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Abstract. In this paper, we formulate best proximity pair theorems for noncyclic relatively
ρ-nonexpansive mappings in modular spaces in the setting of proximal ρ-admissible sets.
As a companion result, we establish a best proximity pair theorem for pointwise noncyclic
contractions in modular spaces. To that end, we provide some examples throughout the paper
to illustrate the validity of the obtained results.
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1. INTRODUCTION

Let X be an arbitrary vector space.

1. A function ρ : X → [0, ∞] is called a modular on X if for arbitrary x, y ∈ X ,

(a) ρ(x) = 0 if and only if x = 0,
(b) ρ(αx) = ρ(x) for every scalar α with |α| = 1,
(c) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = 1 and α, β ≥ 0.
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If (c) is replaced by (c)’: ρ(αx +βy) ≤ αρ(x)+βρ(y) if α+β = 1 and α, β ≥ 0,
we say ρ is convex modular.

2. A modular ρ defines a corresponding modular space, i.e. the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0}.

Xρ is a linear subspace of X .

The relevance of a best proximity pair, in a couple of non-empty, disjoint subsets A and B
of a modular space, is to act as a substitute in the absence of a fixed point. It is also used to
provide optimal solutions to the problem of best approximation between two sets.

Eldred, Kirk and Veeramani [7] established the existence of a best proximity pair
for noncyclic relatively nonexpansive mappings by using a geometric notion of proximal
normal structure in the setting of Banach spaces. The work of the afore-mentioned authors
generalizes the notion of normal structure introduced by Milman and Brodskii [6]. Recently,
Sankar and Veeramani established the existence and uniqueness of a best proximity pair for
noncyclic contraction maps as stated in [18]. Similar results in [1] were discussed by Taghafi
and Shahzad who proved the existence of a best proximity pair for a cyclic contraction map
in a reflexive Banach space. For other related results, we refer the reader to [1–5,9,10,21,22].

In this paper, we generalize the notion of proximal ρ-normal structure for a ρ-admissible
pair (A, B) in modular spaces. We also show that if A and B are proximal ρ-admissible
sets, and if the pair (A, B) has proximal ρ-normal structure, then every noncyclic relatively
ρ-nonexpansive map has a best proximity pair. As a companion result, we show the existence
and uniqueness of a best proximity pair theorem for pointwise noncyclic contractions in the
setting of modular spaces.

2. PRELIMINARIES

To describe our results, we need to review some basic definitions and notions related to
modular spaces, such as those formulated by Musielak and Orlicz [20]. For further details,
we refer the reader to [12,14,16,19]

Definition 1. Let Xρ be a modular space.

1. We say that (xn) is ρ-convergent to x and write xn → x (ρ) if and only if ρ (xn − x) →

0.
2. A sequence (xn), where xn ∈ Xρ , is called ρ-Cauchy if ρ (xn − xm) → 0 as n, m → ∞.
3. We say that Xρ is ρ-complete if and only if any ρ-Cauchy sequence in Xρ is ρ-

convergent.
4. A set C ⊂ Xρ is called ρ-closed if for any sequence (xn) of C , the convergence

xn → x(ρ) implies that x belongs to C .
5. A set C ⊂ Xρ is called ρ-sequentially-compact if for any sequence (xn) of C , there

exists a convergent subsequence
(
xnk

)
k of (xn) such that xnk → x(ρ) in C .

6. A set C ⊂ Xρ is called ρ-bounded if sup {ρ (x − y) : x, y ∈ C} < ∞.
7. We will say that ρ satisfies the Fatou property if

ρ(x) ≤ lim inf
n→∞

ρ(xn)

whenever xn → x (ρ).
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One can check that ρ-balls are ρ-closed if and only if ρ has the Fatou property
(cf. [13]).

Definition 2. A pair (A, B) of subsets of Xρ is said to be a ρ-proximal pair if for each
(x, y) ∈ A × B there exists

(
x ′, y′

)
∈ A × B such that

ρ
(
x − y′

)
= ρ

(
x ′

− y
)

= distρ (A, B) .

The pair
(
x, y′

)
is said to be proximal in (A, B).

We use (A0, B0) to denote the ρ-proximal pair obtained from (A, B) upon setting

A0 =
{

x ∈ A : ρ
(
x − y′

)
= distρ (A, B) for some y′

∈ B
}

B0 =
{

y ∈ B : ρ
(
x ′

− y
)

= distρ (A, B) for some x ′
∈ A

}
.

A pair (A, B) in a modular space Xρ is said to satisfy a property if both A and B satisfy
that property. For instance, (A, B) is ρ-closed (resp. ρ-bounded) if and only if both A and
B are ρ-closed (resp. ρ-bounded); (A, B) ⊂ (C, D) if and only if A ⊂ C and B ⊂ D,
(A, B) ̸= ∅ if A ̸= ∅ and B ̸= ∅, (A, B) is not reduced to one point means that A and B are
not singletons.

Let A, B be nonempty subsets of a modular space Xρ . We shall adopt the following
notations:

δρ (A, B) = sup {ρ (x − y) : x ∈ A, y ∈ B} .

δρ(x, A) = sup {ρ (x − y) : y ∈ A} , for all x ∈ Xρ .

distρ(A, B) = inf {ρ (x − y) : x ∈ A, y ∈ B} .

γρ(A, B) = max
{
inf

{
δρ(x, B) : x ∈ A

}
, inf

{
δρ(y, A) : y ∈ B

}}
.

We introduce some definitions which are in fact extension of the standard definitions in
modular space (e.g. see [15, Definition 5.7]). It is worth noting that these notions are more
adapted for a pair of subsets (A, B).

Definition 3. Let (A, B) be a ρ-bounded pair.
We will say that (H, K ) is a proximal ρ-admissible pair of (A, B) if

H =

⋂
i∈I

Bρ (yi , ri ) ∩ A

and

K =

⋂
i∈I

Bρ

(
xi , r ′

i

)
∩ B

where (xi , yi ) ∈ A × B, ri , r ′

i ≥ dρ (A, B), I is an arbitrary index set and Bρ (x, r) ={
y ∈ Xρ : ρ (x − y) ≤ r

}
the standard ρ-closed ball of Xρ . The family of all proximal ρ-

admissible pairs of (A, B) will be denoted by Q (A, B).
If (D1, D2) ⊆ (A, B), we write

coD2
A (D1) =

⋂
y∈D2

Bρ

(
y, δρ (y, D1)

)
∩ A

coD1
B (D2) =

⋂
x∈D1

Bρ

(
x, δρ (x, D2)

)
∩ B.



150 K. Chaira, S. Lazaiz

Remark 4. Note that
(

coD2
A (D1) , coD1

B (D2)
)

∈ Q (A, B) and is the smallest ρ-admissible
pair of (A, B) which contains (D1, D2). Indeed, let (H, K ) ∈ Q (A, B) such that (D1, D2) ⊆

(H, K ), then H =
⋂

y∈D2
Bρ

(
y, ry

)
∩ A, and for each (x, y) ∈ D1 × D2, we have

ρ(x − y) ≤ ry . Hence, for any y ∈ D2 we get δρ(y, D1) ≤ ry since D1 ⊆ H , which
prove that

coD2
A (D1) =

⋂
y∈D2

Bρ

(
y, δρ(y, D1)

)
∩ A ⊆

⋂
y∈D2

Bρ

(
y, ry

)
∩ A = H.

In the same manner, we obtain coD1
B (D2) ⊆ K .

Definition 5. Let (A, B) be a ρ-bounded pair.

1. Q (A, B) is said to satisfy the property (R)-proximal if for any sequence(
{An}n≥1, {Bm}m≥1

)
⊆ Q (A, B) ,

which is nonempty and decreasing has a nonempty intersection.
2. Q (A, B) is said to be proximal ρ-normal, if for each proximal ρ-admissible pair

(H, K ) not reduced to one point of (A, B) for which distρ (H, K ) = distρ (A, B)

and δρ (H, K ) > distρ (H, K ), there exists (x, y) ∈ H × K such that

δρ (x, K ) < δρ (H, K ) and δρ (y, H) < δρ (H, K ) .

3. We say that the pair (A, B) is proximal ρ-sequentially-compact provided that every
sequence

(
{xn}n, {yn}n

)
of (A, B) satisfying the condition ρ (xn − yn) → distρ (A, B)

has a convergent subsequence in (A, B).

Remark 6. Notice that the Q (A, A) is proximal ρ-normal (resp. has the (R)-proximal
property) if and only if Q (A) is ρ-normal (resp. has the (R)-property) in the sense of Khamsi
and Kozlowski (see [15]).

Definition 7.

1. A map T : A ∪ B → A ∪ B will be said

(a) noncyclic on A ∪ B if T (A) ⊆ A and T (B) ⊆ B;
(b) noncyclic relatively ρ-nonexpansive on A ∪ B if

i. T is noncyclic;
ii. ρ (T x − T y) ≤ ρ (x − y), for all (x, y) ∈ A × B.

2. An ordered pair (a, b) ∈ A × B is said to be a best proximity pair for the noncyclic
mapping T , provided that

T a = a, T b = b and ρ(a − b) = dist(A, B).

Definition 8. A map T : A ∪ B → A ∪ B will be called pointwise noncyclic contraction if

1. T is noncyclic;
2. For each (x, y) ∈ A × B there exist 0 ≤ α(x), β(y) < 1 such that

ρ(T x − T y) ≤ α(x)β(y)ρ(x − y) + (1 − α(x))(1 − β(y))distρ(A, B).
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Remark 9. Note that every pointwise noncyclic contraction is noncyclic relatively
ρ-nonexpansive.

We conclude this section by a modular version of Kirk’s fixed point theorem [17] which
follows as a corollary of our Theorem 16 (see Corollary 18).

Theorem 10 ([15, Theorem 5.9]). Let A be a ρ-bounded and ρ-closed nonempty subset
of Xρ which satisfies (R)-property. Assume that Q (A) is ρ-normal. If T : A → A is
ρ-nonexpansive, then T has a fixed point.

3. NONCYCLIC RELATIVELY ρ-NONEXPANSIVE MAPPINGS

In what follows, we investigate the validity of a technical lemma due to Gillespie and
Williams [11], for a pair of ρ-admissible subset in a modular space. This result can be
considered the main ingredient of our work and will play an important role in this article.

Lemma 11. Let (A, B) be a nonempty ρ-bounded pair of Xρ . Let T : A ∪ B → A ∪ B
be a noncyclic relatively ρ-nonexpansive mapping. Assume that Q (A, B) is proximal
ρ-normal. Let (H, K ) ∈ Q (A, B) be a nonempty, not reduced to one point, T -noncyclic
pair; i.e., T (H) ⊆ H and T (K ) ⊆ K and distρ (H, K ) = distρ (A, B). Then, there exists
a nonempty T -noncyclic pair (H0, K0) ∈ Q (A, B) such that (H0, K0) ⊆ (H, K ) and

δρ (H0, K0) ≤
δρ (H, K ) + γρ (H, K )

2
.

Proof. Set r =
1
2

(
δρ (H, K ) + γρ (H, K )

)
. If δρ (H, K ) = distρ (H, K ) one can choose

(H0, K0) = (H, K ). We assume that δρ (H, K ) > distρ (H, K ). Since Q (A, B) is proximal
ρ-normal, we obtain

γρ (H, K ) < δρ (H, K )

hence γρ (H, K ) < r . Thus, there exists (x1, y1) ∈ H × K such that

δ (x1, K ) < r and δ (y1, H) < r .

Let

DH
=

⋂
y∈K

Bρ (y, r) ∩ H

DK
=

⋂
x∈H

Bρ (x, r) ∩ K

then
(
DH , DK

)
̸= ∅ since (x1, y1) ∈ DH

× DK .
Let F denote the set of all nonempty pairs {(Eα, Fα)}α∈Λ of Q (A, B) such that T is

noncyclic on Eα ∪ Fα and
(
DH , DK

)
⊆ (Eα, Fα) for all α ∈ Λ. Obviously, F is nonempty

since (A, B) ∈ F . Let us define (L1, L2) by

L1 =

⋂
α

Eα and L2 =

⋂
α

Fα

it is clear that (L1, L2) ̸= ∅ since
(
DH , DK

)
⊂ (L1, L2) and T is noncyclic on L1 ∪ L2, thus

(L1, L2) ∈ F .
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Let M1 = DH
∪ T (L1) and M2 = DK

∪ T (L2), it is claimed that

coM2
A (M1) = L1 and coM1

B (M2) = L2.

Since M1 ⊂ L1, M2 ⊂ L2 and the pair (L1, L2) is proximal ρ-admissible, then(
coM2

A (M1) , coM1
B (M2)

)
⊆ (L1, L2) ,

and since
(

coM2
A (M1) , coM1

B (M2)
)

is the smallest ρ-admissible pair which contains
(M1, M2), as well as

T
(

coM2
A (M1)

)
⊆ T (L1) and T

(
coM1

B (M2)
)

⊆ T (L2)

then

T
(

coM2
A (M1)

)
⊆ M1 and T

(
coM1

B (M2)
)

⊆ M2.

Note that distρ(T (L1), T (L2)) = distρ(L1, L2) since T is a relatively ρ-nonexpansive
mapping, and since (M1, M2) ⊆

(
coM2

A (M1) , coM1
B (M2)

)
we obtain(

coM2
A (M1) , coM1

B (M2)
)

∈ F

that is (
coM2

A (M1) , coM1
B (M2)

)
= (L1, L2) .

Set

H0 =

⋂
y∈L2

Bρ (y, r) ∩ L1

K0 =

⋂
x∈L1

Bρ (x, r) ∩ L2.

We claim that (H0, K0) is the desired pair. Since
(
DH , DK

)
⊆ (H0, K0), then the pair

(H0, K0) is nonempty. Also (H0, K0) ∈ Q (A, B).
Note that for each x ∈ H0 and y ∈ K0, we have

ρ (x − y) ≤ r ⇒ δρ (H0, K0) ≤ r.

Next, we show that T is noncyclic on H0 ∪ K0 to complete the proof. Let y ∈ K0, then

ρ (T x − T y) ≤ ρ (x − y) ≤ r (∀x ∈ L1)

since T is relatively ρ-nonexpansive. Thus,

T (L1) ⊂ Bρ (T y, r) .

Recall that DH
=

⋂
y∈K Bρ (y, r) ∩ H , then if z ∈ DH we have for all w ∈ K

ρ (z − w) ≤ r

and since (H, K ) ∈ F we get L2 ⊂ K then L2 ⊂ B (z, r). It is clear that T y ∈ L2; that is,

T y ∈ Bρ (z, r) ⇒ z ∈ Bρ (T y, r)
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hence, DH
⊂ Bρ (T y, r), which implies

L1 = coM2
A

(
DH

∪ T (L1)
)

⊆ Bρ (T y, r) ∩ A.

This implies that T y ∈ K0; that is, T (K0) ⊆ K0. Similarly, we can show that T (H0) ⊆ H0.
Since (L1, L2) ⊆ (H, K ) we get (H0, K0) ⊆ (H, K ) . This completes the proof. □

Definition 12 ([19]). Let (A, B) be a pair of nonempty subsets of a modular space Xρ such
that the related A0 is nonempty. The pair (A, B) is said to have P-property if and only if{

ρ(x1 − y1) = distρ (A, B)

ρ(x2 − y2) = distρ (A, B)
⇒ ρ(x1 − x2) = ρ(y1 − y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 13. Let A, B be two nonempty subsets of a modular space Xρ such that A0 is
nonempty, and distρ (A, B) = 0. Then (A, B) has the P-property.

Definition 14 ([16]). A modular space Xρ is said to be strictly convex if for each x, y ∈ Xρ

such that ρ(x) = ρ(y) and

ρ(
x + y

2
) =

ρ(x) + ρ(y)
2

we have x = y.

Lemma 15. Let (A, B) be a nonempty ρ-bounded and convex pair in a strictly convex
modular space Xρ such that ρ is convex. Suppose that A0 is nonempty, then (A, B) has the
P-property.

Proof. Since A0 is nonempty, let y, y′
∈ B and

ρ(x − y) = ρ(x ′
− y′) = distρ (A, B)

for some x, x ′
∈ A. By the convexity of A, B and ρ, we obtain

distρ (A, B) ≤ ρ(
1
2

(x + x ′) −
1
2

(y + y′))

≤
1
2
ρ(x − y) +

1
2
ρ(x ′

− y′) = distρ (A, B) ,

and since Xρ is strictly convex modular space, we have x − x ′
= y − y′. Hence, (A, B) has

the P-property. □

Theorem 16. Let (A, B) be a nonempty, ρ-bounded and ρ-closed pair in a modular space
Xρ . Assume that A0 is nonempty. Moreover, assume that Q (A, B) satisfies the property
(R)-proximal and has proximal ρ-normal structure. If T is noncyclic relatively
ρ-nonexpansive on A ∪ B and (A, B) has the P-property, then T has a best proximity pair.

Proof. Let F denote the set of all nonempty ρ-closed pairs (E, F) of Q (A, B) such that T
is noncyclic on E ∪ F and distρ (E, F) = dρ where dρ = distρ (A, B). Thus, F is nonempty
since (A, B) ∈ F .
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Define δ̃ρ : F → [0, ∞) by

δ̃ρ

(
D A, DB)

= inf
{
δρ (E, F) : (E, F) ∈ F and (E, F) ⊆

(
D A, DB)}

.

Set
(
D A

1 , DB
1

)
= (A, B), by definition of δ̃ρ , there exists

(
D A

2 , DB
2

)
∈ F such that(

D A
2 , DB

2

)
⊆

(
D A

1 , DB
1

)
, distρ

(
D A

2 , DB
2

)
= distρ

(
D A

1 , DB
1

)
= dρ and

δρ

(
D A

2 , DB
2

)
< δ̃ρ

(
D A

1 , DB
1

)
+ 1

suppose that
(
D A

k , DB
k

)
k=1,2,...,n are constructed for n ≥ 1. Again, by definition of δ̃ρ , there

exists
(
D A

n+1, DB
n+1

)
⊆

(
D A

n , DB
n

)
such that

δρ

(
D A

n+1, DB
n+1

)
< δ̃ρ

(
D A

n , DB
n

)
+

1
n

and distρ
(
D A

n+1, DB
n+1

)
= dρ . Since Q (A, B) satisfies the property (R)-proximal and the

sequence({
D A

n

}
n≥1,

{
DB

n

}
m≥1

)
⊆ Q (A, B) ,

is nonempty and decreasing, then
(
D A

∞
, DB

∞

)
̸= ∅ where

D A
∞

=

⋂
n≥1

D A
n and DB

∞
=

⋂
n≥1

DB
n .

We also obtain

δρ (A, B) ≤ δρ

(
D A

∞
, DB

∞

)
= inf{ρ(x − y) : (x, y) ∈ (

⋂
n≥1

D A
n ) × (

⋂
m≥1

DB
m )}

= inf{ρ(x − y) : (x, y) ∈ D A
n × DB

m , ∀(n, m) ∈ (N∗)2
}

= inf
n,m≥1

{ρ(x − y) : (x, y) ∈ D A
n × DB

m}

≤ δρ

(
D A

n , DB
n

)
≤ δρ (A, B) .

Hence, δρ

(
D A

∞
, DB

∞

)
= δρ (A, B).

Case 1: If D A
∞

or DB
∞

is reduced to one point, for example DB
∞

= {y} and since T (DB
∞

) ⊂

DB
∞

, then T y = y. Since A0 is nonempty, there exists x ∈ A such that ρ(x − y) =

distρ (A, B). Since T is relatively ρ-nonexpansive on A ∪ B,

ρ(T x − T y) = ρ(T x − y) ≤ ρ(x − y) = dρ (A, B)

by hypothesis, (A, B) has the P-property, then

ρ(T x − y) = ρ(x − y) = dρ (A, B) implies T x = x .

Similarly, if D A
∞

is reduced to one point.

Case 2: If (D A
∞

, DB
∞

) is not reduced to one point, suppose that

δρ

(
D A

∞
, DB

∞

)
= distρ

(
D A

∞
, DB

∞

)
For each

(
x, x ′, y

)
∈ (D A

∞
)2

× DB
∞

, we get

ρ (x − y) = ρ
(
x ′

− y
)

= distρ
(
D A

∞
, DB

∞

)
.
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Since (A, B) has the P-property, we have ρ(x −x ′) = ρ(y− y) = 0. Then, D A
∞

is a singleton.
Similarly, we can show that DB

∞
is a singleton. This implies that the noncyclic mapping T

has a best proximity pair in this case. Now, assume that

δρ

(
D A

∞
, DB

∞

)
> distρ

(
D A

∞
, DB

∞

)
.

Using Lemma 11, there exists
(
D∗

A, D∗

B

)
⊆

(
D A

∞
, DB

∞

)
δρ

(
D∗

A, D∗

B

)
≤

δρ

(
D A

∞
, DB

∞

)
+ γρ

(
D A

∞
, DB

∞

)
2

(1)

which implies

δρ

(
D∗

A, D∗

B

)
≤ δρ

(
D A

∞
, DB

∞

)
≤ δρ

(
D A

n , DB
n

)
≤ δ̃ρ

(
D A

n , DB
n

)
+

1
n

≤ δρ

(
D∗

A, D∗

B

)
+

1
n

since
(
D∗

A, D∗

B

)
⊆

(
D A

n , DB
n

)
for any n ≥ 1. If we let n → ∞, we get δρ

(
D∗

A, D∗

B

)
= δρ

(
D A

∞
, DB

∞

)
. By (1) we get

δρ

(
D A

∞
, DB

∞

)
≤ γρ

(
D A

∞
, DB

∞

)
this contradicts the assumption that Q (A, B) is proximal ρ-normal. This completes the
proof. □

Example 17. Let the real space X = {x = (xn)n≥1 ∈ RN∗

:
∑

n≥1|xn|
1
2 < ∞}, and define

the modular functional ρ : X → [0, ∞] by

ρ(x) =

∞∑
n=1

|xn|
1
2 , for all x = (xn)n≥1 ∈ X.

Suppose that {en} is the canonical basis of X and let

A = {e3 +
1
2

e1} ∪ {e3 + en : n ∈ N \ {0, 1, 3}} and B = {e1, e3}.

Then, (A, B) is ρ-bounded, ρ-closed in Xρ and not convex. A is not ρ-sequentially-
compact because the sequence {e3 + en}n ̸=3 does not have any ρ-convergent subsequence.

Let u = e3 +
1
2 e1 in A, we have ρ(u − e3) =

√
1
2 . Also, for all x ∈ A, ρ(x − e1) ≥

√
1
2

and ρ(x − e3) ≥

√
1
2 , which implies that distρ(A, B) =

√
1
2 .

Q (A, B) satisfies the property (R)-proximal, indeed, let
(
{Hn}n≥1, {Km}m≥1

)
be a

sequence of Q (A, B) which is nonempty and decreasing.

1. If for each n ∈ N∗, Hn =
⋂

i∈In
Bρ(e1, ri,n) ∩ A, we get for all i ∈ In , ri,n ≥ 1 +

√
1
2 ,

because Hn ̸= ∅ for any n ∈ N∗ and, since

ρ(e3 +
1
2

e1 − e1) = 1 +

√
1
2

we obtain e3 +
1
2 e1 ∈ Bρ(e1, 1 +

√
1
2 ) ∩ A ⊂

⋂
n≥1 Hn . Hence,⋂

n≥1

Hn ̸= ∅.
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2. If for each n ∈ N∗, Hn =
⋂

j∈Jn
Bρ(e3, r ′

j,n) ∩ A, where r ′

j,n ≥ distρ(A, B), for all

j ∈ Jn , so e3 +
1
2 e1 ∈ Bρ(e3,

√
1
2 ) ∩ A ⊂

⋂
n≥1 Hn , because ρ(e3 +

1
2 en − e3) =

√
1
2 .

Hence,
⋂

n≥1 Hn ̸= ∅.
3. If there exists n ∈ N∗ such that

Hn =

⎛⎝⋂
i∈In

Bρ(e1, ri,n)

⎞⎠ ∩

⎛⎝⋂
j∈Jn

Bρ(e3, r ′

j,n)

⎞⎠ ∩ A,

we have e3 +
1
2 e1 ∈ Bρ(e1, 1+

√
1
2 )∩ Bρ(e3,

√
1
2 )∩ A ⊂

⋂
n≥1 Hn . Hence,

⋂
n≥1 Hn ̸= ∅.

Since, for each n ∈ N∗, Kn is equal to {e1} or {e3} or B, so
⋂

n≥1 Kn ̸= ∅.
Q (A, B) has the proximal ρ-normal structure. Indeed, let (H, K ) be a proximal

ρ-admissible pair of (A, B) not reduced to one point for which distρ (H, K ) = distρ (A, B)

=

√
1
2 and δρ (H, K ) > distρ (H, K ). So, K = B and e3 +

1
2 e1 ∈ H . Therefore,

δρ

(
e3 +

1
2 e1, K

)
= 1+

√
1
2 . Since H is not reduced to one point, there exists m ∈ N\{0, 1, 3}

such that e3 + em ∈ H and δρ (H, K ) ≥ ρ(e3 + em − e1) = 3. Hence, δρ (H, K ) >

max{δρ

(
e3 +

1
2 e1, K

)
, δρ (e3, H)}.

Let T : A ∪ B → A ∪ B be a mapping defined by

T y = e3 if y ∈ B and T x =

{
u if x = u
v if x ∈ A \ {u}, where v = e3 + e2.

T is noncyclic and

ρ(T u − T y) = ρ(u − e3) =

√
1
2

≤ ρ(u − y), for each y ∈ B,

ρ(T x − T y) = ρ(v − e3) = 1 ≤ ρ(x − y), for each x ∈ A \ {u} and y ∈ B.

Then, T is noncyclic relatively ρ-nonexpansive on A ∪ B. Therefore, all assumptions of
Theorem 16 are satisfied, so T has a best proximity pair; namely,

T u = u, T e3 = e3 and ρ(u − e3) = distρ(A, B).

Corollary 18. Let A be a ρ-bounded and ρ-closed nonempty subset of Xρ . Assume
that Q (A, A) is ρ-normal and satisfies the property (R)-proximal. If T : A → A is
ρ-nonexpansive, then T has a fixed point.

The following lemma will be useful.

Lemma 19. Let (A, B) be a nonempty ρ-bounded and proximal ρ-sequentially-compact pair
in a modular space Xρ for which ρ satisfies the Fatou property. Then (A0, B0) is nonempty,
ρ-sequentially-compact and distρ (A0, B0) = distρ (A, B).

Proof. It is obvious that

distρ (A0, B0) = distρ (A, B) .

Let (xn) and (yn) be two sequences in A and B respectively, such that

ρ (xn − yn) → distρ (A, B) .
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Since (A, B) is a proximal ρ-compact pair, there exist subsequences
(
xnk

)
and

(
ynk

)
of

(xn) and (yn) respectively, such that xnk → x ∈ A and ynk → y ∈ B as k → ∞. Since ρ is
Fatou, then

ρ (x − y) ≤ lim inf
k

ρ
(
xnk − ynk

)
= distρ (A, B) .

This implies that A0 is nonempty since x ∈ A0. Similarly, we can see that B0 is nonempty.
The ρ-sequential-compactness of A0 is vacuous since each sequence (xn) of A0 has a
convergent subsequence for which this limit is in A0 because A0 is ρ-closed in A. Indeed, let
(xn) ⊂ A0 such that xnk → a, then there exists a sequence (yn) in B0 such that

ρ (xn − yn) → distρ (A, B) .

The proximal ρ-compactness of (A, B) implies the existence of subsequences
(
xnk

)
and(

ynk

)
of (xn) and (yn), respectively, such that xnk → x ∈ A and ynk → y ∈ B. Since ρ is

Fatou, so,

ρ (x − y) ≤ lim inf
k

ρ
(
xnk − ynk

)
= distρ (A, B)

then x ∈ A0, the uniqueness of the limit implies that x = a. Hence (A0, B0) is a
ρ-sequentially-compact pair. □

If we replace the assumption Xρ has (R)-proximal property and A0 is nonempty by the
condition (A, B) is a proximal ρ-sequentially-compact pair in Theorem 16, we obtain the
following result.

Theorem 20. Let (A, B) be a nonempty, ρ-bounded, ρ-closed and proximal ρ-sequentially-
compact pair in a modular space Xρ for which ρ satisfies the Fatou property. Moreover,
assume that Q (A, B) has the proximal ρ-normal structure. If T is noncyclic relatively
ρ-nonexpansive on A ∪ B and (A, B) has the P-property, then T has a best proximity pair.

Proof. Let F denote the set of all nonempty ρ-closed pairs (E, F) of Q (A, B) such that T is
noncyclic on E ∪ F and ρ (x − y) = dρ for some (x, y) ∈ E × F where dρ = distρ (A, B).
Thus, F is nonempty since (A, B) ∈ F .

Define δ̃ρ : F → [0, ∞) by

δ̃ρ

(
D A, DB)

= inf
{
δρ (E, F) : (E, F) ∈ F and (E, F) ⊆

(
D A, DB)}

.

Set
(
D A

1 , DB
1

)
= (A, B), by definition of δ̃ρ , there exists

(
D A

2 , DB
2

)
∈ F such that(

D A
2 , DB

2

)
⊆

(
D A

1 , DB
1

)
, distρ

(
D A

2 , DB
2

)
= distρ

(
D A

1 , DB
1

)
= dρ and

δρ

(
D A

2 , DB
2

)
< δ̃ρ

(
D A

1 , DB
1

)
+ 1

suppose that
(
D A

k , DB
k

)
k=1,2,...,n are constructed for n ≥ 1. Again, by definition of δ̃ρ , there

exists
(
D A

n+1, DB
n+1

)
⊆

(
D A

n , DB
n

)
such that

δρ

(
D A

n+1, DB
n+1

)
< δ̃ρ

(
D A

n , DB
n

)
+

1
n

and distρ
(
D A

n+1, DB
n+1

)
= dρ . Using Lemma 19, (A0, B0) is ρ-sequentially-compact, then(

D A
∞

, DB
∞

)
̸= ∅ where

D A
∞

=

⋂
n≥1

D A
n and DB

∞
=

⋂
n≥1

DB
n .
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Indeed, one can choose two sequences (xn) and (yn) such that (xn, yn) ∈ D A
n × DB

n for
each n ≥ 1 and

ρ (xn − yn) = dρ

using the same method as before, there exists
(
xnk

)
of (xn) and

(
ynk

)
of (yn) such that

xnk → x (ρ) and ynk → y (ρ). Let p ≥ 1 and define two subsets of A0 and B0 as follows

C A
p =

{
xnk : k ≥ p

}
and C B

p =
{

ynk : k ≥ p
}

hence x ∈
⋂

pC A
p and y ∈

⋂
pC B

p . Thus, x ∈
⋂

n≥1 D A
n =

⋂
k≥1 D A

nk
and y ∈

⋂
n≥1 DB

n =⋂
k≥1 DB

nk
. Also, since ρ satisfies the Fatou property we get

ρ (x − y) = dρ

(
D A

∞
, DB

∞

)
= dρ (A, B) .

Note that, T
(
D A

∞

)
= T

(⋂
n D A

n

)
⊆

⋂
nT

(
D A

n

)
⊆

⋂
n D A

n = D A
∞

, in the same manner
T

(
DB

∞

)
⊆ D A

∞
and,

(
D A

∞
, DB

∞

)
∈ Q (A, B) since

(
D A

n , DB
n

)
∈ Q (A, B) for all n ≥ 1, then(

D A
∞

, DB
∞

)
∈ F .

Case 1: If D A
∞

or DB
∞

is reduced to one point, for example DB
∞

= {y} and since T (DB
∞

) ⊂

DB
∞

, we have T y = y. Also, ρ (x − y) = dρ

(
D A

∞
, DB

∞

)
= dρ (A, B), for some x ∈ D A

∞
.

Since T is relatively ρ-nonexpansive on D A
∞

∪ DB
∞

,

ρ(T x − T y) = ρ(T x − y) ≤ ρ(x − y) = dρ (A, B)

by hypothesis, (A, B) has the P-property, then

ρ(T x − y) = ρ(x − y) = dρ (A, B) implies T x = x .

Similarly, If D A
∞

is reduced to one point.

Case 2: If (D A
∞

, DB
∞

) is not reduced to one point.
In this step, we can use the same argument as in Theorem 16 to prove that

δρ

(
D A

∞
, DB

∞

)
= distρ

(
D A

∞
, DB

∞

)
,

hence we get for each (x, y) ∈ D A
∞

× DB
∞

,

T x = x, T y = y and ρ(x − y) = distρ
(
D A

∞
, DB

∞

)
,

which completes the proof. □

Example 21. Let X = R and define the modular functional ρ : X → [0, ∞[ by

ρ(x) = |x |
1
3 , for all x ∈ R.

Define

A = {−π} ∪ [−
π

2
, 0] and B = [2, 3] ∪ {4}

(A, B) is a nonempty, ρ-bounded, ρ-closed and proximal ρ-sequentially-compact pair in a
modular space Xρ . (A, B) is not a convex pair and distρ(A, B) = 2

1
3 . Note that Q (A, B)

has the proximal ρ-normal structure and the P-property.
Define T : A ∪ B → A ∪ B by:⎧⎪⎨⎪⎩

T x =
x + sin(x)

2
if x ∈ A

T y =
y + 2

2
if y ∈ B.
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We have

ρ(T x − T y) =

⏐⏐⏐⏐1
2

(x − y) +
1
2

(sin(x) − 2)
⏐⏐⏐⏐ 1

3

=

(
1
2

(y − x) +
1
2

(2 − sin(x))
) 1

3

≤ ρ(x − y).

So, T is noncyclic relatively ρ-nonexpansive on A ∪ B and has a best proximity pair:

T 0 = 0, T 2 = 2 and ρ(0 − 2) = distρ(A, B).

The following example shows that the proximal ρ-normal structure of Theorem 20 is a
necessary assumption to get the existence of a best proximity pair of noncyclic relatively
ρ-nonexpansive maps.

Example 22. Let X = R2 and define the modular functional ρ : X → [0, ∞[ by

ρ(x) = |x1|
1
3 + |x2|

1
3 , for all x = (x1, x2) ∈ R2.

Define

A = {(1, 0), (1, 1)} and B = {(2, 0), (2, 1)}

(A, B) is a nonempty, ρ-bounded, ρ-closed and ρ-sequentially-compact pair (so proximal
ρ-sequentially-compact pair) in a modular space Xρ . A and B are not convex sets. We have
distρ(A, B) = 1 and (A, B) has the P-property.

Define T : A ∪ B → A ∪ B by:{
T (1, 0) = (1, 1)
T (1, 1) = (1, 0) and

{
T (2, 0) = (2, 1)
T (2, 1) = (2, 0).

We have

ρ(T x − T y) ≤ ρ(x − y), for all (x, y) ∈ A × B,

that is, T is noncyclic relatively ρ-nonexpansive on A∪ B. However, T has no best proximity
pair. Note that Q (A, B) is not proximal ρ-normal, since for (H, K ) = (A, B),

distρ(H, K ) = distρ(A, B) and δρ(H, K ) = 2 > distρ(H, K ) = 1,

but

δρ((1, 0), K ) = 2 = δρ(H, K ) and δρ((1, 1), K ) = 2 = δρ(H, K ).

If we set A = B, we get the ρ-sequentially compact version of Theorem 10.

Corollary 23. Let A be a ρ-bounded and ρ-sequentially compact nonempty subset of
Xρ satisfying the Fatou property. Assume that Q (A, A) is ρ-normal. If T : A → A is
ρ-nonexpansive, then T has a fixed point.

Corollary 24. Let (A, B) be as Theorem 20 and let T : A ∪ B → A ∪ B be a pointwise
noncyclic contraction, then T has a best proximity pair.
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Remark 25. If we do not use the technical Lemma 11, Zorn’s Lemma will guarantee the
existence of diametral pairs for noncyclic relatively ρ-nonexpansive mappings. Recall that
an ordered pair (x∗, y∗) belonging to L1 × L2 with ρ(x∗

− y∗) = distρ (L1, L2) is called a
diametral pair if

δρ(x∗, L2) = δρ(y∗, L1) = δρ(L1, L2).

For more details see [8, Lemma 4.3]

Theorem 26. Let (A, B) be a nonempty, ρ-bounded and ρ-closed pair in a modular space
Xρ . Assume Q (A, B) is compact and A0 is nonempty. Assume ρ satisfies the Fatou property.
Let T be a noncyclic relatively ρ-nonexpansive on A ∪ B. Then, there exists a nonempty
ρ-closed pair (L1, L2) of Q (A, B), which is T -noncyclic and satisfies distρ (L1, L2) =

distρ (A, B). Moreover, each (x∗, y∗) ∈ L1 × L2 with ρ(x∗
− y∗) = distρ (A, B) is a

diametral pair.

Proof. Let F denote the collection of all nonempty and ρ-closed pairs (E, F) of Q (A, B)

such that T is noncyclic on E ∪ F and distρ (E, F) = distρ (A, B). F is nonempty since
(A, B) ∈ F .

Also, F is partially ordered by reverse inclusion, let {(Eα, Fα)}α∈Λ be a descending chain
in F and define (E, F) by

E =

⋂
α

Eα and F =

⋂
α

Fα

(E, F) ̸= ∅, since Q (A, B) is compact and T is noncyclic on E ∪ F , and distρ (E, F) =

distρ (A, B).
So, every increasing chain in F is bounded above with respect to reverse inclusion relation.

Then, using Zorn’s Lemma there exists a minimal element for F , say (L1, L2).
Assume that there exists a pair (x∗, y∗) ∈ L1 × L2 with ρ(x∗

− y∗) = distρ (A, B) which
is not a diametral pair. Then

min{δρ(x∗, L2), δρ(y∗, L1)} < δρ(L1, L2).

Set r1 = δρ(x∗, L2) ≤ δρ(L1, L2) and r2 = δρ(y∗, L1) < δρ(L1, L2). and let

DL1 =

⋂
y∈L2

Bρ (y, r1) ∩ L1

and

DL2 =

⋂
x∈L1

Bρ (x, r2) ∩ L2

then distρ
(
DL1 , DL2

)
= distρ (A, B) and

(
DL1 , DL2

)
̸= ∅ since (x∗, y∗) ∈ DL1 × DL2 .

Let M1 = T (L1) and M2 = T (L2), it is claimed that

coM2
L1

(M1) = L1 and coM1
L2

(M2) = L2.

Indeed, we have(
coM2

L1
(M1) , coM1

L2
(M2)

)
⊆ (L1, L2)
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then

T
(

coM2
L1

(M1)
)

⊆ M1 and T
(

coM1
L2

(M2)
)

⊆ M2

and since (M1, M2) ⊆

(
coM2

L1
(M1) , coM1

L2
(M2)

)
we get

T
(

coM2
L1

(M1)
)

⊆ coM2
L1

(M1) and T
(

coM1
L2

(M2)
)

⊆ coM1
L2

(M2) .

Since T (L1) × T (L2) ⊂ coM2
L1

(M1) × coM1
L2

(M2) and distρ (L1, L2) = distρ (A, B), we get

distρ
(

coM2
L1

(M1) , coM1
L2

(M2)
)

= distρ (A, B) .

Thus, (
coM2

L1
(M1) , coM1

L2
(M2)

)
∈ F

that is (
coM2

L1
(M1) , coM1

L2
(M2)

)
= (L1, L2) .

We have for each (x, y) ∈ DL1 × DL2 ,

L1 = coM2
L1

(M1) ⊂ Bρ (y, r2) and L2 = coM1
L2

(M2) ⊂ Bρ (x, r1) . (2)

Moreover, T is noncyclic on DL1 ∪ DL2 . Indeed, let w ∈ DL2 , for each x ∈ L1 we have
ρ(w − x) ≤ r2. Since T is relatively ρ-nonexpansive,

ρ(T w − T x) ≤ ρ(w − x) ≤ r2, ∀x ∈ L1.

Thus,

T (L1) ⊂ Bρ (T w, r2) .

Note that coM2
L1

(M1) ⊆
⋂

y∈L2
Bρ

(
T y, δρ(T y, T (L1))

)
. If x ∈ L1 and since w ∈ L2,

ρ(x − T w) ≤ δρ(T w, T (L1)) ≤ δρ(w, L1),

because T is relatively ρ-nonexpansive. So

∀x ∈ L1, ρ(x − T w) ≤ r2

hence, T w ∈ DL2 . Then T (DL2 ) ⊂ DL2 . Similarly, T (DL1 ) ⊂ DL1 . That is T is noncyclic
on DL1 ∪ DL2 .

Since (x∗, y∗) ∈ DL1 × DL2 and ρ(x∗
− y∗) = distρ (A, B), we get

distρ
(
DL1 , DL2

)
= distρ (A, B)

it follows that
(
DL1 , DL2

)
∈ F , the minimality of (L1, L2) implies that L1 = DL1 and

L2 = DL2 . Thereby,

δρ(L1, L2) = δρ(L1, DL2 ) = sup{δρ(y, L1) : y ∈ DL2} ≤ r2

which is contradiction. This completes the proof. □
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4. POINTWISE NONCYCLIC CONTRACTION

In this section, we give a best proximity pair result for pointwise noncyclic contraction in
the setting of modular spaces. Note that the proof is done directly and without the notion of
proximal ρ-normal structure.

Theorem 27. Let (A, B) be a nonempty, ρ-bounded and ρ-closed pair in a modular space
Xρ . Assume Q (A, B) is compact and ρ satisfies the Fatou property. If T : A∪ B → A∪ B is
a pointwise noncyclic contraction and (A, B) has the P-property, then T has a unique best
proximity pair.

Proof. Using Zorn’s Lemma and compactness of Q (A, B), we obtain a nonempty,
ρ-bounded and ρ-closed pair (L1, L2) in Xρ which is minimal with respect to being invariant
under the noncyclic mapping T and distρ (L1, L2) = distρ (A, B). So, we must have
coM2

L1
(M1) = L1 and coM1

L2
(M2) = L2. Let (x, y) ∈ L1 × L2, there exist 0 ≤ α(x), β(x) < 1

such that

ρ(T x − T y) ≤ α(x)β(y)ρ(x − y) + (1 − α(x))(1 − β(y))distρ(A, B).

We have,

ρ(T x − T y) ≤ α(x)δρ(x, L2) + (1 − α(x))distρ(A, B)

ρ(T x − T y) ≤ β(y)δρ(y, L1) + (1 − β(y))distρ(A, B),

and so,

T (L2) ⊂ Bρ

(
T x, α(x)δρ(x, L2) + (1 − α(x))distρ(A, B)

)
T (L1) ⊂ Bρ

(
T y, β(y)δρ(y, L1) + (1 − β(y))distρ(A, B)

)
.

Therefore,

L2 = coM1
L2

(M2) ⊂ Bρ

(
T x, α(x)δρ(x, L2) + (1 − α(x))distρ(A, B)

)
L1 = coM2

L1
(M1) ⊂ Bρ

(
T y, β(y)δρ(y, L1) + (1 − β(y))distρ(A, B)

)
,

where M1 = T (L1) and M2 = T (L2). Hence,

δρ(T x, L2) ≤ α(x)δρ(x, L2) + (1 − α(x))distρ(A, B) (3)

δρ(T y, L1) ≤ β(y)δρ(y, L1) + (1 − β(y))distρ(A, B). (4)

Now, let (x∗, y∗) ∈ L1 × L2 be a fixed element. Put

r1 = α(x∗)δρ(x∗, L2) + (1 − α(x∗))distρ(A, B)

r2 = β(y∗)δρ(y∗, L1) + (1 − β(y∗))distρ(A, B).

and let distρ(A, B) ≤ r1 ≤ r2. Set

DL1 =

⋂
y∈L2

Bρ (y, r2) ∩ L1
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DL2 =

⋂
x∈L1

Bρ (x, r1) ∩ L2.

It follows from (3) that δρ(T x∗, L2) ≤ r1 ≤ r2 and by using (4) we have δρ(T y∗, L1) ≤ r2,
that is (T x∗, T y∗) ∈ DL1 × DL2 . Also, if x ∈ DL1 , then δ(x, L2) ≤ r2. It follows

δ(T x, L2) ≤ α(x)δρ(x, L2) + (1 − α(x))distρ(A, B) ≤ δ(x, L2) ≤ r2

δ(T y, L1) ≤ β(y)δρ(y, L1) + (1 − β(y))distρ(A, B) ≤ δ(y, L1) ≤ r1,

which implies T x ∈ DL1 and T y ∈ DL1 , so T (DL1 ) ⊂ DL1 and T (DL2 ) ⊂ DL2 . Thus, T
is noncyclic on DL1 ∪ DL2 , and since (DL1 , DL2 ) is a ρ-bounded and ρ-closed pair in Xρ ,
from the minimality of (L1, L2) we get L1 = DL1 and L2 = DL2 . Thereby, for all x ∈ L1,

δρ(x, L2) ≤ α(x∗)δρ(x∗, L2) + (1 − α(x∗))distρ(A, B)

≤ α(x∗)δρ(L1, L2) + (1 − α(x∗))distρ(A, B).

This leads to

δρ(L1, L2) = sup
x∈L1

δρ(x, L2)

≤ α(x∗)δρ(L1, L2) + (1 − α(x∗))distρ(A, B).

Hence,

δρ(L1, L2) = distρ (A, B) .

Since (A, B) has the P-property, we conclude that (L1, L2) are singletons and so T has a
best proximity pair, say (p, q) ∈ L1 × L2. If (p′, q ′) ∈ A × B is another best proximity pair,
then

ρ(p − q ′) = ρ(T p − T q ′)

≤ α(p)β(q ′)ρ(p − q ′) + (1 − α(p))(1 − β(q ′))distρ(A, B),

which implies that ρ(p − q ′) = distρ (A, B) and since (A, B) has the P-property, we have
q = q ′. Similarly, p = p′, which completes the proof. □

We conclude this paper by the following example which shows how the P-property is a
necessary condition to ensure the existence of a best proximity pair for pointwise noncyclic
contractions in Theorem 27.

Example 28. Let the real space X = {x = (xn)n≥1 ∈ RN∗

:
∑

n≥1|xn|
1
2 < ∞}, and define

the modular functional ρ : X → [0, ∞] by

ρ(x) = max{r (x), 2∥x∥∞} for all x = (xn)n≥1 ∈ X

where, ∥.∥∞ denotes the ℓ∞-norm and r : x ↦→
∑

∞

n=1|xn|
1
2 the modular functional of X .

Suppose that {en} is the canonical basis of X . Define

A = {x = (xn)n≥1 : x3 = 1, ρ(x) ≤ 2} and B = {y1 = e1 + e2, y2 = e1 − e2}.

Then, (A, B) is ρ-bounded, ρ-closed in Xρ and B is not convex. A is not ρ-sequentially-
compact because the sequence {e3 + en}n ̸=3 does not have any ρ-convergent subsequence.
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Notice that u = e1 +e3 and v = e2 +e3 are two points of A, so ρ(u −v) = ρ(v − y1) = 2.
Moreover, for each x = (x1, x2, 1, x4, . . .) ∈ A we have r (x) ≤ 2 which implies that∑

n ̸=3|xn|
1
2 ≤ 1, so |xn| ≤ 1, for all n ≥ 1. Thus, for all x ∈ A, ρ(x − y1) ≥ 2 and

ρ(x − y2) ≥ 2 which implies that distρ(A, B) = 2.
Q (A, B) is compact. Indeed, let

(
{Hα}α∈Λ,

{
Kβ

}
β∈Γ

)
be a family of Q (A, B) such that(

∩α∈Λ1 Hα, ∩β∈Γ1 Kα

)
̸= ∅, for any finite subsets Λ1 ⊂ Λ and Γ1 ⊂ Γ .

1. If for each α ∈ Λ, Hα =
⋂

i∈Iα Bρ(y1, ri,α)∩ A, where ri,α ≥ distρ(A, B), for all i ∈ Iα ,
so Bρ(y1, 2)∩ A ⊂

⋂
α∈ΛHα and since e3 +e1 ∈ Bρ(y1, 2)∩ A, we have

⋂
α∈ΛHα ̸= ∅.

2. If for each α ∈ Λ, Hα =
⋂

j∈Jα
Bρ(y2, r j,α) ∩ A, where r j,α ≥ distρ(A, B), for all

j ∈ Jα , so Bρ(y2, 2) ∩ A ⊂
⋂

α∈ΛHα and since e3 + e1 ∈ Bρ(y2, 2) ∩ A, we have⋂
α∈ΛHα ̸= ∅.

3. If there exists α ∈ Λ such that Hα =
(⋂

i∈Iα Bρ(y1, ri,α)
)
∩

(⋂
j∈Jα

Bρ(y2, r ′

j,α)
)

∩ A.
We have e3 + e1 ∈ Bρ(y1, ri,α) ∩ Bρ(y2, r ′

j,α) ∩ A ⊂
⋂

α∈ΛHα , hence
⋂

α∈ΛHα ̸= ∅.

Since, for each β ∈ Γ , Kβ is equal to {y1} or {y2} or B we have
⋂

β∈Γ Kβ ̸= ∅.
Let T : A ∪ B → A ∪ B be a mapping defined by

T yi = y1, for i ∈ {1, 2} and T x =

{
v if x = u
u if x ∈ A \ {u}

Then, T is noncyclic and for each k ∈ [0, 1), x ∈ A and i ∈ {1, 2}, we have

ρ(T x − T yi ) = 2 = 2k + 2(1 − k) ≤ kρ(x − yi ) + (1 − k)distρ(A, B),

therefore, T is a pointwise noncyclic contraction. Nevertheless, T has no best proximity pair
since (A, B) does not satisfy the P-property, ρ(u − y1) = ρ(v − y1) = 2 but

ρ(u − v) ̸= 0.
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