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Abstract. In this paper we approximate common fixed points of nearly asymptotically
nonexpansive mappings under modified S P-iteration process in the setting of CAT(k) spaces
and establish strong and ∆-convergence theorems. Our results generalize and improve the
corresponding known results of the existing literature.
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1. INTRODUCTION

The class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [8] as an important generalization of the class of nonexpansive mappings. They proved
that if K is a nonempty closed and bounded subset of a uniformly convex Banach space, then
every asymptotically nonexpansive self-mapping of K has a fixed point. There are many pa-
pers dealing with the approximation of fixed points of asymptotically nonexpansive mappings
and asymptotically quasi-nonexpansive mappings in uniformly convex Banach spaces, using
modified Mann, Ishikawa and three-step iteration processes (see, [8,16,23,24,26,27,29–34]).
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The concept of ∆-convergence in general metric spaces was introduced by Lim [15].
Kirk [13] proved the existence of fixed points of nonexpansive mappings in CAT(0) spaces.
Kirk and Panyanak [14] specialized this concept to CAT(0) spaces and showed that many
Banach space results involving weak convergence have precise analogs in this setting.
Dhompongsa and Panyanak [6] proved some results by using Mann and Ishikawa iteration
process involving one mapping. After that Khan and Abbas [12] studied the approximation
of common fixed point by the Ishikawa-type iteration process involving two mappings in
CAT(0) spaces.

The aim of this paper is to establish strong and ∆-convergence of modified S P-iteration
process for nearly asymptotically nonexpansive mappings in CAT(k) spaces with k > 0. Our
results extend and improve the corresponding results of Abbas et al. [1], Dhompongsa and
Panyanak [6], Khan and Abbas [12], Phuengrattana and Suantai [21], Thiainwan [33] and
many other results of this direction. For more details one can be referred to [3,28–30].

2. PRELIMINARIES

This section contains preliminary notions, basic definitions and relevant well known
results which are required to prove the main results.

Let F(T ) = {x ∈ K : T x = x} denotes the set of fixed points of mapping T . We begin
with the following definitions:

Definition 1. Let K be a nonempty subset of a metric space (X, d). Then the mapping
T : K → K is said to be

(1) nonexpansive if d(T x, T y) ≤ d(x, y) for all x, y ∈ K ;

(2) asymptotically nonexpansive if there exists a sequence {tn} ⊂ [0, ∞), with limn→∞tn =

0, such that d(T n x, T n y) ≤ (1 + tn)d(x, y) for all x, y ∈ K and n ≥ 1;

(3) asymptotically quasi-nonexpansive if F(T ) ̸= ∅ and there exists a sequence {tn} ⊂

[0, ∞), with limn→∞tn = 0, such that d(T n x, p) ≤ (1 + tn)d(x, p) for all x ∈ K ,

p ∈ F(T ) and n ≥ 1;

(4) uniformly L-Lipschitzian if there exists a constant L > 0 such that d(T n x, T n y) ≤

Ld(x, y) for all x, y ∈ K and n ≥ 1;

(5) semi-compact if for a sequence {xn} in K with limn→∞d(xn, T xn) = 0, there exists a
subsequence {xnk } of {xn} such that xnk → p ∈ K as k → ∞;

(6) a sequence {xn} in K is called an approximating fixed point sequence for T (AFPS, in
short) if limn→∞d(xn, T xn) = 0.

The class of nearly Lipschitzian mappings was introduced by Sahu [22]. Actually it is an
important generalization of the class of Lipschitzian mappings.

Definition 2. Let K be a nonempty subset of a metric space (X, d). Fix a sequence
{sn} ⊂ [0, ∞) with limn→∞sn = 0. A mapping T : K → K is said to be nearly Lipschitzian
with respect to {sn} if for all n ≥ 1, there exists a constant kn ≥ 0 such that

d(T n x, T n y) ≤ kn[d(x, y) + sn] for all x, y ∈ K .

The infimum of the constants kn for which the above inequality holds, is denoted by η(T n)
and called nearly Lipschitz constant. Notice that

η(T n) = sup
{

d(T n x, T n y)
d(x, y) + sn

: x, y ∈ K , x ̸= y
}
.
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A nearly Lipschitzian mapping T with sequence {sn, η(T n)} is said to be

(1) nearly nonexpansive if η(T n) = 1 for all n ≥ 1;

(2) nearly asymptotically nonexpansive if η(T n) ≥ 1 for all n ≥ 1 and limn→∞η(T n) = 1;

(3) nearly uniformly k-Lipschitzian if η(T n) ≤ k for all n ≥ 1.

Note that every asymptotically nonexpansive mapping is nearly asymptotically nonexpan-
sive.

Definition 3. Let K be a nonempty subset of a metric space (X, d). A mapping T : K → K
is said to satisfy condition (I ) if there exists a nondecreasing function g : [0, ∞) → [0, ∞)
with g(0) = 0 and g(r ) > 0 for all r ∈ (0, ∞) such that d(x, T x) ≥ g(d(x, F(T ))) for all
x ∈ K .

Let (X, d) be a metric space. A geodesic path joining x(∈ X ) to y(∈ X )(or more briefly,
a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that
c(0) = x, c(l) = y and d(c(t), c(s)) = |t − s| for all t, s ∈ [0, l]. In particular, c is an
isometry and d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining
x and y. When it is unique, this geodesic is denoted by [x, y]. The space (X, d) is said to
be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A
subset Y of X is said to be convex if Y includes every geodesic segment joining any two of
its points.

Let D be a positive number. A metric space (X, d) is called a D-geodesic space if any two
points of X with distance less than D are joined by a geodesic. If this holds in a convex set
Y, then Y is said to be D-convex. Let Mk denotes the 2-dimensional, complete and simply
connected spaces of curvature k, where k is a constant.

We define the diameter Dk of Mk (k ≥ 0) by DK =
π
√

k for k > 0 and Dk = ∞ for k = 0.

It is well known that any ball in X with radius less than Dk/2 is convex (see [4]). A geodesic
triangle ∆(x, y, z) in the metric space (X, d) consists of three points x, y, z in X (the vertices
of ∆) and three geodesic segments between each pair of vertices. For ∆(x, y, z) in a geodesic
space X satisfying

d(x, y) + d(y, z) + d(z, x) < 2Dk,

there exist points x̄, ȳ, z̄ ∈ Mk such that d(x, y) = dk(x̄, ȳ), d(y, z) = dk(ȳ, z̄) and
d(z, x) = dk(z̄, x̄) where dk is the metric of Mk . The triangle having vertices x̄, ȳ, z̄ ∈ Mk
is called a comparison triangle of ∆(x, y, z). A geodesic triangle ∆(x, y, z) in X with
d(x, y) + d(y, z) + d(z, x) < 2Dk is said to satisfy the CAT(k) inequality if, for any p, q ∈

∆(x, y, z) and for their comparison points p̄, q̄ ∈ ∆̄(x̄, ȳ, z̄), we have d(p, q) ≤ dk( p̄, q̄).

Definition 4. A metric space (X, d) is called a CAT(k) space if and only if

(1) (for k ≤ 0) X is a geodesic space such that all of its geodesic triangles satisfy the
CAT(k) inequality;

(2) (for k > 0) X is Dk-geodesic and any geodesic triangle ∆(x, y, z) in X with
d(x, y) + d(y, z) + d(z, x) < 2Dk satisfies the CAT(k) inequality.

Notice that in a CAT(0) space (X, d) if x, y, z ∈ X, then the CAT(0) inequality implies

d2
(

x,
y ⊕ z

2

)
≤

1
2

d2(x, y) +
1
2

d2(x, z) −
1
4

d2(y, z), (CN)
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which is called the (CN) inequality given by Bruhat and Tits [5]. Dhompongsa and
Panyanak [6] extended the (CN) inequality as follows:

d2(z, αx ⊕ (1 − α)y) ≤ αd2(z, x) + (1 − α)d2(z, y) − α(1 − α)d2(x, y) (CN∗)

for all α ∈ [0, 1] and x, y, z ∈ X. In fact, if X is a geodesic space, then the following
statements are equivalent:

(1) X is a CAT(0) space;
(2) X satisfies the (CN) inequality;
(3) X satisfies the (CN∗) inequality.

Let R ∈ (0, 2]. A geodesic space (X, d) is said to be R-convex for R [20] if for
x, y, z ∈ X, we have

d2(z, αx ⊕ (1 − α)y) ≤ αd2(z, x) + (1 − α)d2(z, y) −
R
2

α(1 − α)d2(x, y). (2.1)

It follows from (CN∗) that a geodesic space (X, d) is a CAT(0) space if and only if (X, d) is
R-convex for R = 2.

Lemma 1 ([4]). Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0 for

some ϵ ∈ (0, π/2). Then

d((1 − α)x ⊕ αy, z) ≤ (1 − α)d(x, z) + αd(y, z)

for all x, y, z ∈ X and α ∈ [0, 1].

Now, we recall some elementary facts about CAT(k) spaces.
Let (X, d) be a CAT(k) space and {xn} a bounded sequence in X. For x ∈ X, we set

r (x, {xn}) = lim
n→∞

sup d(x, xn).

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf{r (x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r ({xn}) = r (x, {xn})}.

It is clear that a CAT(k) space with diam(X ) =
π

2
√

k , A({xn}) consists of exactly one point
(see [7]).

Definition 5 ([15]). A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the unique
asymptotic center of {un} for every subsequence {un} of {xn}.

We write ∆-limn→∞xn = x where x is called the ∆-limit of {xn}.

We state the results in a CAT(k) space with k > 0.

Lemma 2 ([7]). Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0 for

some ϵ ∈ (0, π/2). Then the following statements hold:
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(1) Every sequence in X has a ∆-convergent subsequence.
(2) If {xn} ⊆ X and ∆-limn→∞xn = x, then x ∈

⋂
∞

k=1conv{xk, xk+1, . . .}, where
conv(A) =

⋂
{B : B ⊇ A and B is closed and convex}.

Lemma 3 ([6]). Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0 for

some ϵ ∈ (0, π/2). If {xn} is a bounded sequence in X with A({xn}) = {x} and {vn} is a
subsequence of {xn} with A({vn}) = {v} and the sequence {d(xn, v)} converges, then x = v.

Lemma 4 ([31]). Let {pn}
∞

n=1, {qn}
∞

n=1 and {rn}
∞

n=1 be sequences of nonnegative numbers
satisfying the inequality

pn+1 ≤ (1 + qn)pn + rn, ∀ n ≥ 1.

If
∑

∞

n=1qn < ∞ and
∑

∞

n=1rn < ∞, then limn→∞ pn exists.

Proposition 1 ([18]). Let {xn} be a bounded sequence in a CAT(0) space X, and K a closed
convex subset of X which contains {xn}. Then

(1) ∆-limn→∞xn = x, implies that {xn} ⇀ x,

(2) the converse is true if {xn} is regular.

For approximating fixed point, Mann [17] and Ishikawa [10] introduced iteration schemes
for a mapping T : K → K , which are respectively described in the following lines: x1 ∈ K ,

xn+1 = anT xn ⊕ (1 − an)xn, n ≥ 1, (2.2){
yn = bnT xn ⊕ (1 − bn)xn,

xn+1 = anT yn ⊕ (1 − an)xn, n ≥ 1,
(2.3)

where {an} and {bn} are appropriate sequences in (0, 1). He et al. [9] and Jun [11] proved that
the sequence {xn} generated by (2.2) and (2.3) converges and ∆-converges respectively to a
fixed point of T in CAT(k) spaces.

Thianwan [33] defined the two step iteration as follows: x1 ∈ K ,{
yn = bnT xn ⊕ (1 − bn)xn,

xn+1 = anT yn ⊕ (1 − an)yn, n ≥ 1,
(2.4)

where {an}, {bn} and {cn} are appropriate sequences in (0, 1).
Further in [19], Noor defined the three step Noor iteration as follows: x1 ∈ K ,⎧⎨⎩zn = cnT xn ⊕ (1 − cn)xn,

yn = bnT zn ⊕ (1 − bn)xn,

xn+1 = anT yn ⊕ (1 − an)xn, n ≥ 1,

(2.5)

where {an}, {bn} and {cn} are appropriate sequences in (0, 1).
Recently, Phuengrattana and Suantai [21] defined the S P-iteration as follows: x1 ∈ K ,⎧⎨⎩zn = cnT xn ⊕ (1 − cn)xn,

yn = bnT zn ⊕ (1 − bn)zn,

xn+1 = anT yn ⊕ (1 − an)yn, n ≥ 1,

(2.6)

where {an}, {bn} and {cn} are appropriate sequences in (0, 1).
It has been shown that a three-step iterative scheme gives better numerical results than the

two-step and one-step approximate iterations. Thus we conclude that a three-step iterative
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scheme plays an important and significant role in solving various problems which arise in
pure and applied sciences. These facts motivated us to study a class of three-step modified
S P-iterative scheme in the setting of CAT(k) spaces with k > 0. For more details, one can
see [7,9,12,27].

In the sequel, we need the following lemmas:

Lemma 5 ([25]). Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0

for some ϵ ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K a
uniformly continuous nearly asymptotically nonexpansive mapping. Then T has a fixed point.

Lemma 6 ([25]). Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0 for

some ϵ ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K a
uniformly continuous nearly asymptotically nonexpansive mapping. If {xn} is an AFPS for T
such that ∆-limn→∞xn = z, then z ∈ K and z = T z.

3. MAIN RESULTS

In this section, we approximate the fixed points of nearly asymptotically nonexpansive
mapping of modified S P-iterative scheme in complete CAT(k) spaces and establish some
strong and ∆-convergence theorems.

Theorem 1. Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0 for some

ϵ ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K a uniformly
continuous nearly asymptotically nonexpansive mapping with sequence {(sn, η(T n))}. For
arbitrary x1 ∈ K , the sequence {xn} be the modified S P-iteration defined as follows:⎧⎨⎩zn = cnT n xn ⊕ (1 − cn)xn,

yn = bnT nzn ⊕ (1 − bn)zn,

xn+1 = anT n yn ⊕ (1 − an)yn, n ≥ 1,

(3.1)

where {an}, {bn} and {cn} are appropriate sequences in (0, 1) satisfying the following:

(1) limn→∞ inf an(1−an) > 0, limn→∞ inf bn(1−bn) > 0 and limn→∞ inf cn(1−cn) > 0;

(2)
∑

∞

n=1sn < ∞ and
∑

∞

n=1(η(T n) − 1) < ∞.

Then {xn} ∆-converges to a fixed point of T .

Proof. From Lemma 5, it follows that F(T ) ̸= ∅. Let p ∈ F(T ). Since T is nearly
asymptotically nonexpansive, from (3.1) and Lemma 1, we have

d(zn, p) = d(cnT n xn ⊕ (1 − cn)xn, p)

≤ cnd(T n xn, p) + (1 − cn)d(xn, p)

≤ cn[η(T n)(d(xn, p) + sn)] + (1 − cn)d(xn, p)

≤ η(T n)[cn(d(xn, p) + (1 − cn)d(xn, p))] + cnη(T n)sn

≤ η(T n)d(xn, p) + η(T n)sn. (3.2)
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Again by using (3.1), (3.2) and Lemma 1, we have

d(yn, p) = d(bnT nzn ⊕ (1 − bn)zn, p)

≤ bnd(T nzn, p) + (1 − bn)d(zn, p)

≤ bn[η(T n)(d(zn, p) + sn)] + (1 − bn)d(zn, p)

≤ η(T n)[bn(d(zn, p) + (1 − bn)d(zn, p))] + bnη(T n)sn

≤ η(T n)d(zn, p) + η(T n)sn

≤ η(T n)[η(T n)d(xn, p) + η(T n)sn] + η(T n)sn

= η(T n)2d(xn, p) + (η(T n) + η(T n)2)sn. (3.3)

Further by using (3.1), (3.3) and Lemma 1, we have

d(xn+1, p) = d(anT n yn ⊕ (1 − an)yn, p)

≤ and(T n yn, p) + (1 − an)d(yn, p)

≤ an[η(T n)(d(yn, p) + sn)] + (1 − an)d(yn, p)

≤ η(T n)[an(d(yn, p) + (1 − an)d(yn, p))] + anη(T n)sn

≤ η(T n)d(yn, p) + η(T n)sn

≤ η(T n)[η(T n)2d(xn, p) + (η(T n) + η(T n)2)sn] + η(T n)sn

= η(T n)3d(xn, p) + (η(T n)3
+ η(T n)2

+ η(T n))sn

= (1 + αn)d(xn, p) + βn, (3.4)

where αn = η(T n)3
− 1 = (η(T n)2

+ η(T n) + 1)(η(T n) − 1) and βn = (η(T n)3
+ η(T n)2

+

η(T n))sn. Since
∑

∞

n=1(η(T n) − 1) < ∞ and
∑

∞

n=1sn < ∞, we have that
∑

∞

n=1αn < ∞ and∑
∞

n=1βn < ∞. Hence by Lemma 4, limn→∞d(xn, p) exists.

Claim: We claim that limn→∞d(T xn, xn) = 0. Since {xn} is bounded, there exists R > 0
such that {xn}, {yn}, {zn} ⊂ BR(p) for all n ≥ 1 with R < Dk/2. In view of (2.1) and (3.1),
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we have

d2(zn, p) = d2(cnT n xn ⊕ (1 − cn)xn, p)

≤ cnd2(T n xn, p) + (1 − cn)d2(xn, p) −
R
2

cn(1 − cn)d2(T n xn, xn)

≤ cn[η(T n)(d(xn, p) + sn)]2
+ (1 − cn)d2(xn, p)

−
R
2

cn(1 − cn)d2(T n xn, xn)

≤ η(T n)2d2(xn, p) + Asn −
R
2

cn(1 − cn)d2(T n xn, xn), (3.5)

for some A > 0, where A = η(T n)2[sn + 2d(xn, p)], which implies that

d2(zn, p) ≤ η(T n)2d2(xn, p) + Asn. (3.6)

Again by using (2.1), (3.1) and (3.6), we have

d2(yn, p) = d2(bnT nzn ⊕ (1 − bn)zn, p)

≤ bnd2(T nzn, p) + (1 − bn)d2(zn, p) −
R
2

bn(1 − bn)d2(T nzn, zn)

≤ bn[η(T n)(d(zn, p) + sn)]2
+ (1 − bn)d2(zn, p)

−
R
2

bn(1 − bn)d2(T nzn, zn)

≤ η(T n)2d2(zn, p) + Bsn −
R
2

bn(1 − bn)d2(T nzn, zn)

≤ η(T n)2[η(T n)2d2(xn, p) + Asn] + Bsn −
R
2

bn(1 − bn)d2(T nzn, zn)

≤ η(T n)4d2(xn, p) + (Aη(T n)2
+ B)sn −

R
2

bn(1 − bn)d2(T nzn, zn)

= η(T n)4d2(xn, p) + (C + B)sn −
R
2

bn(1 − bn)d2(T nzn, zn), (3.7)

for some B, C > 0, where B = η(T n)2[sn + 2d(zn, p)] and C = η(T n)2 A, which implies
that

d2(yn, p) ≤ η(T n)4d2(xn, p) + (B + C)sn. (3.8)
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Finally, by using (2.1), (3.1) and (3.8), we have

d2(xn+1, p) = d2(anT n yn ⊕ (1 − an)yn, p)

≤ and2(T n yn, p) + (1 − an)d2(yn, p) −
R
2

an(1 − an)d2(T n yn, yn)

≤ an[η(T n)(d(yn, p) + sn)]2
+ (1 − an)d2(yn, p)

−
R
2

an(1 − an)d2(T n yn, yn)

≤ η(T n)2d2(yn, p) + Dsn −
R
2

an(1 − an)d2(T n yn, yn)

≤ η(T n)2[η(T n)4d2(xn, p) + (B + C)sn] + Dsn

−
R
2

an(1 − an)d2(T n yn, yn)

= η(T n)6d2(xn, p) + (D + E)sn −
R
2

an(1 − an)d2(T n yn, yn)

= [1 + (η(T n)6
− 1)]d2(xn, p) + (D + E)sn

−
R
2

an(1 − an)d2(T n yn, yn)

= [1 + (η(T n) − 1)δ]d2(xn, p) + (D + E)sn

−
R
2

an(1 − an)d2(T n yn, yn) (3.9)

for some D, E, δ > 0, where D = η(T n)2[sn + 2d(yn, p)], E = η(T n)2(B + C), and

δ = η(T n)5
+ η(T n)4

+ η(T n)3
+ η(T n)2

+ η(T n) + 1,

which implies that

R
2

an(1 − an)d2(T n yn, yn) ≤ d2(xn, p) − d2(xn+1, p) + (η(T n) − 1)δd2(xn, p)

+ (D + E)sn.

Since
∑

∞

n=1sn < ∞,
∑

∞

n=1(η(T n) − 1) < ∞ and also d(xn, p) < R, we have

R
2

an(1 − an)d2(T n yn, yn) < ∞.

Since limn→∞ inf an(1 − an) > 0, we have

lim
n→∞

d(T n yn, yn) = 0. (3.10)
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Now, consider (3.7) we have

d2(yn, p) ≤ [1 + (η(T n)4
− 1)]d2(xn, p) + (B + C)sn −

R
2

bn(1 − bn)d2(T nzn, zn)

≤ [1 + (η(T n) − 1)λ]d2(xn, p) + (B + C)sn −
R
2

bn(1 − bn)d2(T nzn, zn),

for some λ > 0, where λ = (η(T n) + 1)(η(T n)2
+ 1), which yields that

R
2

bn(1 − bn)d2(T nzn, zn) ≤ d2(xn, p) − d2(yn, p) + (η(T n) − 1)λd2(xn, p)

+ (B + C)sn.

Since
∑

∞

n=1sn < ∞,
∑

∞

n=1(η(T n)−1) < ∞ and also d(xn, p) < R, d(yn, p) < R, we have
R
2

bn(1 − bn)d2(T nzn, zn) < ∞.

Since limn→∞ inf bn(1 − bn) > 0, we have

lim
n→∞

d(T nzn, zn) = 0. (3.11)

Further, consider (3.5), we have

d2(zn, p) ≤ [1 + (η(T n)2
− 1)]d2(xn, p) + Asn −

R
2

cn(1 − cn)d2(T n xn, xn)

≤ [1 + (η(T n) − 1)µ]d2(xn, p) + Asn −
R
2

cn(1 − cn)d2(T n xn, xn),

for some µ > 0, where µ = η(T n) + 1, which yields that
R
2

cn(1 − cn)d2(T n xn, xn) ≤ d2(xn, p) − d2(zn, p) + (η(T n) − 1)µd2(xn, p) + Asn.

Since
∑

∞

n=1sn < ∞,
∑

∞

n=1(η(T n) − 1) < ∞ and also d(xn, p) < R, d(zn, p) < R, we have
R
2

cn(1 − cn)d2(T n xn, xn) < ∞.

As limn→∞ inf cn(1 − cn) > 0, we have

lim
n→∞

d(T n xn, xn) = 0. (3.12)

Now, from (3.10)–(3.12), we have

d(xn+1, yn) = d(anT n yn ⊕ (1 − an)yn, yn)

≤ and(T n yn, yn) → 0 as n → ∞.

Similarly,

d(yn, zn) = d(bnT nzn ⊕ (1 − bn)zn, zn)

≤ bnd(T nzn, zn) → 0 as n → ∞,

and
d(zn, xn) = d(cnT n xn ⊕ (1 − cn)xn, xn)

≤ cnd(T n xn, xn) → 0 as n → ∞.
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It follows that

d(xn+1, xn) ≤ d(xn+1, yn) + d(yn, zn) + d(zn, xn) → 0 as n → ∞.

Since T is uniformly continuous, we have

d(xn, T xn) ≤ d(xn, xn+1) + d(xn+1, T n+1xn+1)

+ d(T n+1xn+1, T n+1xn) + d(T n+1xn, T xn)

≤ d(xn, xn+1) + d(xn+1, T n+1xn+1) + η(T n+1)d(xn+1, xn)

+ sn+1 + d(T n+1xn, T xn)

= (1 + η(T n+1))d(xn, xn+1) + d(xn+1, T n+1xn+1)

+ d(T n+1xn, T xn) + sn+1

→ 0 as n → ∞, (3.13)

which implies that limn→∞d(T xn, xn) = 0. Let ww(xn) := ∪A({vn}), where the union is
taken over all subsequences {vn} of {xn}. Now, we show that ww(xn) ⊆ F(T ) and ww(xn)
consists of exactly one point. Let v ∈ ww(xn). Then there exists a subsequence {vn} of {xn}

such that A({vn}) = {v}. By Lemma 2, there exists a subsequence {tn} of {vn} such that
∆-limn→∞tn = t ∈ K . Hence by (3.13) and Lemma 6, we have t ∈ F(T ). Since
limn→∞d(xn, t) exists, so by Lemma 3, t = v, that is, ww(xn) ⊆ F(T ). Now, we show that
{xn} ∆-converges to a fixed point of T . For this, it suffices to show that ww(xn) consists of
exactly one point. Let {wn} be a subsequence of {xn} with A({wn}) = {w}. Let A({xn}) = {x}.

Since from above w ∈ ww(xn) ⊆ F(T ), therefore limn→∞d(xn, w) exists. Further from
above x = w ∈ F(T ). Thus ww(xn) = {x}. Therefore the sequence {xn} ∆-converges to a
fixed point of T . This completes the proof of the theorem. □

From Theorem 1, we deduce the following Corollary in CAT(0) space:

Corollary 1. Let (X, d) be a complete CAT(0) space and K a nonempty closed and convex
subset of X. Let T : K → K be a uniformly continuous nearly asymptotically nonexpansive
mapping with sequence {(sn, η(T n))}. Let {xn} be a sequence in K defined by (3.1) and {an},

{bn} and {cn} be sequences in (0, 1) satisfying the conditions (1) and (2) (of Theorem 1).
Then the sequence {xn} ∆-converges to a fixed point of T .

Theorem 2. Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0 for some

ϵ ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K a uniformly
continuous nearly asymptotically nonexpansive mapping with sequence {(sn, η(T n))}. Let
{xn} be a sequence in K defined by (3.1) and {an}, {bn} and {cn} be sequences in (0, 1)
satisfying the conditions (1) and (2) (of Theorem 1). Suppose that T q is semi compact for
some q ∈ N. Then the sequence {xn} converges strongly to a fixed point of T .
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Proof. From Theorem 1, limn→∞d(xn, T xn) = 0. Since T is uniformly continuous, we have

d(xn, T q xn) ≤ d(xn, T xn) + d(T xn, T 2xn) + · · ·

+ d(T q−1xn, T q xn) → 0, as n → ∞,

that is, {xn} is an AFPS for T q . As T q is semi-compact, there exists a subsequence {xnk } of
{xn} such that limk→∞xnk = p, where p ∈ K . Again, by the uniform continuity of T, we
have

d(p, T p) ≤ d(T p, T xnk ) + d(T xnk , xnk ) + d(xnk , p) → 0, as k → ∞,

that is, p ∈ F(T ). Again, by Theorem 1, limn→∞d(xn, p) exists. Thus the sequence {xn} has
the strong limit p. Therefore {xn} converges strongly to a fixed point of T . This completes
the proof of the theorem. □

Remark 1. Since T is completely continuous, then for some q ∈ N, the image of T q is
semi-compact. Since {xn} is a bounded sequence and from Theorem 2, d(xn, T q xn) → 0 as
n → ∞. Therefore for some q ∈ N, T q is semi-compact, that is, the continuous image of a
semi-compact space is semi-compact.

Example 1. Let X = K = [0, 1] with the usual metric. Define T : K → K by

T (x) =

{ x
4
, x ̸= 0,

1, x = 0.

Then T is semi-compact. However, T is not continuous. In fact, if {xn} is a bounded sequence
in K satisfying |xn − T xn| → 0 as n → ∞, then by Bolzano–Weierstrass theorem, {xn} has
a convergent subsequence.

Also, there is an example which shows that a semi-compact mapping is not necessarily
compact.

Example 2 ([2]).
Let X = l2 and K = {e1, e2, . . . , en, . . .} be the usual orthonormal basis for l2. Define

T : K → K by T (e j ) = e j+1, j ∈ N. Then T is continuous and also an isometry but not
compact. However, T is semi-compact. Indeed, if {e j } j∈N is a bounded sequence in K such
that e j − T e j converges, {e j } j∈N must be finite.

From Theorem 2, we have the following result as a Corollary:

Corollary 2. Let (X, d) be a complete CAT(0) space and K a nonempty closed and convex
subset of X. Let T : K → K be a uniformly continuous nearly asymptotically nonexpansive
mapping with sequence {(sn, η(T n))}. Let {xn} be a sequence in K defined by (3.1) and {an},

{bn} and {cn} be sequences in (0, 1) satisfying the conditions (1) and (2) (of Theorem 1).
Suppose that T q is semi-compact for some q ∈ N. Then the sequence {xn} converges strongly
to a fixed point of T .

Now, we have strong convergence theorems.

Theorem 3. Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0 for some

ϵ ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K a uniformly
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continuous nearly asymptotically nonexpansive mapping with sequence {(sn, η(T n))}. Let
{xn} be a sequence in K defined by (3.1) and {an}, {bn} and {cn} the sequences in (0, 1)
satisfying the conditions (1) and (2) (of Theorem 1). Suppose that T satisfies condition
(I ). Then the sequence {xn} converges strongly to a fixed point of T if and only if
limn→∞ inf d(xn, F(T )) = 0.

Proof. It is easy to see that if {xn} converges to a point x ∈ F(T ), then limn→∞ inf d(xn,

F(T )) = 0.

For converse part, suppose that limn→∞ inf d(xn, F(T )) = 0. Since from Theorem 1, we
have

d(xn+1, p) ≤ d(xn, p) for p ∈ F(T )

so that

d(xn+1, F(T )) ≤ d(xn, F(T )).

Hence, limn→∞d(xn+1, F(T )) exists. By hypothesis, limn→∞ inf d(xn, F(T )) = 0, so
limn→∞d(xn, F(T )) = 0. Now, we show that {xn} is a Cauchy sequence in K . Let ϵ > 0
be arbitrarily chosen. Since limn→∞d(xn, F(T )) = 0, there exists n0 such that for all n ≥ n0,

we have

d(xn, F(T )) <
ϵ

4
.

In particular, inf{d(xn0 , p) : p ∈ F(T )} < ϵ
4 , so there must exist a p∗

∈ F(T ) such that

d(xn0 , p∗) <
ϵ

2
.

Now, for m, n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p∗) + d(xn, p∗) < 2d(xn0 , p∗) < ϵ.

Therefore {xn} is a Cauchy sequence in a closed subset K of a complete CAT(k) space X, and
hence {xn} must converge in K . Let limn→∞xn = q. Now, since T is uniformly continuous
and from Theorem 1, limn→∞d(xn, T xn) = 0, we have

d(q, T q) = d(q, xn) + d(xn, T xn) + d(T xn, T q) → 0 as n → ∞,

which implies that q ∈ F(T ). This completes the proof of the theorem. □

Now, we prove strong convergence theorem using condition (I ).

Theorem 4. Let (X, d) be a complete CAT(k) space with diam(X ) =
π/2−ϵ

√
k , k > 0 for some

ϵ ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K a uniformly
continuous nearly asymptotically nonexpansive mapping with sequence {(sn, η(T n))}. Let
{xn} be a sequence in K defined by (3.1) and {an}, {bn} and {cn} the sequences in (0, 1)
satisfying the conditions (1) and (2) (of Theorem 1). Suppose that T satisfies condition (I ).
Then {xn} converges strongly to a fixed point of T .

Proof. From Theorem 1, limn→∞d(xn, F(T )) exists and limn→∞d(xn, T xn) = 0. Therefore
by using condition (I ), we have

lim
n→∞

g(d(xn, F(T ))) ≤ lim
n→∞

d(xn, T xn) = 0,
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that is, limn→∞g(d(xn, F(T ))) = 0. Since g is a nondecreasing function satisfying g(0) = 0
and g(r ) > 0 for all r ∈ (0, ∞), we have limn→∞d(xn, F(T )) = 0. Therefore, the result
follows from Theorem 3. □

The following example shows that a nearly asymptotically nonexpansive mapping need
not be continuous and Lipschitzian.

Example 3. Let X = R and K = [0, 1]. Define a mapping T : K → K by

T (x) =

⎧⎪⎪⎨⎪⎪⎩
1
3
, x ∈

[
0,

1
3

]
,

0, x ∈

(
1
3
, 1

]
.

Hence F(T ) =
1
3 . Then obviously T is a discontinuous and non-Lipschitzian mapping.

However, T is nearly nonexpansive mapping and hence a nearly asymptotically nonexpansive
mapping with sequence {(sn, η(T n))} =

{ 1
3n , 1

}
. In fact, for a sequence {sn} with s1 =

1
3 and

sn → 0 as n → ∞, we have

d(T x, T y) ≤ d(x, y) + s1 for all x, y ∈ K

and

d(T n x, T n y) ≤ d(x, y) + sn for all x, y ∈ K and n ≥ 2,

since T n x =
1
3 for all x ∈ [0, 1] and n ≥ 2.

Further, it can be easily shown that strong convergence ⇒ ∆-convergence ⇒ weak
convergence. For details, (see [25]). But the converse is not true in general. The following
example shows that if the sequence {xn} is weakly convergent, then it is not ∆-convergent.

Example 4 ([18]). Let X = R with the usual metric d and K = [−1, 1]. Let {xn}, {un} and
{vn} be the sequences in K defined by {xn} = {1, −1, 1, −1, . . .}, {un} = {−1, −1, −1, . . .}

and {vn} = {1, 1, 1, . . .}. Then A({xn}) = AK ({xn}) = {0}, A({un}) = {−1} and
A({vn}) = {1}. Thus the sequence {xn} converges weakly to 0 but it does not have a ∆-limit.

From Theorems 3 and 4, we deduce the following Corollaries in CAT(0) space:

Corollary 3. Let (X, d) be a complete CAT(0) space and K a nonempty closed and
convex subset of X. Let T : K → K be a uniformly continuous nearly asymptotically
nonexpansive mapping with sequence {(sn, η(T n))}. Let {xn} be a sequence in K defined by
(3.1) and {an}, {bn} and {cn} be sequences in (0, 1) satisfying the conditions (1) and (2) (of
Theorem 1). Then the sequence {xn} converges strongly to a fixed point of T if and only if
limn→∞ inf d(xn, F(T )) = 0.

Corollary 4. Let (X, d) be a complete CAT(0) space and K a nonempty closed and convex
subset of X. Let T : K → K be a uniformly continuous nearly asymptotically nonexpansive
mapping with sequence {(sn, η(T n))}. Let {xn} be a sequence in K defined by (3.1) and {an},

{bn} and {cn} be sequences in (0, 1) satisfying the conditions (1) and (2) (of Theorem 1).
Suppose that T satisfies condition (I ). Then the sequence {xn} converges strongly to a fixed
point of T .
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