a11a23 + a12a22 − a13a21)2 + (a12 + a23)2ω2

0

]
.

5. STABILITY OF THE HOPF BIFURCATING PERIODIC SOLUTIONS

Juneja et al. [26] established the stability properties of the periodic solutions by applying
the results of [31]. We shall investigate the direction of Hopf bifurcation and the stability of
bifurcating periodic solutions of the system (3)–(4) at τ = τ0. More briefly, we shall employ
results developed by Hassard et al. in [22], for the computation of conjugate pair of complex
values of Eq. (7) on the center manifold. It is worth mentioning that Wang et al. [53] and
Panja et al. [39] used the techniques to analyze a chikungunya virus infection system and
phytoplankton–zooplankton–fish dynamics and harvesting model. By applying results, we
shall be able to determine the direction of Hopf bifurcation, i.e., whether the bifurcation is
supercritical or subcritical. By employing the Taylor series to (3)–(4) about E∗(N ∗, A∗), we
get ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d X
dt

= a11 X (t) + a12 X (t − τ ) + a13Y (t) + a14Y (t − τ ) + a15 X (t − τ )Y (t − τ )

+a16Y (t)Y (t − τ ) = F1(X, Y ),
dY
dt

= a21 X (t − τ ) + a22Y (t) + a23Y (t − τ ) + a24 X (t − τ )Y (t − τ )

+a25Y (t)Y (t − τ ) = F2(X, Y ),

(24)

where a11 = −(r + δ), a12 = −
(
κ + αA∗

)
h(τ ), a13 = γ A∗

+ v, a14 = −αN ∗h(τ ) + γ A∗,
a15 = −αh(τ ), a16 = γ , a21 =

(
κ+αA∗

)
h(τ ), a22 = −(δ+v)−γ A∗, a23 = αN ∗h(τ )−γ A∗,

a24 = αh(τ ) and a25 = −γ . Suppose τ = τ0 +µ, u(t) = (X (t), Y (t))T and ut (θ ) = u(t + θ ),
for θ ∈ [−τ, 0].

Denote

Ck[−τ, 0] =
{
φ | φ : [−τ, 0] → R2

+

}
,

where φ has k-order continuous derivative. Then the system (3)–(4) is equivalent to the
following Functional Differential Equation :

u̇(t) = Lµ(ut ) + f (µ, ut ), (25)

with

Lµ(φ) = F1φ(0) + F2φ(−τ ),
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and

f (µ, φ) =

(
a15φ1(−τ )φ2(−τ ) + a16φ

2
2 (−τ )

a24φ1(−τ )φ2(−τ ) + a25φ
2
2 (−τ )

)
, (26)

where

F1 =

(
a11 a13
0 a22

)
,

and

F2 =

(
a12 a14
a21 a23

)
.

Then Lµ is one parameter family of bounded linear operator in C[−τ, 0]. By the Riesz
representation theorem, there exists 2 × 2 matrix-valued function η(θ, µ) such that

η(., µ) : [−τ, 0] → R2×2, (27)

for φ ∈ C[−τ, 0] such that

Lµ =

∫ 0

−τ

dη(θ, µ)φ(θ ). (28)

We can opt for

η(θ, µ) = F1δ(θ ) + F2δ(θ + τ ), (29)

where δ(θ ) is a Dirac delta function.
For φ ∈ C ′([−τ, 0],R2×2), we define

A(µ)φ(θ ) =

⎧⎪⎪⎨⎪⎪⎩
dφ(θ )

dθ
, θ ∈ [−τ, 0),∫ 0

−τ

dη(θ, µ)φ(θ ), θ = 0,

and

R(µ)φ(θ ) =

{
0, θ ∈ [−τ, 0),

f (µ, φ), θ = 0.

Since dut
dθ =

dut
dt , the system (25) is equivalent to

u̇(t) = A(µ)ut (θ ) + R(µ)ut (θ ). (30)

For θ ∈ [−τ, 0), (30) is just the trivial equation dut
dθ =

dut
dt ; for θ = 0, it is (25). For

ψ ∈ C1([0, 1], (R2
+

)∗), the adjoint A∗ of A is defined as

A∗(µ)ψ(θ ) =

⎧⎪⎪⎨⎪⎪⎩
−

dψ
dθ

i f θ ∈ (0, τ ],∫ 0

−τ

dη(θ, µ)ψ(−θ ) i f θ = 0.

For φ ∈ [−τ, 0), we define an inner bilinear form

⟨ψ, φ⟩ = ψ̄T (0)φ(0) −

∫ 0

θ=−τ

∫ θ

ξ=0
ψ̄T (ξ − θ )dη(θ )φ(ξ )dξ, (31)
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where η(θ ) = η(θ, 0). From the above analysis, we obtain that ±iω0 are the eigenvalues of
A(0). Let ρ(θ ) be the eigenvector of A(0) corresponding to the eigenvalue iω0, then we get

A(0)ρ(θ ) = iω0ρ(θ ).

Since ±iω0 are the eigenvalues of A(0), and other eigenvalues have strictly negative real
parts, ∓iω0 are the eigenvalues of A∗(0). Then we may state the following theorem

Theorem 5.1. Let ρ(θ ) = Heiω0θ be the eigenvector of A associated with iω0, and
ρ∗(θ ) = DH∗eiω0θ be the eigenvector of A∗ associated with −iω0. Then ⟨ρ∗, ρ⟩ = 1,
⟨ρ∗, ρ̄⟩ = 0, where H = (1, ρ2)T , H∗

= (1, ρ∗

2 )T ,

ρ2 =
−a21e−iω0τ0

a22 + a23e−iω0τ0 − iω0
,

ρ∗

2 = −
a11 + a12eiω0τ0 + iω0

a21eiω0τ0
,

and

D̄ =
1

1 + ρ2ρ̄
∗

2 + [(a12 + ρ2a14) + ρ̄∗

2 (a21 + ρ2a23)]τ0e−iω0τ0
.

By employing the phenomena of Hassard et al. [22], we find out the coordinates to express
the center manifold center C0 at µ = 0, which is locally invariant, attracting two-dimensional
manifold in C0. Suppose ut is a solution of (30) at µ = 0.

Define z(t) = ⟨ρ∗, ut ⟩,

W (t, θ) = ut (θ ) − 2Re{z(t)ρ(θ )}. (32)

On the center manifold C0, we get W (t, θ) = W (z(t), z̄(t), θ) where

W (z(t), z̄(t), θ) = W20(θ )
z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ · · · (33)

Here z and z̄ are local coordinates for center manifold C0 in the direction of ρ and ρ∗. We
shall consider only real solutions as W is real if ut is real. For the solution ut ∈ C0 of (30),
since µ = 0, we have

ż(t) = iω0τ0z + ρ̄∗(0) f (0,W (z, z̄, 0) + 2Re(zρ(θ )))
= iω0τ0z + ρ̄∗(0) f0(z, z̄),

or

ż(t) = iω0τ0z + g(z, z̄),

where
g(z, z̄) = ρ̄∗(0) f0(z, z̄)

= g20(θ )
z2

2
+ g11(θ )zz̄ + g02(θ )

z̄2

2
+ g21(θ )

z2 z̄
2

+ · · · ·;

(34)

From (33) and (34), we have

ut (θ ) = W20(θ )
z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ (1, ρ2)T eiω0τ0θ z + (1, ρ̄2)T e−iω0τ0θ z̄ + · · · ·

(35)
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Now from (26) and (34), it follows that

g(z, z̄) = τ0 D̄
[ (
ξ11 + ξ21ρ̄

∗

2

)
z2

+
(
ξ12 + ξ22ρ̄

∗

2

)
zz̄

+
(
ξ13 + ξ23ρ̄

∗

2

)
z̄2

+
(
ξ14 + ξ24ρ̄

∗

2

) z2

2
z̄ + · · ·

]
, (36)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ11 = a15ρ2e−2iω0τ0 + a16ρ
2
2 e−2iω0τ0 ,

ξ12 = 2a15 Re(ρ2) + 2a16(ρ2ρ̄2),

ξ13 = a15ρ̄2e2iω0τ0 + a16ρ̄2
2e2iω0τ0 ,

ξ14 = 2a15

(
W 2

11(−τ0) + W 2
20(−τ0)

+2ρ2e−iω0τ0 W 1
11(−τ0) + ρ̄2eiω0τ0 W 1

20(−τ0)
)

+2a16

(
2ρ2e−iω0τ0 W 2

11(−τ0) + ρ̄2eiω0τ0 W 1
20(−τ0)

)
,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ21 = a24ρ2e−2iω0τ0 + a25ρ
2
2 e−2iω0τ0 ,

ξ22 = 2a24 Re(ρ2) + 2a25(ρ2ρ̄2),

ξ23 = a24ρ̄2e2iω0τ0 + a25ρ̄2
2e2iω0τ0 ,

ξ24 = 2a24

(
W 2

11(−τ0) + W 2
20(−τ0)

+2ρ2e−iω0τ0 W 1
11(−τ0) + ρ̄2eiω0τ0 W 1

20(−τ0)
)

+2a25

(
2ρ2e−iω0τ0 W 2

11(−τ0) + ρ̄2eiω0τ0 W 1
20(−τ0)

)
.

Following the same phenomena and applying the analogous computational results given
in Hassard et al. [22], we find out the important quantities by comparing coefficients of (34)
and (36) as below:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g20 = 2D̄τ0
(
ξ11 + ξ21ρ̄

∗

2

)
g11 = D̄τ0

(
ξ12 + ξ22ρ̄

∗

2

)
g02 = 2D̄τ0

(
ξ13 + ξ23ρ̄

∗

2

)
g21 = D̄τ0

(
ξ14 + ξ24ρ̄

∗

2

)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (37)

Since W20 and W11 are in g21, we need to calculate them. From (25) and (32), we have

Ẇ = u̇(t) − żρ − ¯̇zρ̄

=

{
A(0)W − 2Reρ̄∗(0) f0ρ(θ ), θ ∈ [−τ0, 0),

A(0)W − 2Reρ̄∗(0) f0ρ(0) + f0(z, z̄), θ = 0,

≜ A(0)W + H (z, z̄, θ), (38)
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where

H (z(t), z̄(t), θ) = H20(θ )
z2

2
+ H11(θ )zz̄ + H02(θ )

z̄2

2
+ · · · (39)

Substituting (39) into (38) and comparing the coefficients, we get

(A(0) − 2iω0τ0 I )W20(θ ) = −H20(θ ), A(0)W11(θ )
= −H11(θ ),

(40)

From (38) and for θ ∈ [−τ0, 0)

H (z(t), z̄(t), θ) = −ρ̄∗(0) f0ρ(θ ) − ρ∗(0) f̄0ρ̄(θ )
= −g(z, z̄)ρ(θ ) − ḡ(z, z̄)ρ̄(θ ).

(41)

Using (34) in (41) and comparing the coefficients with (39), we obtain

H20(θ ) = −g20ρ(θ ) − ḡ02ρ̄(θ ), (42)

and

H11(θ ) = −g11ρ(θ ) − ḡ11ρ̄(θ ). (43)

From the definition of A(0), (40) and (42), we obtain

Ẇ20(θ ) = 2iω0τ0W20(θ ) + g20ρ(θ ) + ḡ02ρ̄(θ ),

Solving it and for ρ(θ ) = (1, ρ2)T eiω0τ0θ , we have

W20(θ ) =
ig20

ω0τ0
ρ(0)eiω0τ0θ +

i ḡ02

3ω0τ0
ρ̄(0)e−iω0τ0θ + E1e2iω0τ0θ . (44)

Similarly, from (40) and (43), we get

W11(θ ) = −
ig11

ω0τ0
ρ(0)eiω0τ0θ +

i ḡ11

ω0τ0
ρ̄(0)e−iω0τ0θ + E2, (45)

where E1 = (E (1)
1 , E (2)

1 )T and E2 = (E (1)
2 , E (2)

2 )T are two dimensional constant vectors, and
can be determined by setting θ = 0 in H (z, z̄, θ). Again from the definition of A(0) and (40),
we have∫ 0

−1
dη(0, θ)W20(θ ) = 2iω0τ0W20(0) − H20(0), (46)

and ∫ 0

−1
dη(0, θ)W11(θ ) = −H11(0). (47)

From (38), we know that when θ = 0,

H (z, z̄, 0) = −2Re(ρ̄∗(0) f0ρ(0)) + f0(z, z̄)

= −ρ̄∗(0) f0ρ(0) − ρ∗(0) f̄0ρ̄(0) + f0(z, z̄),
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i.e.,

H20(θ )
z2

2
+ H11(θ )zz̄ + H02(θ )

z̄2

2
+ · · ·

= −ρ(0)
{

g20(θ )
z2

2
+ g11(θ )zz̄ + g02(θ )

z̄2

2
+ · · ·

}
− ρ̄(0)

{
ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · · · ·

}
+ f0(z, z̄).

(48)

From (32), we have

ut (θ ) = W (t, θ) + 2Re{z(t)ρ(θ )}

= W (t, θ) + z(t)ρ(θ ) + z̄(t)ρ̄(θ )

= W20(θ )
z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ · · · ·,

We can also obtain,

f0 = 2τ0

(
ξ11
ξ21

)
z2

2
+ τ0

(
ξ12
ξ22

)
zz̄ + · · · · (49)

From (48) and (49), we can also have

H20(0) = −g20ρ(0) − ḡ02ρ̄(0) + 2τ0

(
ξ11
ξ21

)
, (50)

H11(0) = −g11ρ(0) − ḡ11ρ̄(0) + τ0

(
ξ12
ξ22

)
. (51)

Since iω0τ0 is the eigenvalue of A(0) corresponding to ρ(0) and −iω0τ0 is the eigen value of
A∗(0) corresponding to ρ̄(0), then{

iω0τ0 I −

∫ 0

−1
eiω0τ0θdη(θ )

}
ρ(0) = 0,

and {
−iω0τ0 I −

∫ 0

−1
e−iω0τ0θdη(θ )

}
ρ̄(0) = 0.

Substituting (44) and (46) into (50), and after simplification, we find

E1 = 2
(

2iω0τ0 − F1 − F2e−2iω0τ0

)−1

(ξ11, ξ21)T .

Similarly, substituting (45) and (47) into (51), we have

E2 =
(
−F1 − F2

)−1(ξ12, ξ22)T .

Therefore, we can find W20(θ ), W11(θ ) from (44) and (45). Also, we analyze that gi j in
(37) can be computed by parameters and delay in the model (3)–(4). Hence, we are able to
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determine the quantities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1(0) =

i

{
g20g11−2|g11|2−

|g02|
2

3

}
2ω0τ0

+
g21
2 ,

β2 = 2Re
{
C1(0)

}
,

µ2 = −
Re
{

C1(0)
}

Re

{
dλ(τ0)

dτ

} ,

T2 = −

ℑ

{
C1(0)

}
+µ2ℑ

{
dλ(τ0)

dτ

}
ω0τ0

.

which determine the quantities of bifurcation periodic solutions in the center manifold for τ0.
By Hassard et al. [22], we summarize the results at τ0 as follows:

Theorem 5.2. At the critical value of τ0, the basic properties of the Hopf-bifurcation are
stated as follows:

(a) The sign of β2 determines the stability of the periodic solution: the bifurcation periodic
solutions are unstable (stable) if β2 > 0(< 0); (b) The sign of µ2 finds the direction of
bifurcation: if µ2 < 0(> 0), then the Hopf-bifurcation is subcritical(supercritical) and the
bifurcated solutions exist for τ > τ0(τ < τ0); (c) The sign of T2 determines the period of the
periodic solutions: the period decrease (increase) if T2 < 0(> 0).

The results of Theorems 5.1 and 5.2 help us to draw the vital outcomes related to the sign
of Re(C1(0)). Precisely, if Re(C1(0)) < 0, model (3)–(4) will have stable periodic solutions
for τ > τ0 in a τ0-neighborhood.

6. NUMERICAL SIMULATION

Here, we provide some numerical simulations of the model (3)–(4) for the support of
analytical achievements. We suppose the example for a set of parametric values:

d N (t)
dt

= 0.5245 (10 − N )+ 0.1A(t)A(t − τ ) −
(
1.003 + 0.4253A(t − τ )

)
× N (t − τ )e−(0.21+0.01)τ

+ 0.12A(t) − 0.21N (t), (52)

d A(t)
dt

=
(
1.003 + 0.4253A(t − τ )

)
N (t − τ )e−(0.21+0.01)τ

− (0.21 + 0.12)

× A(t) − 0.1A(t)A(t − τ ). (53)

By using Matlab software, the system (52)–(53) is integrated with initial data N (t) = 0.1,
A(t) = 0.1, we get the positive equilibrium point E∗(3.324, 13.35). Also, for the example of
the system (52)–(53), the local asymptotic stability condition H0 for zero delay, i.e., tr (J ∗) =

−0.0129 < 0, det(J ∗) = 0.5463 > 0, it proves that E∗ remains asymptotically stable with
parameters mentioned in the example (52)–(53) (see Fig. 2).

For the innovation diffusion system with delay, we compute a positive root ω0 = 0.5027
from Eq. (11), and using it in (22), the critical value of evaluation period τ0 = 1.85 have
been calculated and observe that E∗ changes its stability to periodic oscillations as τ passes
through this τ0. Furthermore, we see that (H2) : T ′(v∗) = 3.4521 ̸= 0, and the transversality
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Fig. 2. Local asymptotic stability at E∗(3.324, 13.35) for Non-Adopter and Adopter Class with τ = 0.

condition
{

Re[dλ/dτ ]−1
}
τ=τ0,ω=ω0

= 0.0245 ̸= 0 is satisfied. It implies that the interior

equilibrium point E∗ remains stable for 0 ≤ τ < 1.85 and changes its stability to instability
for τ ≥ 1.85 (see Figs. 3 and 4). A more stable periodic solution exists for τ = 6 in Fig. 5.

Also, the numerical values of stability determining quantities for periodic solutions at
critical value τ0 are given by⎧⎪⎪⎨⎪⎪⎩

C1(0) = −0.3305 − 4.3766i;
β2 = −0.6614;

µ2 = 0.0531;

T2 = 5.0840.

By using Theorem 5.2, we summarize that the Hopf bifurcation is supercritical, the
bifurcating periodic solutions exist for τ > τ0 and solutions from E∗ are asymptotically
stable. The corresponding waveform and phase diagrams are plotted in Figs. 4–5.

Moreover, when the system (52)–(53) is again integrated with same initial data, and for
some longer delay beyond the critical value ′τ ′

0, the periodic solutions exist for the interval
[1.85, 12); and when the value of τ is considered in the interval [12, 25), quasi-periodic
solutions occur and is shown in Fig. 6 at τ = 22, which indicate that the period of oscillations
has been either increasing or decreasing, i.e., it varies continuously. It means that we are
achieving the temporary stage of adoption process because the adopters are continuously
changing their decisions, i.e., either they are shifting over to adopter class or to non-adopter
class. Further, when τ is chosen in the interval [25, 35), then their exist complex attractors
around interior equilibrium point E∗ arise, and it has been established in Fig. 7 at τ = 32. The
numerical simulation indicate that a smaller value of evaluation period helped the innovation
to diffuse in the markets and it has destabilizing effects on the diffusion modeling process.
This evaluation period helped the system to changing its state from a locally asymptotically
stable point to a limit cycle, then to quasi-periodic solutions, and finally the existence of
chaotic situations in the markets.

6.1. Impact of intra-specific competition

It is an important point to observe here that an increase in the coefficient of intra-specific
competition γ between the existing technology developers A(t) and potential technology
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Fig. 3. Solution trajectories of system (52)–(53) are converging to E∗(4.705, 8.517) at τ = 1.52 < 1.85 = τ0.

Fig. 4. Hopf bifurcating periodic solutions around E∗(4.687, 8.422) of the system (52)–(53) for Non-Adopter and
Adopter population’s at τ = 1.95 > 1.85 = τ0.

Fig. 5. A stable limit cycle at τ = 6. (a) The periodic time series of Non-Adopter and Adopter populations. (b) The
portrait of Non-Adopter versus Adopter population.
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Fig. 6. The attractive quasi-periodic solution curves around E∗ at τ = 22. (a) The time series of Non-Adopter and
Adopter populations. (b) The plot of Non-Adopter versus Adopter population.

Fig. 7. System predicting Chaotic attractors of solution curves around E∗ at τ = 32.

developers N (t) lead to maturity stage in the markets. This means that if the system (52)–
(53) is integrated with the same initial data and delay τ = 1.95, the periodic oscillations
occur when the value of intra-specific competition γ lies in the interval [0.01, 0.12) and as
the value of γ is chosen in the interval [0.12, 0.98), we attain stable equilibrium position
in the system. This predicts that stable dynamical behavior of our proposed model has
been observed by altering its states from limit cycle-to-stability, and is predicted that the
adopter population A(t) goes on decreasing for the intra-specific competition parameter
γ = 0.2, 0.5, 0.7, 0.9 respectively (see Fig. 8). The numerical simulations revealed that
the intra-specific competition between the technology developers and potential technology
developers led to the mature decision making stage in the innovation diffusion system and
due to this competition coefficient, we are getting maturity stage in the system.

7. CONCLUSION

We have established a qualitative analysis by examining the asymptotic stability of the
positive equilibrium E∗, and made important observations that without any evaluation period
(τ = 0), the given system does not show any excitability, but crossing over a threshold limit
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Fig. 8. Stable equilibrium position of solution curves at τ = 1.95 around E∗ for Non-Adopter and Adopter classes
for various γ .

of evaluation period (0 < τ < 1.85), the stability exchange take place and there exist small
period oscillations in the system. Numerical investigations show the oscillatory behavior for
the bifurcating periodic solutions (Figs. 4–5). Hence, we have detected that evaluation period
in the innovation diffusion model causes Hopf bifurcation. We have also computed the value
of Re(C1(0)) < 0 with the help of center manifold theorem and normal form theory. It
proves that the Hopf bifurcation is supercritical and bifurcating solutions are orbitally stable.
Further, as and when the potential adopters take longer evaluation period to decide about
the adoption of the technology, the system exhibits irregular periodic solutions in the form
of quasi-periodic attractors around E∗ (see Fig. 6) and after that complex situations in the
markets (see Fig. 7). The outcomes proved that the evaluation period must be required for
the potential technology developers to make evaluation, and it induced instability in the
innovation diffusion model by reshaping the stable equilibrium position to limit cycle and
exhibits complex dynamical behavior of the innovation diffusion system (1)–(2).

Moreover, it has been observed that the intra-specific competition between the existing
technology developers and technology developers in times t −τ has a big role in transforming
the limit cycle to stable equilibrium position of the system (1)–(2) (see Fig. 8). This reflects
that the intra-specific competition coefficient has subsided the effect of evaluation period and
helped the system to arrive at stable equilibrium stage (final adoption stage). In other words,
we can find the final number of adopters of the technology and it will help the marketing
managers to maximize the profits. It reflects that the time delay and intra-specific competition
have played a vital role for gaining better understanding of the innovation diffusion systems
and interpreting diffusion patterns of a technology in theory and in practical. This research
will have a great future scope, as it will help to investigate the innovation diffusion models for
two or more than two technologies (innovations) with multiple delays. We leave the analysis
of this type of design with complex bifurcations as the future work.
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