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Abstract. Mason introduced the notion of reflexive property of rings as a generalization of
reduced rings. For a ring endomorphism α, Krempa studied α-rigid rings as an extension
of reduced rings. In this note, we introduce the notion of α-quasi reflexive rings as a
generalization of α-rigid rings and a natural extension of the reflexive property to ring
endomorphisms. We investigate various properties of these rings and also study ring theoretic
extensions such as polynomial rings, trivial extensions, right (left) quotient rings, Dorroh
extensions etc. over these rings.
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1. INTRODUCTION

Throughout this article, all rings are associative with unity unless otherwise explicitly
mentioned and all ring endomorphisms are nonzero. Given a ring R, the polynomial ring
with an indeterminate x over R is denoted by R[x], the n by n full (resp., upper triangular)
matrix ring over R by Mn(R) (resp., Un(R)), center of R by Z (R), Ei j denotes the matrix
with (i, j)-entry 1 and other entries 0, and Zn denotes the ring of integers modulo n.

A subgroup H of a group G is normal if and only if for a, b ∈ G, ab ∈ H implies ba ∈ H .
For arbitrary subsets of semigroups and rings, Thierrin [16] called this property as réflectif.
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Motivated by this, Mason in 1981 introduced the notion of reflexive property for ideals. Due
to Mason [14], a right ideal I of a ring R is called reflexive if for a, b ∈ R, a Rb ⊆ I implies
bRa ⊆ I and a ring R is called reflexive if the zero ideal of R is reflexive. From the definition,
it is clear that every commutative ring is reflexive. Also semiprime rings are reflexive by an
easy computation [14].

Following the literature, a ring R is called reduced if it has no nonzero nilpotent elements.
A ring R is called reversible [3] if for a, b ∈ R, ab = 0 implies ba = 0. Due to Bell [2], a
ring R is called an IFP (insertion-of-factors-property) ring if for a, b ∈ R, ab = 0 implies
a Rb = 0. A ring R is called abelian if each idempotent of R is central. The relations among
the classes of rings mentioned above are as follows.

Reduced ⇒ Reversible ⇒ IFP ⇒ Abelian
⇓

Reflexive

Krempa [10] extended the notion of reduced rings to ring endomorphisms. Due to
Krempa [10], an endomorphism α of a ring R is called rigid if for a ∈ R, aα(a) = 0
implies a = 0 and a ring R is called α-rigid [7] if there exists a rigid endomorphism α of R.
Following [7, pp. 218], any rigid endomorphism is injective and α-rigid rings are reduced.
Also from [1, Lemma 2.1(iii)], a ring R is α-rigid if and only if for a ∈ R, α(a)a = 0
implies a = 0. Following [12], an endomorphism α of a ring R is called right (resp., left)
skew reflexive if for a, b ∈ R, a Rb = 0 implies bRα(a) = 0 (resp., α(b)Ra = 0) and a ring
R is called right (resp., left) α-skew reflexive if there exists a right (resp., left) skew reflexive
endomorphism α of R. A ring R is called α-skew reflexive [12] if it is both right and left
α-skew reflexive. Note that α-rigid rings are right α-skew reflexive by [12, Proposition 2.6].

Motivated by above, for a ring endomorphism α, we introduce the notion α-quasi reflexive
rings as a generalization of α-rigid rings and a natural extension of the reflexive property to
ring endomorphisms. We begin with the following definition.

Definition 1.1. (1) An endomorphism α of a ring R is called right (resp., left) quasi reflexive
if for a, b ∈ R, a Rα(b) = 0 implies bRα(a) = 0 (resp., α(a)Rb = 0 implies α(b)Ra = 0).

(2) A ring R is called right (resp., left) α-quasi reflexive if there exists a right (resp., left)
quasi reflexive endomorphism α of R.

(3) A ring R is called α-quasi reflexive if it is both right and left α-quasi reflexive.

Remark 1.2. (1) A ring R is reflexive if it is right (left) 1R-quasi reflexive where 1R denotes
the identity endomorphism of R.

(2) Any domain R is α-quasi reflexive for any monomorphism α of R.

We provide non-trivial examples of α-quasi reflexive rings as follows.

Proposition 1.3. Let R be a reduced ring. Then

S =

{(
a b
0 a

)
: a, b ∈ R

}
is α-quasi reflexive where α : S → S is defined by

α

((
a b
0 a

))
=

(
a −b
0 a

)
.
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Proof. Assume that A, B ∈ S such that ASα(B) = 0 where

A =

(
a1 b1
0 a1

)
and B =

(
a2 b2
0 a2

)
.

Then Aα(B) = 0 and so we have

a1a2 = 0. (1)

− a1b2 + b1a2 = 0. (2)

From (1), we have a2a1 = 0 since R is reduced (and so reversible). Multiplying (2) by a2
from left and using a2a1 = 0, we have a2b1a2 = 0. This gives (a2b1)2

= 0 and so a2b1 = 0
as R is reduced. Thus b1a2 = 0 and b2a1 = 0. Then for any ( r s

0 r ) ∈ S, we have(
a2 b2
0 a2

)(
r s
0 r

)(
a1 −b1
0 a1

)
=

(
a2ra1 −a2rb1 + a2sa1 + b2ra1

0 a2ra1

)
= 0

as R being a reduced ring, is IFP. Thus BSα(A) = 0 and so S is right α-quasi reflexive. In a
similar way, we can show that S is left α-quasi reflexive and hence S is α-quasi reflexive. □

The condition “R is a reduced ring” in Proposition 1.3 cannot be replaced by “R is a
reversible ring” by the following example.

Example 1.4. We refer to the ring in [9, Example 2.1]. Let A = Z2 {a0, a1, a2, b0, b1, b2, c}
be the free algebra with zero constant terms in noncommuting indeterminates a0, a1, a2, b0,
b1, b2, c over Z2. Note that A is a ring without unity and consider an ideal of the ring Z2 + A,
say I , generated by

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r (b0 + b1 + b2), (b0 + b1 + b2)r (a0 + a1 + a2), and r1r2r3r4,

where r, r1, r2, r3, r4 ∈ A. Then clearly A4
⊆ I . Let R = (Z2 + A)/I . By [9, Example 2.1],

R is reversible. For simplicity, we identify the elements of Z2 + A with their images in R.
Let

S =

{(
a b
0 a

)
: a, b ∈ R

}
and α : S → S be defined by

α

((
a b
0 a

))
=

(
a −b
0 a

)
.

Let

A =

(
a0 a1
0 a0

)
and B =

(
b0c −b1c
0 b0c

)
.

Clearly, A, B ∈ S and for any ( r s
0 r ) ∈ S, we have(

a0 a1
0 a0

)(
r s
0 r

)(
b0c b1c
0 b0c

)
=

(
0 (a0rb1 + a1rb0) c
0 0

)
. (3)

For r = γ + h, where γ ∈ Z2 and h ∈ A, we have

(a0rb1 + a1rb0) c = γ (a0b1 + a1b0) c + (a0hb1 + a1hb0) c = 0
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by the construction of I . Therefore from (3), we obtain ASα(B) = 0. However,

Bα(A) =

(
b0c −b1c
0 b0c

)(
a0 −a1
0 a0

)
=

(
0 − (b0ca1 + b1ca0)

0 0

)
̸= 0

as b0ca1 + b1ca0 ̸= 0, entailing BSα(A) ̸= 0. Therefore S is not right α-quasi reflexive and
so S is not α-quasi reflexive.

Proposition 1.5. For a ring R with an endomorphism α, if R is α-rigid, then R is α-quasi
reflexive.

Proof. Let R be α-rigid and let a, b ∈ R such that a Rα(b) = 0. Then aα(b) = 0 and so
we have bRaα(bRa) = bR(aα(b))α(Ra) = 0. Since R is α-rigid, therefore bRa = 0. This
gives ba = 0 and so ab = 0 as α-rigid rings are reduced by [7, pp. 218]. Thus

bRα(a)α(bRα(a)) = bRα(ab)α(Rα(a)) = 0,

entailing bRα(a) = 0 as R is α-rigid. Therefore R is right α-quasi reflexive. Using the fact
that a ring R is α-rigid if and only if for a ∈ R, α(a)a = 0 implies a = 0 (by [1, Lemma
2.1(iii)]), we can show that R is left α-quasi reflexive by similar arguments. Hence R is
α-quasi reflexive. □

Of course by the help of Proposition 1.3, one can easily conclude that converse of
Proposition 1.5 need not be true. This shows that the notion of α-quasi reflexive rings is
a proper generalization of that of α-rigid rings. Next we show that the notions of α-quasi
reflexive and α-skew reflexive rings are independent of each other.

Example 1.6. (1) Consider a ring R = Z2 ⊕ Z2 with usual addition and multiplication.
Let α : R → R be an endomorphism defined by α((a, b)) = (b, a). For (a, b), (c, d) ∈ R,
(a, b)Rα((c, d)) = 0 implies aZ2d = 0 = bZ2c, yielding (c, d)Rα((a, b)) = 0. Therefore R
is right α-quasi reflexive. In a similar way, we can show that R is left α-quasi reflexive and so
R is α-quasi reflexive. However, R is neither right nor left α-skew reflexive by means of [12,
Example 2.7(1)].

(2) Let F be a field. Then α : F[x] → F[x] defined by α( f (x)) = f (0) is an
endomorphism. Since F[x] is a domain, therefore it is α-skew reflexive by [12, pp. 219].
For f (x) = 1 + x , g(x) = x ∈ F[x], f (x)F[x]α(g(x)) = 0 but g(x)α( f (x)) = x ̸= 0,
entailing g(x)F[x]α( f (x)) ̸= 0. Therefore F[x] is not right α-quasi reflexive. Similarly, we
can show that F[x] is not left α-quasi reflexive.

Proposition 1.7. Let R be a reflexive ring and α an endomorphism of R. Then R is right
α-quasi reflexive if and only if R is left α-quasi reflexive.

Proof. Let R be right α-quasi reflexive and let a, b ∈ R such that α(a)Rb = 0. Since R
is reflexive, therefore bRα(a) = 0. Again R is right α-quasi reflexive and so a Rα(b) = 0.
Again using the reflexive property of R, we obtain α(b)Ra = 0. Therefore R is left α-quasi
reflexive. Converse can be proved similarly. □

The condition “R is a reflexive ring” in Proposition 1.7 is not superfluous by the following
example.
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Example 1.8. The argument here is due to [12, Example 2.2]. Let S be a reflexive ring.
Consider a ring R = U2(S). By [11, Example 2.7], R is not reflexive.

(1) Let α : R → R be an endomorphism defined by

α

((
a b
0 c

))
=

(
a 0
0 0

)
.

Assume that ARα(B) = 0 for

A =

(
a b
0 c

)
and B =

(
a′ b′

0 c′

)
∈ R.

Then for any ( r s
0 t ) ∈ R, we have ara′

= 0 and so aSa′
= 0. Since S is reflexive, therefore

a′Sa = 0 and so B Rα(A) = 0. Thus R is right α-quasi reflexive.
For

A =

(
0 1
0 1

)
and B =

(
1 1
0 0

)
∈ R,

we have α(A)RB = 0 but

α(B)A =

(
0 1
0 0

)
̸= 0,

entailing α(B)R A ̸= 0. Therefore R is not left α-quasi reflexive.
(2) Let α′

: R → R be an endomorphism defined by

α′

((
a b
0 c

))
=

(
0 0
0 c

)
.

By applying arguments similar to (1), we can show that R is left α′-quasi reflexive which is
not right α′-quasi reflexive.

From Example 1.8, it is clear that a right (left) α-quasi reflexive ring need not be abelian.
Also from Example 1.6(2) and 1.8, we can conclude that the notions of reflexive and right
(left) α-quasi reflexive rings are independent of each other. However, we have the following.

Proposition 1.9. For a ring R with an endomorphism α such that α2
= 1R , the following

are equivalent:
(1) R is reflexive.
(2) R is right α-quasi reflexive.
(3) R is left α-quasi reflexive.

Proof. Since α is an endomorphism of R such that α2
= 1R so it is clear that α is bijective.

(1) ⇒ (2) Let R be reflexive and let a, b ∈ R such that a Rα(b) = 0. Then for any r ∈ R,
there exists s ∈ R such that α(s) = r and α(a)rb = α(asα(b)) = 0 as α2

= 1R . Therefore
α(a)Rb = 0 and so using the reflexive property of R, we have bRα(a) = 0. Thus R is right
α-quasi reflexive.

(2) ⇒ (1) Assume that R is right α-quasi reflexive. Let a, b ∈ R such that a Rb = 0. Since
α2

= 1R so 0 = a Rb = a Rα(α(b)) and using right α-quasi reflexive property of R, we have
α(b)Rα(a) = 0. Then for any r ∈ R, α(bra) = α(b)α(r )α(a) = 0, yielding bra = 0 as α is
injective. Thus bRa = 0 and hence R is reflexive.

(1) ⇔ (3) can be proved similarly. □
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Remark 1.10. (1) For a reduced ring R, the ring S (as defined in Proposition 1.3) is reflexive
by [11, Proposition 2.5(2)(ii)] as reduced rings are semiprime. Moreover, α2

= 1S and so by
Proposition 1.9, we can directly conclude that S is α-quasi reflexive.

(2) The conclusion of Proposition 1.3 remains true if we replace the condition “R is a
reduced ring” by “R is a semiprime ring” as for a semiprime ring R, the ring S (as defined in
Proposition 1.3) is reflexive by [11, Proposition 2.5(2)(ii)] and α2

= 1S implies S is α-quasi
reflexive by Proposition 1.9. By the same argument, we can show that for a commutative ring
R, S is α-quasi reflexive.

Corollary 1.11. For a commutative or a semiprime ring R, the ring

S =

{(
a b
0 a

)
: a, b ∈ R

}
is α-quasi reflexive where α : S → S is defined by

α

((
a b
0 a

))
=

(
a −b
0 a

)
.

2. PROPERTIES AND EXTENSIONS

In this section, we study ring theoretic properties and extensions related to the right version
of α-quasi reflexive rings.

For a nonempty subset S of a ring R, the right annihilator of S in R is denoted and defined
by rR(S) = {r ∈ R : Sr = 0}. The left annihilator is defined analogously and denoted by
ℓR(S).

Proposition 2.1. For a ring R with an endomorphism α, the following are equivalent:
(1) R is right α-quasi reflexive.
(2) For each a ∈ R, α−1(rR(a R)) = ℓR(Rα(a)).
(3) For any nonempty subsets A, B of R, ARα(B) = 0 if and only if B Rα(A) = 0.
(4) For all right ideals I, J of R, Iα(J ) = 0 if and only if Jα(I ) = 0.
(5) For all ideals I, J of R, Iα(J ) = 0 if and only if Jα(I ) = 0.

Proof. (1) ⇒ (2) Let R be right α-quasi reflexive. To prove α−1(rR(a R)) = ℓR(Rα(a)),
assume that b ∈ α−1(rR(a R)). This gives α(b) ∈ rR(a R) and so a Rα(b) = 0, entailing
bRα(a) = 0 as R is right α-quasi reflexive. This implies b ∈ ℓR(Rα(a)) and so
α−1(rR(a R)) ⊆ ℓR(Rα(a)).

Again let b ∈ ℓR(Rα(a)). This gives bRα(a) = 0. Since R is right α-quasi reflexive,
therefore a Rα(b) = 0, entailing α(b) ∈ rR(a R) and so b ∈ α−1(rR(a R)). Thus ℓR(Rα(a)) ⊆

α−1(rR(a R)) and hence α−1(rR(a R)) = ℓR(Rα(a)).
(2) ⇒ (3) Assume that (2) holds. Let A, B be nonempty subsets of R such that ARα(B) =

0. Then for all a ∈ A and b ∈ B, a Rα(b) = 0. Clearly, b ∈ α−1(rR(a R)) = ℓR(Rα(a)) and
so bRα(a) = 0 for all a ∈ A, b ∈ B. Thus we have

B Rα(A) =

∑
a∈A,b∈B

(finite)

bRα(a) = 0.

Interchanging the roles of A and B, we obtain B Rα(A) = 0 implies ARα(B) = 0.
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(3) ⇒ (4) Assume that (3) holds. Let I, J be two right ideals of R such that Iα(J ) = 0.
Then I R = I and J R = J . Thus 0 = Iα(J ) = I Rα(J ) and so by assumption, we have
0 = J Rα(I ) = Jα(I ). Interchanging the roles of I and J , we see that Jα(I ) = 0 implies
Iα(J ) = 0.

(4) ⇒ (5) is straightforward.
(5) ⇒ (1) Assume that (5) holds. Let a, b ∈ R such that a Rα(b) = 0. Then Ra R and

RbR are ideals of R such that Ra Rα(RbR) = 0. By assumption, RbRα(Ra R) = 0 and so
bRα(a) ⊆ RbRα(Ra R) = 0. Hence R is right α-quasi reflexive. □

For a ring R and for n ≥ 2, consider the following rings

Dn(R) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...

0 0 · · · a

⎞⎟⎟⎟⎠ : a, ai j ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and

Vn(R) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

a1 a2 · · · an

0 a1 · · · an−1
...

...
. . .

...

0 0 · · · a1

⎞⎟⎟⎟⎠ : ai ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
which are subrings of Mn(R). Note that R[x]/(xn) ∼= Vn(R), where (xn) is the ideal of R[x]
generated by xn .

For simplicity, we use (a1, a2, . . . , an) ∈ Vn(R) to denote⎛⎜⎜⎜⎝
a1 a2 · · · an

0 a1 · · · an−1
...

...
. . .

...

0 0 · · · a1

⎞⎟⎟⎟⎠ .

For a ring R with an endomorphism α, the correspondence
(
ai j
) ᾱ

↦→
(
α(ai j )

)
induce

endomorphisms of Mn(R), Un(R), Dn(R) and Vn(R).

Proposition 2.2. For a ring R with an endomorphism α, R is right α-quasi reflexive if and
only if Mn(R) is right ᾱ-quasi reflexive for n ≥ 2.

Proof. Assume that n ≥ 2. Let R be right α-quasi reflexive and let I, J be ideals in Mn(R)
such that I ᾱ(J ) = 0. Then there exist ideals A, B of R such that I = Mn(A) and J = Mn(B).
This gives 0 = I ᾱ(J ) = Mn(A)ᾱ(Mn(B)) = Mn(A)Mn(α(B)) = Mn(Aα(B)), entailing
Aα(B) = 0. Since R is right α-quasi reflexive, therefore by Proposition 2.1(5), Bα(A) = 0
and so

J ᾱ(I ) = Mn(B)ᾱ(Mn(A)) = Mn(Bα(A)) = 0.

Thus Mn(R) is right ᾱ-quasi reflexive by Proposition 2.1(5). Conversely, assume that Mn(R)
is right ᾱ-quasi reflexive. Let A, B be ideals in R such that Aα(B) = 0. Then Mn(A)
and Mn(B) are ideals in Mn(R) such that Mn(A)ᾱ(Mn(B)) = Mn(Aα(B)) = 0 and so
Mn(B)ᾱ(Mn(A)) = 0 by assumption. This gives Bα(A) = 0 and so R is right α-quasi
reflexive by Proposition 2.1(5). □
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Proposition 2.3. For any ring R with an endomorphism α such that α(1) = 1, we have
(1) Un(R) is not right ᾱ-quasi reflexive for n ≥ 2.
(2) Dn(R) is not right ᾱ-quasi reflexive for n ≥ 3.

Proof. (1) Assume that n ≥ 2. For A = E12, B = E11 ∈ Un(R), it is clear that
AUn(R)ᾱ(B) = 0, however, Bᾱ(A) = A ̸= 0, entailing BUn(R)ᾱ(A) ̸= 0 and so Un(R)
is not right ᾱ-quasi reflexive.

(2) Assume that n ≥ 3. For A = E23, B = E12 ∈ Dn(R), we have ADn(R)ᾱ(B) = 0,
however, Bᾱ(A) = E13 ̸= 0, entailing B Dn(R)ᾱ(A) ̸= 0 and so Dn(R) is not right ᾱ-quasi
reflexive. □

Remark 2.4. (1) Let A be a ring and α an endomorphism of A such that α(1) = 1. Consider
the rings R = M2(A) and S = U2(A). Clearly, S is a subring of R. Note that R is right ᾱ-quasi
reflexive by Proposition 2.2, however, S is not right ᾱ-quasi reflexive by Proposition 2.3(1).
This shows that the class of right α-quasi reflexive rings is not closed under subrings.

(2) Recall that a ring R is called directly finite if for a, b ∈ R, ab = 1 implies ba = 1.
Abelian rings are directly finite by [13, Lemma 3.4]. Following [15, Theorem 1.0], there
exists a domain D for which M2(D) is not directly finite. For a given monomorphism α of
D, D is right α-quasi reflexive by Remark 1.2(2) and so by Proposition 2.2, M2(D) is right
ᾱ-quasi reflexive. This shows that a right α-quasi reflexive ring need not be directly finite.

Proposition 2.5. For a semiprime ring R with an endomorphism α, R is right α-quasi
reflexive if and only if Vn(R) is right ᾱ-quasi reflexive for n ≥ 2.

Proof. Note that for a semiprime ring R, a Rb = 0 if and only if a RbRb = 0 for all a, b ∈ R,
by [11, Proposition 2.5(2)(i)]. We use this fact freely without reference.

Assume that n ≥ 2. Let R be right α-quasi reflexive and let A = (a1, a2, . . . , an),
B = (b1, b2, . . . , bn) ∈ Vn(R) such that AVn(R)ᾱ(B) = 0. Then for any r ∈ R,
A(r, 0, . . . , 0)ᾱ(B) = 0. Thus we have the following equations.

a1rα(b1) = 0. (4)

a1rα(b2) + a2rα(b1) = 0. (5)

a1rα(b3) + a2rα(b2) + a3rα(b1) = 0. (6)
...

a1rα(bk) + a2rα(bk−1) + · · · + ak−1rα(b2) + akrα(b1) = 0. (7)
...

a1rα(bn) + a2rα(bn−1) + · · · + an−1rα(b2) + anrα(b1) = 0. (8)

From (4), we obtain

a1 Rα(b1) = 0. (9)

Multiplying (5) by sα(b1) from right for any s ∈ R and using (9), we get

a2 Rα(b1) = 0. (10)
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Therefore (5) becomes

a1 Rα(b2) = 0. (11)

Thus we have

ai Rα(b j ) = 0 for all 2 ≤ i + j ≤ 3. (12)

Assume that

ai Rα(b j ) = 0 for all 2 ≤ i + j ≤ k. (13)

Multiplying (7) from right by s1α(b1), s2α(b2), . . . , sk−1α(bk−1) for any s1, s2, . . . , sk−1 ∈ R,
in turn, and using (13), we obtain

ai Rα(b j ) = 0 for all i + j = k. (14)

By induction, we have

ai Rα(b j ) = 0 for all 2 ≤ i + j ≤ n + 1. (15)

Since R is right α-quasi reflexive, therefore

b j Rα(ai ) = 0 for all 2 ≤ i + j ≤ n + 1

and so BVn(R)ᾱ(A) = 0. Thus Vn(R) is right ᾱ-quasi reflexive.
Conversely, assume that Vn(R) is right ᾱ-quasi reflexive. Let a, b ∈ R such that a Rα(b) =

0. Then A = (a, 0, . . . , 0), B = (b, 0, . . . , 0) ∈ Vn(R) such that AVn(R)ᾱ(B) = 0.
By assumption, BVn(R)ᾱ(A) = 0 and so bRα(a) = 0. Therefore R is right α-quasi
reflexive. □

Remark 2.6. The condition “R is a semiprime ring” in Proposition 2.5 is not superfluous,
i.e., for a right α-quasi reflexive ring R, Vn(R) need not be right ᾱ-quasi reflexive for n ≥ 2
by Example 2.15 to follow.

For a ring R and an (R, R)-bimodule M , the trivial extension of R by M is the ring
T (R, M) = R ⊕ M with usual addition and the following multiplication:

(r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2).

This ring is isomorphic to the ring of all matrices ( r m
0 r )where r ∈ R and m ∈ M , and the

usual matrix operations are used.

Corollary 2.7. For a semiprime ring R with an endomorphism α, the following are
equivalent:

(1) R is right α-quasi reflexive.
(2) T (R, R) is right ᾱ-quasi reflexive.
(3) R[x]/(xn) is right ᾱ-quasi reflexive for n ≥ 2.

For an endomorphism α of a ring R and an ideal I of R with α(I ) ⊆ I , the mapping
ᾱ : R/I → R/I defined by ᾱ(r + I ) = α(r ) + I for r ∈ R, induces an endomorphism of
R/I . The class of right α-quasi reflexive rings is not closed under homomorphic images by
the help of [11, Example 2.8].
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Proposition 2.8. For a ring R with an endomorphism α and an ideal I of R with α(I ) ⊆ I ,
if R/I is right ᾱ-quasi reflexive and I is α-rigid as a ring (possibly without unity), then R is
right α-quasi reflexive.

Proof. Assume that I is α-rigid as a ring and R/I is right ᾱ-quasi reflexive. Let a, b ∈ R
such that a Rα(b) = 0. Then (a + I ) R/I ᾱ(b + I ) = I and so bRα(a) ⊆ I as R/I is right
ᾱ-quasi reflexive. Thus we have

bRα(a)a Rα(bRα(a)a R) = (bRα(a))a Rα(b)α(Rα(a)a R) = 0.

Clearly, bRα(a)a R ⊆ I and since I is α-rigid, therefore bRα(a)a R = 0, entailing
bRα(a)a = 0. Since α-rigid rings are reduced and reduced rings are reversible, therefore
bRα(a)a = 0 implies abRα(a) = 0. Thus

bRα(a)α(bRα(a)) = bRα(abRα(a)) = 0

and so bRα(a) = 0 as I is α-rigid. Hence R is right α-quasi reflexive. □

The condition “I is α-rigid as a ring (possibly without unity)” in Proposition 2.8 is not
superfluous by the following example.

Example 2.9. The argument here is due to [12, Example 2.10]. Let F be a field. Consider a
ring R = U2(F) and an endomorphism α : R → R defined by

α

((
a b
0 c

))
=

(
a −b
0 c

)
.

Then ARα(B) = 0 where

A =

(
0 1
0 0

)
and B =

(
1 1
0 0

)
∈ R.

However, Bα(A) = −A and so B Rα(A) ̸= 0. Therefore R is not right α-quasi reflexive.
Consider an ideal I of R, given by

I =

{(
0 b
0 0

)
: b ∈ F

}
.

Clearly, I is not α-rigid as 0 ̸= A ∈ I and Aα(A) = 0. The quotient ring R/I , given by

R/I =

{(
a 0
0 c

)
+ I : a, c ∈ F

}
is reduced and ᾱ is the identity endomorphism of R/I , entailing R/I is right ᾱ-quasi
reflexive.

Next we show that the “right α-quasi reflexive property” is preserved under isomorphisms.

Proposition 2.10. Let R be a ring with an endomorphism α. Let S be a ring and let
σ : R → S be an isomorphism. Then R is right α-quasi reflexive if and only if S is right
ᾱ-quasi reflexive where ᾱ = σ ◦ α ◦ σ−1.

Proof. Let R be right α-quasi reflexive. Let x, y ∈ S such that x Sᾱ(y) = 0. Since σ : R → S
is bijective so there exist a, b ∈ R such that σ (a) = x , σ (b) = y. Then

σ (a Rα(b)) = σ (a)σ (R)σ (α(σ−1(σ (b)))) = x Sᾱ(y) = 0
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and so a Rα(b) = 0 as σ is bijective. This gives bRα(a) = 0 as R is right α-quasi reflexive
and so ySᾱ(x) = 0 by similar argument. Therefore S is right ᾱ-quasi reflexive. Converse can
be proved similarly. □

Proposition 2.11. Let R be a ring with an endomorphism α such that α(e) = e for
e2

= e ∈ R.
(1) If R is right α-quasi reflexive then so is eRe.
(2) If e ∈ Z (R), then R is right α-quasi reflexive if and only if eR and (1 − e)R are right

α-quasi reflexive.

Proof. (1) Let R be right α-quasi reflexive and let a, b ∈ eRe such that a(eRe)α(b) = 0.
Then ae = a = ea and be = b = eb. Thus a Rα(b) = a(eRe)α(b) = 0 as α(e) = e. Since R
is right α-quasi reflexive, therefore b(eRe)α(a) = bRα(a) = 0 by similar argument. Hence
eRe is right α-quasi reflexive.

(2) Necessity is clear from (1). Let e ∈ Z (R). Assume that eR and (1 − e)R are right
α-quasi reflexive. Let a, b ∈ R such that a Rα(b) = 0. Since e is central idempotent in R and
α(e) = e, therefore ea(eR)α(eb) = 0 and (1 − e)a((1 − e)R)α((1 − e)b) = 0. Since eR is
right α-quasi reflexive so ebRα(a) = eb(eR)α(ea) = 0. Similarly, (1 − e)R is right α-quasi
reflexive implies that (1 − e)bRα(a) = 0. Thus bRα(a) = ebRα(a) + (1 − e)bRα(a) = 0
and hence R is right α-quasi reflexive. □

Remark 2.12. Let {Rλ : λ ∈ Λ} be a class of rings such that for each λ ∈ Λ, αλ is an
endomorphism of Rλ. Then the mapping ᾱ :

∏
λ∈ΛRλ →

∏
λ∈ΛRλ defined by ᾱ((aλ)) =

(αλ(aλ)) induces an endomorphism of the direct product
∏

λ∈ΛRλ. It is easy to prove that∏
λ∈ΛRλ is right ᾱ-quasi reflexive if and only if each Rλ is right αλ-quasi reflexive.

Due to Hirano [6], a ring R is called quasi-Armendariz if for f (x) =
∑m

i=0ai x i ,
g(x) =

∑n
j=0b j x j

∈ R[x], f (x)R[x]g(x) = 0 implies ai Rb j = 0 for all i, j .
For a ring R with an endomorphism α, the mapping ᾱ : R[x] → R[x] defined by

ᾱ

(
n∑

i=0

ai x i

)
=

n∑
i=0

α(ai )x i

induces an endomorphism of R[x].

Proposition 2.13. For an endomorphism α of a quasi-Armendariz ring R, the following are
equivalent:

(1) R is right α-quasi reflexive.
(2) R[x] is right ᾱ-quasi reflexive.

Proof. (1) ⇒ (2) Let R be right α-quasi reflexive. Let f (x) =
∑m

i=0ai x i , g(x) =∑n
j=0b j x j in R[x] such that f (x)R[x]ᾱ(g(x)) = 0. Since R is quasi-Armendariz, therefore

ai Rα(b j ) = 0 and so b j Rα(ai ) = 0 for all i, j as R is right α-quasi reflexive. This gives
g(x)R[x]ᾱ( f (x)) = 0 and so R[x] is right ᾱ-quasi reflexive.

(2) ⇒ (1) Assume that R[x] is right ᾱ-quasi reflexive. Let a, b ∈ R such that a Rα(b) = 0.
Then a R[x]ᾱ(b) = a R[x]α(b) = 0 by [6, Lemma 2.1]. By assumption, bR[x]ᾱ(a) = 0 and
so bRα(a) = 0. Therefore R is right α-quasi reflexive. □
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The condition “R is a quasi-Armendariz ring” in Proposition 2.13 is not superfluous,
i.e., for a right α-quasi reflexive ring R, R[x] need not be right ᾱ-quasi reflexive by the
following example.

Example 2.14. We refer to the ring in [8, Example 2.8]. Let A = Z2 {a0, a1, a2, b0, b1, b2, c}
be the free algebra with zero constant terms in noncommuting indeterminates a0, a1, a2, b0,
b1, b2, c over Z2. Note that A is a ring without unity and consider an ideal of the ring Z2 + A,
say I , generated by

a2
0, b2

0, a2
2, b2

2, a0b0, b0a0, a2b2, b2a2, a0ra0,

b0rb0, a0rb0, b0ra0, a2ra2, b2rb2, a2rb2, b2ra2,

a0b1 + a1b0, b0a1 + b1a0, a1b2 + a2b1, b1a2 + b2a1,

a0a1 + a1a0, b0b1 + b1b0, a1a2 + a2a1,

b1b2 + b2b1, a0b2 + a1b1 + a2b0, b0a2 + b1a1 + b2a0,

a0a2 + a2
1 + a2a0, b0b2 + b2

1 + b2b0,

(a0 + a1 + a2)r (b0 + b1 + b2), (b0 + b1 + b2)r (a0 + a1 + a2),

(a0 + a1 + a2)r (a0 + a1 + a2),

(b0 + b1 + b2)r (b0 + b1 + b2), r1r2r3r4,

where r, r1, r2, r3, r4 ∈ A. Then clearly A4
⊆ I . Let R = (Z2 + A)/I . Let σ be an

automorphism of Z2 + A defined by

a0, a1, a2, b0, b1, b2, c ↦→ b0, b1, b2, a0, a1, a2, c.

Since σ (I ) ⊆ I , we obtain an endomorphism α of R such that α(s + I ) = σ (s) + I for
s ∈ Z2 + A.

We call each product of the indeterminates a0, a1, a2, b0, b1, b2, c a monomial and a
monomial of degree n means a product of exactly n number of indeterminates. Let Hn be
the set of all linear combinations of monomials of degree n over Z2. Note that Hn is finite
for any n and that the ideal I of R is homogeneous (i.e., if

∑s
i=1ri ∈ I with ri ∈ Hi then

every ri ∈ I ). We adopt the method used in [9, Example 2.1] to show that R is right α-quasi
reflexive.

Claim 1. If f1σ (g1) ∈ I for f1, g1 ∈ H1 then g1σ ( f1) ∈ I .

Proof. Let f1, g1 ∈ H1 such that f1σ (g1) ∈ I . By the definition of I , we have the following
cases:

( f1 = a0, g1 = a0), ( f1 = a0, g1 = b0), ( f1 = b0, g1 = b0), ( f1 = b0, g1 = a0),
( f1 = a2, g1 = a2), ( f1 = a2, g1 = b2), ( f1 = b2, g1 = b2), ( f1 = b2, g1 = a2),

( f1 = a0 + a1 + a2, g1 = a0 + a1 + a2), ( f1 = a0 + a1 + a2, g1 = b0 + b1 + b2),
( f1 = b0 + b1 + b2, g1 = b0 + b1 + b2), ( f1 = b0 + b1 + b2, g1 = a0 + a1 + a2).

So we obtain the result, using the definition of I and σ .

Claim 2. If f σ (g) ∈ I for f, g ∈ A then gσ ( f ) ∈ I .
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Proof. Let f, g ∈ A such that f σ (g) ∈ I . We may write f = f1 + f2 + f3 + f4,
g = g1 + g2 + g3 + g4 for some fi , gi ∈ Hi (for i = 1, 2, 3) and some f4, g4 ∈ I as
Hi ⊆ I for i ≥ 4. Then f σ (g) = f1σ (g1) + f1σ (g2) + f2σ (g1) + h with h ∈ I . Thus
f σ (g) ∈ I implies f1σ (g1) + f1σ (g2) + f2σ (g1) ∈ I . Since I is homogeneous, therefore
f1σ (g1) ∈ I , f1σ (g2) + f2σ (g1) ∈ I . From f1σ (g1) ∈ I , we have g1σ ( f1) ∈ I by Claim 1.
We show that g1σ ( f2) + g2σ ( f1) ∈ I . From f1σ (g2) + f2σ (g1) ∈ I , we have the following
cases:

( f1 = a0, g1 = a0), ( f1 = a0, g1 = b0), ( f1 = b0, g1 = b0), ( f1 = b0, g1 = a0),
( f1 = a2, g1 = a2), ( f1 = a2, g1 = b2), ( f1 = b2, g1 = b2), ( f1 = b2, g1 = a2),

( f1 = a0 + a1 + a2, g1 = a0 + a1 + a2), ( f1 = a0 + a1 + a2, g1 = b0 + b1 + b2),
( f1 = b0 + b1 + b2, g1 = b0 + b1 + b2), ( f1 = b0 + b1 + b2, g1 = a0 + a1 + a2).

If f2, g2 ∈ I then clearly g1σ ( f2) + g2σ ( f1) ∈ I . So we consider other cases of f2 and g2.
When f1 = a0, g1 = a0, we may obtain the following cases:

( f2 ∈ I, g2 = a0t), ( f2 ∈ I, g2 = ta0), ( f2 ∈ I, g2 = b0t), ( f2 ∈ I, g2 = tb0),
( f2 = a0s, g2 ∈ I ), ( f2 = sa0, g2 ∈ I ), ( f2 = b0s, g2 ∈ I ), ( f2 = sb0, g2 ∈ I ),

( f2 = a0s, g2 = a0t), ( f2 = a0s, g2 = ta0), ( f2 = a0s, g2 = b0t), ( f2 = a0s, g2 = tb0),
( f2 = sa0, g2 = a0t), ( f2 = sa0, g2 = ta0), ( f2 = sa0, g2 = b0t), ( f2 = sa0, g2 = tb0),
( f2 = b0s, g2 = a0t), ( f2 = b0s, g2 = ta0), ( f2 = b0s, g2 = b0t), ( f2 = b0s, g2 = tb0),
( f2 = sb0, g2 = a0t), ( f2 = sb0, g2 = ta0), ( f2 = sb0, g2 = b0t), ( f2 = sb0, g2 = tb0),

where s, t ∈ H1. Then g1σ ( f2) + g2σ ( f1) = a0σ ( f2) + g2b0 ∈ I .
The computations for other cases are similar. Thus gσ ( f ) = g1σ ( f1) + g1σ ( f2) +

g2σ ( f1) + k with k ∈ I , is also contained in I .

Claim 3. If gσ (h) ∈ I for g, h ∈ Z2 + A then hσ (g) ∈ I .

Proof. Let g, h ∈ Z2 + A such that gσ (h) ∈ I . We may write g = k +g′, h = ℓ+h′ for some
k, ℓ ∈ Z2 and some g′, h′

∈ A. Since gσ (h) = kℓ + kσ (h′) + g′ℓ + g′σ (h′) ∈ I , therefore
k = 0 or ℓ = 0. Assume that k = 0. Then g′l + g′σ (h′) ∈ I and so g′, g′σ (h′) ∈ I as I is
homogeneous and ℓ ∈ Z2. Therefore by Claim 2, h′σ (g′) ∈ I and consequently hσ (g) ∈ I .
For the case of ℓ = 0, we obtain hσ (g) ∈ I similarly.

Claim 4. If g(Z2 + A)σ (h) ∈ I for g, h ∈ Z2 + A then h(Z2 + A)σ (g) ∈ I .

Proof. Let g, h ∈ Z2 + A such that g(Z2 + A)σ (h) ∈ I . Clearly, gσ (h) ∈ I and so for any
r ∈ Z2 + A, we have gσ (hr ) ∈ I . By Claim 3, hrσ (g) ∈ I . Since r ∈ Z2 + A is arbitrary,
therefore h(Z2 + A)σ (g) ∈ I .

Claim 5. R is right α-quasi reflexive.

Proof. Let g + I, h + I ∈ R such that (g + I )Rα(h + I ) = I . Then g(Z2 + A)σ (h) ∈ I and
so by Claim 4, h(Z2 + A)σ (g) ∈ I , entailing (h + I )Rα(g + I ) = I . Therefore R is right
α-quasi reflexive.

Consider R[x] ∼= (Z2 + A)[x]/I [x]. For simplicity, we identify the elements of Z2 + A
with their images in R. For f (x) = a0 + a1x + a2x2, g(x) = b0c + b1cx + b2cx2

∈ R[x] and
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for any r = k + h ∈ R, where k ∈ Z2 and h ∈ A, we have

f (x)r ᾱ(g(x)) = (a0 + a1x + a2x2)r (a0c + a1cx + a2cx2)

= (a0a1 + a1a0)kcx + (a0a2 + a2
1 + a2a0)kcx2

+ (a1a2 + a2a1)kcx3

+ (a0ha1 + a1ha0)cx + (a0ha2 + a1ha1 + a2ha0)cx2

+ (a1ha2 + a2ha1)cx3

= 0.

Since r ∈ R is arbitrary, therefore f (x)Rᾱ(g(x)) = 0 and so by [6, Lemma 2.1], we
have f (x)R[x]ᾱ(g(x)) = 0. However, g(x)ᾱ( f (x)) ̸= 0 as b0cb1 + b1cb0 ̸= 0 and so
g(x)R[x]ᾱ( f (x)) ̸= 0. Therefore R[x] is not right ᾱ-quasi reflexive.

Next we show that for a right α-quasi reflexive ring R, Vn(R) need not be right ᾱ-quasi
reflexive for n ≥ 2.

Example 2.15. Consider the ring in Example 2.14, i.e., R = (Z2 + A)/I with the
endomorphism α where A, I and α are as defined in Example 2.14. Then R is right α-
quasi reflexive. For simplicity, we identify the elements of Z2 + A with their images in R.
Assume that n ≥ 2. For A = (a0, 0, . . . , 0, a1), B = (b0c, 0, . . . , 0, b1c) ∈ Vn(R), we have
AVn(R)ᾱ(B) = 0 by applying arguments similar to those given in Example 1.4. However,
Bᾱ(A) ̸= 0 as b0cb1 + b1cb0 ̸= 0, entailing BVn(R)ᾱ(A) ̸= 0 and so Vn(R) is not right
ᾱ-quasi reflexive.

A regular element in a ring R is any nonzero divisor. For a multiplicatively closed (m.c.
for short) subset S of a ring R consisting of regular elements, we denote by RS−1 (resp.,
S−1 R), the right (resp., left) localization of R at S, which is also called the right (resp., left)
quotient ring of R with respect to S. An m.c. subset S of a ring R is called right (resp., left)
Ore if for each r ∈ R and s ∈ S, there exist r1 ∈ R and s1 ∈ S such that rs1 = sr1 (resp.,
s1r = r1s), i.e., r S ∩ s R ̸= ∅ (resp., Sr ∩ Rs ̸= ∅). Following [5, Theorem 6.2], an m.c.
subset S of a ring R consisting of regular elements is right (resp., left) Ore if and only if the
right (resp., left) quotient ring of R with respect to S exists.

For an automorphism α of a ring R with α(S) ⊆ S where S is an m.c. subset of R
consisting of regular elements, the mapping ᾱ : RS−1

→ RS−1 defined by ᾱ(rs−1) =

α(r )α(s)−1 for r ∈ R and s ∈ S, induces an automorphism of RS−1. The induced
automorphism of S−1 R is defined analogously.

Proposition 2.16. For a right Ore subset S of a ring R consisting of regular elements and
an automorphism α of R with α(S) ⊆ S, if R is right α-quasi reflexive, then RS−1 is right
ᾱ-quasi reflexive.

Proof. Let R be right α-quasi reflexive and let A = au−1, B = bv−1
∈ RS−1 be such

that A(RS−1)ᾱ(B) = 0 where a, b ∈ R and u, v ∈ S. Then 0 = A(RS−1)ᾱ(B) =

a(RS−1)α(b)α(v)−1 as u−1(RS−1) = RS−1. Then for any rs−1
∈ RS−1, we have

a(rs−1)α(b)α(v)−1
= 0. For α(b) ∈ R and s ∈ S, there exist b1 ∈ R and s1 ∈ S such that

α(b)s1 = sb1 and s−1α(b) = b1s−1
1 as S is right Ore. This gives 0 = ar (s−1α(b))α(v)−1

=

arb1s−1
1 α(v)−1 for any r ∈ R and so a Rb1 = 0. From a Rb1 = 0 and α(b)s1 = sb1, we have

0 = arsb1 = arα(b)s1 for any r ∈ R and so a Rα(b) = 0. Again v−1(RS−1) = RS−1 and so



228 A. Bhattacharjee

B(RS−1)ᾱ(A) = b(RS−1)α(a)α(u)−1. Consider b(rs−1)α(a)α(u)−1 for any rs−1
∈ RS−1.

Since α(a) ∈ R and s ∈ S, there exist a2 ∈ R and s2 ∈ S such that α(a)s2 = sa2 and
s−1α(a) = a2s−1

2 by similar argument. Then b(rs−1)α(a)α(u)−1
= (bra2)s−1

2 α(u)−1. Since
α is an automorphism of R and α(S) ⊆ S, therefore there exist a′

2 ∈ R and s ′, s ′

2 ∈ S
such that α(a′

2) = a2, α(s ′) = s and α(s ′

2) = s2. Then α(a)s2 = sa2 implies as ′

2 = s ′a′

2
and so from a Rα(b) = 0, we have 0 = as ′

2rα(b) = s ′a′

2rα(b) for any r ∈ R and
so a′

2 Rα(b) = 0. Since R is right α-quasi reflexive, therefore 0 = bRα(a′

2) = bRa2

and so b(rs−1)α(a)α(u)−1
= (bra2)s−1

2 α(u)−1
= 0 for any rs−1

∈ RS−1. Therefore
B(RS−1)ᾱ(A) = 0 and hence RS−1 is right ᾱ-quasi reflexive. □

By applying arguments similar to those given in the proof of Proposition 2.16, we have
the following.

Proposition 2.17. For a left Ore subset S of a ring R consisting of regular elements and
an automorphism α of R with α(S) ⊆ S, if R is right α-quasi reflexive, then S−1 R is right
ᾱ-quasi reflexive.

Proposition 2.18. For an m.c. subset S of a ring R consisting of central regular elements
and an endomorphism α of R with α(S) ⊆ S and α(1) = 1, R is right α-quasi reflexive if
and only if S−1 R is right ᾱ-quasi reflexive.

Proof. Necessity is clear from the proof of Proposition 2.16. For the sufficiency part,
assume that S−1 R is right ᾱ-quasi reflexive. Let a, b ∈ R such that a Rα(b) = 0. Then
a(S−1 R)ᾱ(b) = 0. By assumption, b(S−1 R)ᾱ(a) = 0 and so bRα(a) = 0 as α(1) = 1.
Hence R is right α-quasi reflexive. □

The ring of Laurent polynomials in x over a ring R, consisting of all formal sums
∑n

i=kri x i

with usual addition and multiplication, where ri ∈ R and k, n are integers, is denoted by
R[x; x−1].

For a ring R with an endomorphism α, ᾱ : R[x; x−1] → R[x; x−1] defined by

ᾱ

(
n∑

i=k

ri x i

)
=

n∑
i=k

α(ri )x i

induces an endomorphism of R[x; x−1].

Corollary 2.19. For a ring R with an endomorphism α such that α(1) = 1, R[x] is right
ᾱ-quasi reflexive if and only if R[x; x−1] is right ᾱ-quasi reflexive.

Proof. Since S =
{
1, x, x2, . . .

}
is an m.c. subset of R[x] such that R[x; x−1] = S−1 R[x],

it follows directly from Proposition 2.18. □

For an algebra R over a commutative ring S, the Dorroh extension [4] of R by S is the
abelian group D = R ⊕ S with multiplication given by

(r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2).

For an S-endomorphism α of R and the Dorroh extension D of R by S, ᾱ : D → D
defined by ᾱ((r, s)) = (α(r ), s), is an S-algebra endomorphism.
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Proposition 2.20. Let R be an algebra over a commutative ring S and α an S-endomorphism
of R with α(1) = 1. Then R is right α-quasi reflexive if and only if the Dorroh extension D
of R by S is right ᾱ-quasi reflexive.

Proof. Clearly, any s ∈ S can be written as s = s1 ∈ R and so R = {r + s : (r, s) ∈ D}. Let
R be right α-quasi reflexive and let (r1, s1), (r2, s2) ∈ D such that (r1, s1)Dᾱ((r2, s2)) = 0.
Then for any (r, s) ∈ D, (r1, s1)(r, s)(α(r2), s2) = 0. This gives r1rα(r2) + s1rα(r2) +

sr1α(r2)+s2r1r+s2s1r+s2sr1+s1sα(r2) = 0 and s1ss2 = 0. Thus (r1, s1)(r, s)(α(r2), s2) = 0
is equivalent to (r1+s1)(r +s)(α(r2)+s2) = 0 and s1ss2 = 0. Therefore (r1+s1)Rα(r2+s2) =

0 as α(1) = 1 and s1Ss2 = 0. Since R is right α-quasi reflexive and S is commutative,
therefore (r2 + s2)Rα(r1 + s1) = 0 and s2Ss1 = 0 and so (r2, s2)Dᾱ((r1, s1)) = 0 by similar
arguments. Therefore D is right ᾱ-quasi reflexive. Conversely, assume that D is right ᾱ-quasi
reflexive. Clearly, e = (1, 0) ∈ D satisfy e2

= e and ᾱ(e) = e. Also, eDe ∼= R and so by
Propositions 2.10 and 2.11(1), R is right α-quasi reflexive. □

The condition “α(1) = 1” in Proposition 2.20 is not superfluous by the following example.

Example 2.21. Consider a ring R = U2(Z2). Let α : R → R be an endomorphism defined
by

α

((
a b
0 c

))
=

(
a 0
0 0

)
.

Then R is right α-quasi reflexive by Example 1.8(1). Since any ring can be regarded as a
Z-algebra so we consider the Dorroh extension D of R by Z. For

A =

((
1 1
0 0

)
, 1
)

and B =

((
0 1
0 1

)
, 0
)

∈ D = R ⊕ Z

it is clear that ADᾱ(B) = 0 but Bᾱ(A) = B ̸= 0 and so B Dᾱ(A) ̸= 0. Therefore D is not
right ᾱ-quasi reflexive.
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